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Abstract  43 

Alterations in lipid metabolism have the potential to be markers as well as drivers of the pathobiology of 44 

acute critical illness. Here, we took advantage of the temporal precision offered by trauma as a common 45 

cause of critical illness to identify the dynamic patterns in the circulating lipidome in critically ill humans. 46 

The major findings include an early loss of all classes of circulating lipids followed by a delayed and 47 

selective lipogenesis in patients destined to remain critically ill. Early in the clinical course, Fresh Frozen 48 

Plasma administration led to improved survival in association with preserved lipid levels that related to 49 

favorable changes in coagulation and inflammation biomarkers. Late over-representation of 50 

phosphatidylethanolamines with critical illness led to the validation of a Lipid Reprogramming Score that 51 

was prognostic not only in trauma but also severe COVID-19 patients. Our lipidomic findings provide a new 52 

paradigm for the lipid response underlying critical illness. 53 

 54 

Introduction  55 

Acute critical illness is a major healthcare burden and commonly leads to short and long-term morbidity and 56 

mortality1,2. Common causes of acute critical illness, including severe injury and infections, are among the 57 

leading causes of death worldwide3. Most recently, the COVID-19 pandemic has emerged as a major 58 

etiology for acute critical illness and death. Patients hospitalized for SARS CoV-2 infection that develop 59 

critical illness have mortality rates up to 39%4. For those that develop organ dysfunction, treatment options 60 

are limited and those targeting the host response are often nonspecific. Common features across these 61 

different etiologies of critical illness include dysregulated metabolism, an inflammatory “genomic storm”, 62 

immune suppression, and endothelial/ coagulation dysfunction 4–10. The validation of accurate prognostic 63 

biomarkers and a better understanding of the pathobiology of acute critical illness would facilitate the 64 

identification of effective targeted therapies.  65 

    A limitation in the study of human critical illness is knowing the time of onset of the patient’s disease 66 

process9. This is especially true for infections for which time of onset is often unclear. In addition, serious 67 

infections are commonly seen on the background of other chronic diseases that can confound interpretation 68 

of results. Traumatic injury is one of the most common causes of acute critical illness and often occurs in 69 

otherwise healthy individuals. This, coupled to the fact that the time of onset of the acute disease process can 70 

be known with precision, makes trauma an attractive model for the study of the dynamic events leading up 71 

to acute critical illness. 72 

Lipids comprise 30% of the body’s non-water mass and are not only a main component of cell 73 
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membranes but also important energy substrates and signaling molecules11. Previous studies in critically ill 74 

humans provide evidence that lipolysis and lipogenesis are altered dramatically in acute critical illness. For 75 

example, circulating levels of glycerolipids, sphingolipids, phospholipids, and lyso-phospholipids vary from 76 

baseline in patients with acute critical illness12–18. However, a comprehensive assessment of the changes in 77 

circulating lipids that correlate with outcomes and markers of disease in acute critical illness is lacking.  78 

To define the changes in the circulating lipidome associated with acute critical illness, we utilized a 79 

database and biobank established during the Prehospital Air Medical Plasma (PAMPer) Trial19. This 80 

prospective, multi-institutional randomized trial enrolled severely injured patients transported to level I 81 

Trauma Centers by helicopter. The trial demonstrated that administration of fresh frozen plasma (FFP) 82 

during transport improved 30-day survival when compared to standard-of-care, which does not include FFP 83 

in the pre-hospital setting. Because of this striking treatment effect, we hypothesized that early FFP 84 

administration would favorably impact circulating lipidomic patterns. Causal modeling was used to integrate 85 

the major changes in lipidomic profiles with immune mediator profiles and tissue injury/ coagulation 86 

markers observed after trauma and during critical illness. The lipidomic findings were further translated into 87 

a Lipid Reprogramming Score that was found to correlate highly with later patient outcomes. These findings 88 

were validated in a second trauma database and two publicly available databases that include critically ill 89 

COVID-19 patients, suggesting that some of the unique lipidomic patterns identified in this study may be 90 

generalizable to critical illness resulting from multiple etiologies. 91 

 92 

Results 93 

Lipid profiling of plasma from patients with severe trauma   94 

To determine the dynamics changes in circulating lipids after severe injury in humans, we carried out a 95 

quantitative analysis of plasma lipid levels in samples obtained during the PAMPer trial19. This prospective, 96 

multi-institutional, pragmatic trial enrolled seriously injured humans suffering polytrauma at risk for 97 

hemorrhagic shock. Only patients that were transported by helicopter to a Level 1 trauma center were 98 

included and randomization took place in the pre-hospital setting. Patients in the treatment arm received two 99 

units of FFP initiated during helicopter transport, while the control group was assigned randomly to 100 

standard-of-care, which did not include FFP in the pre-hospital setting. The use of pre-hospital FFP was 101 

associated with a 9.8% reduction in 30-day mortality (p=0.03)19. A total of 193 of the original 523 patients 102 

were selected for lipidome analysis (Fig S1). This cohort included both non-survivors (n=72) and survivors 103 

(n=121) selected to represent the overall cohort. Samples were obtained at admission to the trauma center 104 
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(0h) and at 24 and 72h after admission. Only the time 0h sample was obtained in the early non-survivors 105 

(n=51). A group of 17 non-fasting healthy subjects was used as controls for baseline values. The detailed 106 

demographic information of these patients is shown in Table 1. Since underlying medical conditions and 107 

medication history can influence circulating lipid profiles, we also provide this information (Table S4). 108 

Chronic health conditions and medications were rare in the trauma patient population and evenly distributed 109 

across the outcome groups (Table S1).  110 

 The overall data analysis workflow is shown in Fig 1A. Liquid chromatography mass spectrometry 111 

(LC-MS) was used to carry out targeted lipidomic analysis on the plasma samples. In total, 996 lipids were 112 

quantified using internal standards. In the quality control analysis, the median relative standard deviation 113 

(RSD) for the lipid panel was 4%. Lipids are named according to sub-class and acyl chains detected. For 114 

example, PE (16:0/18:2) has a phosphatidylethanolamine (PE) backbone and two acyl chains comprised of 115 

palmitic acid (C16:0) and linoleic acid (C18:2). The representation of lipids from 14 sub-classes is shown in 116 

Fig 1B. Triglyceride (TAG) (glycerol backbone + three acyl chains) was the most abundant lipid class 117 

identified in the plasma (n=518). Phosphatidylethanolamine (PE), phosphatidylcholine (PC), and 118 

diacylglycerols (DAG) all containing 2 acyl chains were the next most abundant classes (n=128, 121, 58 119 

respectively). 120 

 We first explored the dynamic changes in the global pattern of the circulating lipidome in trauma 121 

patients. Uniform Manifold Approximation and Projection (UMAP) is a non-linear method for dimension 122 

reduction that can identify the global structure of multi-dimensional data. In Fig 1C, each dot represents a 123 

single subject and the distance between dots in the UMAP plot reflects the global similarity/ differences in 124 

overall lipid profiles between samples20. We observed that trauma patients at 0h were quite dispersed and 125 

partially overlapping with healthy subjects, suggesting an early and rapidly evolving response pattern 126 

immediately post-injury. There was excellent separation across the three time points on UMAP, underscoring 127 

the role of time in the major changes in lipid patterns after trauma.  128 

To depict the differences between the healthy controls and patients across time, we projected relative 129 

levels of all lipids assayed on a heatmap (Fig 1D). Compared to healthy controls, most lipid species were 130 

persistently lower after trauma. This dramatic shift between healthy controls and injured humans was also 131 

observed when total lipid concentrations were compared (Fig 1E).   132 

 133 

Association between lipidome pattern and outcome of trauma patients 134 

We next investigated the association between the circulating lipidome and patient outcomes. The three 135 
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outcomes used for this analysis included (1) early non-survivors (death within 3 days of admission), (2) 136 

non-resolving patients (survivors with duration of intensive care unit [ICU] stay 7 days or patients that died 137 

after day 3 following admission), and (3) resolving patients (survivors with duration of ICU stay <7 days). 138 

UMAP plots of the global lipidomic patterns indicated enrichment of early non-survivors in the region 139 

encircled in red at 0h and an enrichment of the non-resolving patients in the region encircled by the blue line 140 

at 72h after admission (Fig 2A&B). Furthermore, we observed a dramatic drop in the levels of nearly all 141 

major lipid species at 0h for early non-survivors compared to the other patient groups or healthy controls 142 

(Fig 2C).  Patients in both the resolving and non-resolving groups at 0h also exhibited a drop in most lipid 143 

species compared to healthy controls, but not to the degree seen in the non-survivors. Patients in the 144 

resolving group exhibited a persistent suppression in most lipids at 24 and 72h (Fig 2D&E). Remarkably, 145 

patients in the non-resolving group at 72h demonstrated an increase in a subset of lipids. Further 146 

characterization of lipid class and fatty acid types indicated that all 14 classes, including both saturated and 147 

unsaturated fatty acids, were suppressed at 0h. However, there was selective elevation of TAG, DAG, PE, 148 

and ceramides (CER) at 72h in the non-resolving cohort. A quantitative time-series analysis showed that 149 

total lipid levels were higher at 72h in the non-resolving patients and that unsaturated fatty acids 150 

predominated in TAG and DAG, while PE and CER contained a mixture of saturated and unsaturated fatty 151 

acids (Fig 2F). Our findings point to a rapidly evolving pattern in the circulating lipidome after severe injury 152 

that includes a loss of all classes of lipids in the circulation after injury. This process is exaggerated in 153 

patients that die early. Furthermore, there is a selective increase in four lipid classes by 72h in patients that 154 

remain critically ill or die later in their clinical course.    155 

To better visualize the changes in individual lipid species, we created a correlation network of 412 lipids 156 

shown to differ between the resolving and non-resolving patients at 72h (Fig 3A). Only highly correlated 157 

relationships between each connected lipid pair in the correlation network (Pearson correlation coefficient 158 

r >0.7) were kept. Lipids within each class were well correlated with each other. Furthermore, we identified 159 

a unique relationship for the inter-class networks. The dominant type of lipids that increased from baseline 160 

in non-resolving patients were from the DAG-TAG and PE classes (Fig 3A). DAG and PE are produced in 161 

the liver and kidney by the conversion of the same precursors (fatty acid-CoA and L-glycerol-3-phosphate), 162 

first to phosphatidic acid and then either DAG or PE. PE and other glycerophospholipids are generated by 163 

the addition of headgroups (e.g. ethanolamine for PE or choline for PC) while TAG is synthesized from 164 

DAG by the addition of a third acyl group by acyl transferase. Also evident from the figure is the 165 

suppression of the cholesterol (CE) and LPE families of lipids. The interconnections between biochemical 166 
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pathways involved in the synthesis of the lipid classes are shown in Fig 3B. The pathways are color coded to 167 

show how these pathways relate to the changes in lipid levels in the non-resolving group. 168 

   We next examined the impact of injury severity reflected by injury severity scores (ISS) on lipid levels 169 

and profiles. Patients were separated into minimal (ISS<10), moderate (ISS 10-25), or severe (ISS  25) 170 

injury (Fig S2A). Exploration of the lipid profiles by either UMAP or heatmap demonstrated no major 171 

impact of ISS on the post-injury lipid patterns (Fig S2B). We also observed poor correlation between ISS 172 

and total lipids concentrations of either saturated or unsaturated fatty acids (Fig S2C&D, 0h timepoint 173 

shown). Thus, while injury induces major changes in the circulating lipidome, in this cohort of patients with 174 

shock on presentation, ISS alone does not associate with lipid patterns. 175 

 176 

Pre-hospital FFP enhances lipid levels early after severe injury 177 

The key observation of the PAMPer trial was the demonstration that initiating FFP administration in the 178 

pre-hospital setting reduced early mortality when compared to standard care19. To assess for an impact of 179 

FFP, we compared lipid profiles in patients in the treatment arm to those in the standard-of-care arm. UMAP 180 

plots demonstrated a skewing in the lipid profiles towards the healthy controls in the FFP treatment group at 181 

0h (Fig 4A&B). However, the impact of pre-hospital FFP on lipid profiles was seen to dissipate at 24 and 182 

72h, with no difference in lipid levels or patterns between the FFP and standard-of-care groups at these time 183 

points. Both the qualitative and quantitative analysis revealed that patients receiving FFP had less of a drop 184 

in the levels of most classes of circulating lipids at time 0h, with a selective preservation of TAG, DAG, and 185 

MAG (Fig 4C, Fig S4A). We then assessed the relationship between the predicted mortality, calculated from 186 

the Trauma and Injury Severity Score (TRISS), and lipid levels in the two cohorts (Fig. 4D). Average lipid 187 

levels were higher in the FFP group across all TRISS values. All unexpected deaths (low TRISS Score: 188 

predicted mortality rate less than 50%) were in the standard-of-care patients and 11/14 had lipid levels 189 

below the mean for the overall cohort. Deaths seen in the FFP group were limited to those with a high 190 

expectation for death for all except one patient (high TRISS Score: predicted mortality rate of greater than 191 

75%). A Forest plot of log-odds ratios from multi-variable logistical regression is shown in Fig. 4E. This 192 

analysis revealed that lower lipid levels at 0h significantly favored mortality within the first 72h while FFP 193 

administration favored survival. Only TRISS had a higher association with early mortality than FFP or lipid 194 

levels even when traumatic brain injury (TBI) and sex were added to the model. 195 

    We next carried out correlation analysis to identify the factors that associate with circulating lipid levels 196 

in the early response to severe injury. Included in the analysis were 21 inflammatory and immune mediators, 197 
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6 markers of endotheliopathy/ tissue injury, and 2 measures of coagulation abnormalities, all measured at 198 

time 0h. Also included in the analysis were typical measures of injury severity and interventions associated 199 

with adverse outcomes. Interestingly, the mediators segregated into three subsets, each with strong internal 200 

correlation (Fig 4F). These included a subset represented by pro-inflammatory cytokines and chemokines 201 

that mostly positively correlated with early death, injury severity, endotheliopathy, and abnormal coagulation 202 

(Subset 1: IL-6, IL-8, IL-10, MCP-1/CCL2, IP-10/CXCL10, and MIG/CXCL9) and two subsets that 203 

correlated inversely with the pro-inflammatory mediators and adverse outcomes including, mediators 204 

associated with type 2 and 3 immune responses (Subset 2: IL-2, IL-4, IL-5, IL-7, IL-17A, and GM-CSF) and 205 

mediators associated with either tissue protection/ repair or lymphocyte regulation (Subset 3: IL-9, IL-22, 206 

IL-25, IL-27, IL-33 and IL-21, IL-23). The relationships between these three mediator subsets remained 207 

mostly consistent at 24 and 72h (sFig. 7A&B). However, low lipid levels at time 0h positively correlated 208 

only with standard-of-care, early death, coagulation abnormalities and the endotheliopathy marker, sVEGFR, 209 

and not with any of the mediator subsets (Fig 4F).    210 

 We next used probabilistic graphical models for mixed data types21,22 to infer potential direct 211 

(cause-effect) relationships within the multi-modal observational data included in Figure 4F. These features 212 

were loaded into the algorithm and nodes and edges projected onto a graph with early mortality as the 213 

endpoint of interest (Fig. 4G). The α-value of 0.2 for the conditional independence tests of the algorithm 214 

was selected using nested leave-one-out cross-validation to select the model with the best predictive 215 

performance of patient outcome (see Methods). Circulating lipid concentrations, coagulopathy (including 216 

INR), volume of crystalloid used in first 24h and the pro-inflammatory mediators (via MIG) were identified 217 

as direct casual factors contributing to early death (demonstrated by red arrows). The sequential edges 218 

connected FFP administration to circulating lipid concentrations, coagulopathy, INR, and volume of 219 

crystalloid used in first 24h. These connections indicated a potential mixed causal relationship linking FFP 220 

with all these factors and fewer early deaths. Other features known to be important to early mortality, 221 

including patient and injury characteristics, endothelial and tissue injury, and subset 2 and 3 mediators were 222 

indirectly linked to outcomes. Thus, correlation analysis and causal modeling related an interaction between 223 

INR and lipid concentration to early death and identified a direct impact of FFP on both of these causative 224 

factors. 225 

 226 

Validation of outcome-based changes in the plasma lipidome in trauma and patients with critical 227 

illness due to COVID-19  228 
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To further generalize our findings of outcome-associated changes in circulating lipids to other trauma 229 

datasets and causes of acute critical illness, we analyzed a separate trauma dataset23 (Trauma dataset-2:TD-2, 230 

n=86) and two public datasets derived from COVID-19 patients16,17. To assist with the comparison between 231 

these trauma and COVID-19 datasets, we set the 0 timepoint in the COVID-19 datasets as the day of 232 

symptom onset for non-severe patients or day of progression for severe patients. A total of 29 lipids were 233 

identified in common among the 4 datasets (Fig 5A-D, Table S2). Eight lipids from the PE class 234 

[PE(16:0/18:2), PE (16:0/20:4), PE(16:0/22:6), PE(18:0/18:1), PE(18:0/18:2), PE(18:0/20:4), PE(18:0/22:6), 235 

PE(18:1/18:2)] and four lipids from PC or PI class of phospholipids [PC(16:0/16:1), 236 

PC(16:0/18:1),PC(18:0/18:1), PI(18:0/18:2)] were higher in the non-resolving trauma patients (72h) or 237 

severely ill COVID-19 patients in at least one dataset. 238 

We conducted an in-depth comparison between the two trauma datasets to ensure the reproducibility of 239 

our findings. A total 75 lipids from 9 sub-classes were found to be in common between PAMPer and TD-2 240 

datasets (Fig S5 A&B). There was remarkable consistency in the relative changes of early drop and late 241 

increase in most lipids over time and based on outcome group. The elevated lipids in the non-resolving 242 

patients at 72h were almost entirely in the PE, MAG and DAG classed in both the PAMPer (23/26) and 243 

TD-2 (18/19) datasets. TAG, LPE, LPC, and DCER were not measured in TD-2 and therefore are not 244 

included in this comparison. The consistent findings between the two trauma datasets included a 245 

severity-associated drop in all lipid classes early in the clinical course and an increase in lipids, most from 246 

the PE and glycerolipid classes between 2-5 days post-injury in patients with a prolonged recovery course.  247 

 248 

Generation and evaluation of a Lipid Reprogramming Score 249 

To quantify the changes in lipids associated with critical illness in trauma and COVID-19 patients, we 250 

used eight PE species common to all four datasets to generate a Lipid Reprogramming Score (LRS) (Fig 251 

6A). Three independent methods were used to define the relationship between the LRS and global lipidomic 252 

patterns and outcomes. First, a comparison between non-resolving and resolving trauma patients using 253 

logistical regression with Age, ISS, and treatment as co-variables yielded a ranking of lipids detected in 254 

PAMPer dataset (Table S3). The eight PE species ranked at ranking at 3, 41, 63, 109, 110, 142, 206, and 294 255 

respectively (Volcano plot shown in Fig S6A). In addition, we found that 27 lipids belonging to TAG class 256 

of lipids and 7 additional PE lipids were significantly higher in non-resolving patients at 72h (adjusted 257 

p<0.01, log foldchange>0.4). This differential analysis also yielded three LPC that were significantly lower. 258 

Next, we constructed a matrix that correlated the initial eight PE in the starting pool with these 37 259 
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differentially expressed lipids (Fig S6B). The starting PE were correlated positively with several other PE 260 

and 27 TAG, and negatively correlated with the three lower LPC species. This indicates that the eight PE 261 

common to all four datasets may also be representative of an overall reprogramming that includes 262 

upregulation of TAG release and a suppression of LPC release into the circulation. We generated a LRS 263 

represented as a mean z-score for each patient across all three timepoints and plotted them in a UMAP plot 264 

(Fig S6C) in order to further reveal their relationships with global lipidome patterns. We found that the 265 

gradient in the LRS increased from left-to-right along the x-axis in the UMAP plot, which was consistent 266 

with the outcome-based pattern at 72h.  We then transformed the score into a categorical variable with 267 

three thresholds based on tertiles (Low, Medium, High) for all PAMPer patients surviving at 72h (Fig S6D). 268 

When displayed on a UMAP plot, the separation of patients into low, medium, and high LRS tertiles 269 

distributed the patients similarly to that seen using the continuous LRS. Thus, both the continuous and 270 

categorical LRS values represent the magnitude of global changes in the circulating lipidome and may be 271 

useful for correlating the lipidomic changes with other patient features.  272 

 273 

Risk assessment using LRS for patients with trauma or COVID-19 274 

We next investigated whether the LRS was associated with outcomes in trauma or COVID-19 patients. 275 

Time-series analysis suggested that non-resolving trauma patients experienced dramatic increases of LRS at 276 

24 to 72h post-trauma compared to resolving patients (Fig 6B). Recovery analysis revealed that LRS-high 277 

and LRS-medium groups experienced a longer period prior to recovery than patients in the LRS-low group 278 

(Fig 6C). In addition, trauma patients with medium or high LRS were associated with higher injury severity, 279 

lower admission blood pressure, mass transfusion, higher INR, and higher incidence of NI and MOF (Table 280 

S4). High LRS was also associated with lower probability of recovery (HR:0.75, Cl:0.60-0.94) even when 281 

adjusted for age, ISS, TBI, and treatment effect in a Cox regression model (Fig 6D). To validate our finding 282 

using a second trauma population, we adopted the same strategy to construct the LRS using TD-2, which 283 

was dominated by resolving trauma patients. The time-series analysis, recovery curve, and Cox regression 284 

model all showed similar correlations of LRS with outcomes in TD-2 as seen in PAMPer trial patients (sFig 285 

6D, F and G). We then tested whether we could generalize the LRS for the two COVID-19 patient datasets 286 

using the same approach. The Shui, et al.17 COVID-19 dataset lacked detailed clinical data; therefore, we 287 

only compared differences in LRS among the four outcome groups defined by the authors of the study. We 288 

found that moderate and severe COVID-19 patients had a higher LRS compared to healthy subjects (Fig 289 

S6E). Consistent with these findings, the LRS was also significantly higher in the severe group when 290 
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compared to the non-severe COVID-19 patients in the dataset of Guo, et al 16 (Fig 6E). We also observed an 291 

upward trend in LRS during the time window preceding progression (< 48h after progression, Fig 6E). 292 

C-reactive protein (CRP) and lymphocyte count are known to correlate with worse outcome in COVID-19 293 

patients 24. We compared LRS with these two variables to classify severe versus non-severe patients. The 294 

AUC score for LRS, lymphocyte count, and CRP was 0.788, 0.817, and 0.822, respectively (Fig 6F). Finally, 295 

multi-variable logistical regression suggested that LRS is an independent risk factor for COVID-19 patients 296 

(Log2 OR: 1.54, Fig 6G). Thus, a score based on the levels of a subset of circulating lipids associates with 297 

features in trauma and Covid-19 patients that predict a complicated clinical course. 298 

 299 

Association between LRS and systemic markers of inflammation and endothelial dysfunction in 300 

trauma patients 301 

We next sought to determine if the LRS correlated with circulating markers of inflammation or 302 

endothelial and tissue damage.  A correlation matrix was constructed using data from the 137 PAMPer 303 

patients alive at 72h that had complete data for lipids, 21 cytokines and chemokines, endotheliopathy 304 

markers, and tissue injury markers across time after injury (Time 0h: Fig 7A, Times 24 and 72h: Fig 305 

S7A&B). Across the three time points, LRS correlated positively with various pro-inflammatory Subset 1 306 

cytokines/chemokines, and endotheliopathy and tissue injury biomarkers. Conversely, LRS correlated 307 

negatively with subset 2 (lymphocyte-related) and subset 3 (protective/ reparative) cytokines and an 308 

adipokine (Adiponectin). These findings suggest that the changes in the circulating lipidome at 72h, 309 

represented by an elevated LRS, associates with biological process that drive worse outcomes (e.g. 310 

inflammation, endotheliopathy, and tissue injury). 311 

 312 

Association between LRS and the proteome for COVID-19 patients 313 

To further identify possible factors or pathways contributing to a pathologic lipidome signature, we 314 

correlated the LRS with circulating proteomic data from the COVID-19 study published by Guo, et al16. 315 

Using 42 subjects with both metabolomics and proteomics data, we identified 150 proteins that correlated 316 

positively (spearman correlation coefficient r > 0.3) with the LRS (Fig S7C). Pathway enrichment analysis 317 

revealed that the LRS was associated with neutrophil degranulation, platelet degranulation, and the 318 

complement cascade (Fig S7C and Fig S7E).  Negatively correlated (spearman correlation coefficient r < 319 

-0.3) proteins (n=24) were enriched in regulation of insulin-like growth factor-1 (IGF-1) transport and 320 

uptake, and post-translational protein phosphorylation (Fig S7D and Fig S7F). To further seek biological 321 
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significance, we selected 40 representative proteins from the positive and negative correlating groups to 322 

construct a correlation matrix (Fig 7B). Components of the LRS were clustered in the module comprised 323 

acute phase proteins, the complement cascade, and immunoglobins and were correlated negatively with 324 

modules associated with IGF-1. Our findings using data from COVID-19 patients suggests that excessive 325 

acute phase and immune responses and impaired metabolism associates with a pathologic circulating lipid 326 

signature across several causes of acute critical illness. 327 

 328 

Discussion 329 

    The main goal of this study was to correlate the temporal patterns in the circulating lipidome with 330 

outcomes in the early evolution of critical illness in humans. Using trauma as a model, we found that three 331 

distinct clinical trajectories each align with comprehensive changes in the patterns of circulating lipids. 332 

These relationships are depicted in a summary diagram in Fig 7C. The findings include: (1) A dramatic drop 333 

in all classes of lipids in the hyperacute phase after of severe injury that was most extreme in patients 334 

destined to die. Early FFP mitigated this rapid drop in lipid levels and was associated with improved 335 

outcomes; (2) A persistent lowering of circulating lipids through 72h in patients that resolved their critical 336 

illness early; (3) A delayed rise in circulating in DAG, TAG, and PE species in patients that went on to 337 

experience persistent critical illness. Remarkably, the over-representation of PE species in trauma patients 338 

with critical illness was easily identified in critically ill patients in a validation trauma dataset and two 339 

COVID-19 datasets. A Lipid Reprogramming Score derived from PE was an independent risk factor for 340 

worse outcome and correlated with excessive proinflammatory and acute phase responses. Although there 341 

have been multiple metabolomics studies characterizing the circulating metabolome in critical 342 

illness12,16,17,25,26, to date there are no reports focusing on the comprehensive temporal lipidome changes in 343 

this disease context. We show that lipids may be sensitive markers of the host response to systemic stress 344 

and serve as prognostic biomarkers of critical illness.    345 

Among the most pronounced changes observed in our study was the early loss of all classes of lipids in 346 

the circulation after injury. A study of 32 trauma patients showed that blood triglyceride levels were 347 

significantly lower in 9 non-survivors within 28 minutes of injury, suggesting that injury-induced decreases 348 

in circulating lipids may begin very early after a severe trauma27. Our healthy controls were non-fasting and 349 

sampled throughout the day to align with the presentation of the typical trauma patient. Therefore, the 350 

differences between controls and injured at time 0h are unlikely to be due to dietary effects. While the 351 

degree of the decline in lipids associated with clinical outcomes, the incidence was not dependent on injury 352 
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severity. A stress hormone-induced hypermetabolic state with associated increased catabolism is seen after 353 

trauma and other causes of critical illness6,28 and may explain the persistent decline in circulating lipids. The 354 

catabolism response generates energy substrates from carbohydrates, fats, and protein in an “all or none” 355 

manner that, like our findings, is not influenced by injury severity29. It is reasonable to speculate that the 356 

abrupt loss of lipids may be due, in part, to the uptake and catabolism of lipids to meet the energy demands. 357 

The finding that patients that die within first 72h experience the greatest magnitude in lipid loss from the 358 

circulation raises the interesting possibility that a circulating energy substrate crisis contributes to the early 359 

mortality.   360 

    Administration of FFP in route to the trauma center improves early survival and we show here that this 361 

also results in higher levels of circulating lipids. This was especially true for glycolipids, including TAG, 362 

DAG, and MAG, which are rich energy substrates. In addition to providing a source of lipids, FFP also 363 

contains proteins involved in coagulation, and many other factors likely to contribute to its salutary actions. 364 

FFP is well known to reduce bleeding complications and we have recently reported an association of FFP 365 

administration with a prevention of endothelial dysfunction and an excessive inflammatory response19,30. 366 

The correlative changes in early lipid levels and outcomes in our study point to lipids as another potential 367 

beneficial component of FFP.  368 

    In stark contrast to the early changes in circulating lipids, a subset of lipids (predominantly TAG, DAG, 369 

and PE) began to rise in the circulation between 24 and 72h in patients that subsequently exhibited a slow 370 

recovery or die. In addition to lipolysis and hypermetabolism, patients with critical illness experience 371 

pathologic alterations in liver such as hepatic steatosis31–35. Studies in severe burn trauma associate the 372 

browning of white adipose tissue with enhanced lipogenesis in liver36,37. Interestingly, the inter-class 373 

correlation network among the lipids we identified at 72h is similar to the lipogenesis pathway in the liver. 374 

This suggests that the liver is one of the sources of the glycolipids and PE that appear in the circulation and 375 

that these reflect ongoing systemic inflammation and metabolic stress. That DAG, TAG, and PE are linked 376 

though a common synthesis pathway further supports this possibility38. Several specific lipid species [e.g. 377 

PC(16:0/18:1), PC(18:0/18:1)] contribute to inter-organ (liver, muscle and adipose tissue) communication39. 378 

We observed that PC (16:0/18:1) and PC (18:0/18:1) were higher at 72h in the non-resolving trauma patients 379 

or severe Covid-19 patients, raising the possibility for a lipid reprogramming process across organs during 380 

persistent critical illness. 381 

    We derived a LRS that reflects the magnitude of lipid reprogramming associated with delayed adverse 382 

outcomes. We found that higher LRS at 72h is an independent risk factor for recovery. Higher LRS was also 383 
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observed in the sickest COVID-19 patents and even preceded the onset of critical illness. This indicates that 384 

lipid reprogramming involving higher levels of a subset of PE in the circulation is a feature common to 385 

multiple etiologies of critical illness and that PE might be useful as a biomarker of a pathologic host 386 

response.  Noticeably, only TAG and DAG comprised of unsaturated fatty acids increased in non-resolving 387 

patients. These fatty acids include Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA), which 388 

are precursors for lipid mediators involved in inflammation resolution and tissue repair 11,40,41. Thus, in 389 

addition to providing a source of lipids for systemic energy needs through the release of acyl glycerides, this 390 

response might reflect the host’s attempt to resolve the ongoing inflammatory response and tissue injury. 391 

    Global lipid metabolism is regulated by many factors such as pro-inflammatory mediators, adrenergic 392 

stress, and regulatory hormones11,32,36,42,43. Propranolol or IL-6 receptor blockade can attenuate the browning 393 

of white adipose tissue and hepatic steatosis in experimental burn trauma36. Interestingly, we also found that 394 

the LRS is positively associated with the pro-inflammatory response, the acute phase response, endothelial 395 

injury, and coagulation but inversely correlated with mediators shown to contribute to tissue protection and 396 

repair. This relationship persisted throughout the 72h observation period.  IGF-1 and adiponectin are 397 

produced by liver and adipose tissue, respectively, and are functionally associated44. Both hormones enhance 398 

fatty acid oxidation as an energy source and were negatively correlated with the LRS, consistent with a 399 

dysregulated lipid reprogramming in patients with persistent critical illness.  400 

    Our study has several limitations. Many of the observations are correlative and prospective validation 401 

will be required to establish the value of the LRS as a prognostic tool. The mechanistic relationship between 402 

the changes in lipids in the circulation do not necessarily reflect lipid metabolism within specific organs or 403 

tissues.  Finally, the functional contributions of the observed lipid changes to patient outcomes remain to be 404 

established in patients. 405 

    In conclusion, our findings provide a new paradigm for the lipid response to a severe and acute 406 

systemic stress leading to critical illness (summarized in Figure 7C). Our causal modeling and correlation 407 

analyses place lipolysis a central regulator of the evolution from acute disease onset to critical illness in 408 

humans. The features of lipogenesis we identified appear to be common to critical illness due to multiple 409 

etiologies and potentially useful for predictive modeling and target identification. Both the proposed new 410 

paradigm and our comprehensive datasets will be useful for further study of altered lipid metabolism in 411 

acute critical illness. 412 

  413 
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Methods 437 

Study population and samples 438 

We conducted longitudinal sampling of plasma (0h; 24h; 72h after admission) from 193 patients with trauma 439 

prospectively enrolled in the PAMPer trail,19 along with 17 healthy subjects. The detailed workflow   is 440 

shown in Fig S1. The primary aim of PAMPer trail was to test if administering prehospital fresh frozen 441 

plasma (FFP) during air medical transport can reduce in-hospital mortality for severely injured trauma 442 

patients. Values for clinical and physiological variables with biomarkers of injury and inflammation given in 443 

the manuscript were reported from previous studies19,30. The outcome of trauma patients was defined as: 444 

Resolving (Survival with ICU stay < 7 days); Non-resolving (Survival with ICU stay >= 7 days or 445 

non-survival with death day >3 days) and Early-nonsurvivors (Non-survival with death day <=3 days). 446 

Blood samples were collected using vacuum isolation tubes with anticoagulant of Heparin sodium, which 447 

were centrifuged at 4C and plasma fractions were stored at -80C for further analysis. 448 

This study was approved by the IRB of University of Pittsburgh as previously described19. The Emergency 449 

Exception from Informed Consent (EFIC) protocol from the Human Research Protection Office of the US 450 

Army Medical Research and Material Command was applied to this study. Registered information and 451 

detailed study protocol are available on https://clinicaltrials.gov/ct2/show/NCT01818427. 452 

 453 

Targeted lipidomics by LC-MS/MS 454 

Samples were shipped to Metabolon (Durham, NC, USA, www.metabolon.com) for complex lipid panel 455 

processing. Lipids were extracted from the plasma in the presence of deuterated internal standards using an 456 

automated BUME extraction according to the method of Lofgren et al45. The extracts were dried under 457 

nitrogen and reconstituted in a dichloromethane: methanol solution containing ammonium acetate. The 458 

extracts were transferred to vials for infusion-MS analysis, performed on a Shimadzu LC with nano PEEK 459 

tubing and the Sciex SelexIon-5500 QTRAP. The samples were analyzed via both positive and negative 460 

mode electrospray. The 5500 QTRAP was operated in MRM mode with a total of more than 1,100 MRMs. 461 

Individual lipid species were quantified by taking the ratio of the signal intensity of each target compound to 462 

that of its assigned internal standard, then multiplying by the concentration of internal standard added to the 463 

sample. Lipid species concentrations were background-subtracted using the concentrations detected in 464 

process blanks (water extracts) and run day normalized. The internal standard serve as technique replicate 465 

was run multiples times throughout the experiment. Instrument variability was evaluated by calculating 466 

median relative SD (RSD) from the quality control sample matrix.  467 
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 468 

Lipidomic data pre-process and dimension reduction 469 

Lipids were named according to its sub-class and fatty acid composition; (e.g. PE (16:0/18:2) means this 470 

lipid belongs to phosphatidylethanolamine (PE) class and it was synthesized from palmitic acid (C16:0) and 471 

linoleic acid (C18:2)). Lipid with over 80% missing quantitative values were discarded due to the concern of 472 

low quality. Other missing values for each lipid species were imputed with the minimum concentration. 473 

Lipid class concentrations were calculated from the sum of all molecular species within a class, and fatty 474 

acid compositions were determined by calculating the proportion of each class comprised by individual fatty 475 

acids.  476 

Normality of each lipid species distribution was tested by Shapiro-Wilk test and Q-Q plot. No 477 

transformation was conducted because most lipid species obey normal distribution or was near normal 478 

distribution. A two steps approach of dimension reduction from both linear and non-linear methods were 479 

applied. Principle Component Analysis (PCA) was performed on z-score scaled concentration of each lipid 480 

species. Then, Uniform Manifold Approximation and Projection (UMAP) was conducted by using the first 481 

20 PCs. All subjects grouped by outcome or timepoint were visualized in UMAP plot. No obvious outliers 482 

were identified in the UMAP plot. 483 

 484 

Casual inference analysis 485 

Casual inference was performed by using the on-line CausalMGM 46 and the command-line tool for FCI47. 486 

Early death (death day <= 3 after admission) was set as the outcome and all other variables which may be 487 

related to early death were kept as input (Clinical information: Age; Trauma brain injury (TBI), Injury 488 

severity (ISS); GCS; TRISS, Hemostasis: INR; Coagulopathy. Intervention: Prehospital fresh frozen plasma 489 

(FFP); Prehospital transfusion volume of crystalloid; Prehospital intubation; Transfusion volume in first 24h 490 

after admission, Biomarkers: 21 cytokines with 7 endothelial injury related markers, total lipid 491 

concentration). Continuous variables of biomarkers were log2 transformed and z-score scaled to meet the 492 

assumption of normality. Categorical variables were tested to meet the assumption of multi nominal 493 

distribution. To select the optimal α-value threshold for the conditional independence tests of the FCI we 494 

used a nested leave-one-out cross validation. In each round, directed graphs were learned from all but one 495 

samples at different α-values (α = {0.01, 0.05, 0.1, 0.15, 0.2, 0.25}). The variables in the Markov blanket of 496 

the “Early death” variable (i.e., parents, children and spouses) in each α-value were used to train a logistic 497 

regression model. This model was then used to predict the “Early death” in the left-out sample.  The 498 
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procedure was repeated for all samples and Receiver Operator Characteristic (ROC) curves were constructed 499 

for each α-value. The value of α = 0.2 produced models with the best Area Under the ROC Curve 500 

(AUC=0.80). The final causal network presented in Fig. 4G was constructed on the full dataset using the α = 501 

0.2 for the conditional independence tests.  502 

  503 

Correlation network and lipid biosynthesis pathway 504 

Correlation networks were constructed using 412 lipids based on a Pearson correlation coefficient matrix 505 

from all samples. All lipids in the class of MAG; CE; PI; LPE; LPC; SM; CER; LCER; HCER; DCER were 506 

kept. Lipids of TAG; DAG; PE; PC were kept at top 100; 30; 40;40 variable species respectively to reduce 507 

the complexity of network. Variance Stabilizing Transformation (vst) method was used for identifying 508 

variable lipids and mean-var plot for each class was examined to ensure the stability. The threshold of the 509 

correlation coefficient was tuned from 0.5 to 0.8 and then set at 0.7 based on the following considerations: 1. 510 

Balance between intra-class correlation and inter-class correlation; 2. Preference for a higher threshold to 511 

reduce false positive relationships. Cytoscape (version 3.8.0) was used to construct the inter-class and 512 

intra-class network and layout was set as circular48. Lipid biosynthesis pathways were summarized from 513 

previous published literature. 514 

 515 

Establishment and application of lipid reprogramming score (LRS) 516 

The main purpose for generation of LRS is to quantitatively measure the magnitude of lipogenesis via 517 

several lipid species detected among all datasets. Only species from PE were kept as starting pool because it 518 

is the only lipid class identified common to both metabolomic and lipidomic datasets. Approach similar to 519 

construct signature score was adopted to generate LRS. Briefly, 8 common PEs (PE(16:0/18:2), PE 520 

(16:0/20:4)), PE(16:0/22:6), PE(18:0/18:1), PE(18:0/18:2), PE(18:0/20:4), PE(18:0/22:6), PE(18:1/18:2) 521 

were scaled by z-score among patients or health subjects. No feature selection was performed at this step 522 

due to the balance of performance and stability. Then, LRS was set as mean value of z-score of 8 PEs. 523 

Trauma patients in PAMPer trial who survived at 72h after admission were classified to 3 groups (High, 524 

Medium, Low) according to the tertiles of LRS across all patients. LRS was calculated for both trauma and 525 

COVID-19 patients and healthy subjects when applied in time-series or comparison analysis. LRS was only 526 

calculated for patients with trauma or COVID-19 when applied in multi-variable model of cox regression or 527 

logistical regression.   528 

 529 
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Recovery analysis 530 

A Kaplan–Meier Curve was used in the recovery analysis for trauma patients from PAMPer or the TD-2 531 

dataset. ICU length of stay was used to estimate the time to recovery for patients due to lack of detailed 532 

variables for dynamically monitoring organ dysfunction since injury. Patients who experience early death 533 

were excluded for recovery analysis. The ICU length of stay for patients died over 3 days after admission 534 

was consider as maximum days in this dataset, because they cannot recover from injury. Patients who 535 

experience ICU length of stay over 30 days was consider as censor at day 30.  536 

 537 

Multi-variable regression analysis 538 

Multi-variable model of logistical regression was used for testing the categorical outcome like survival or 539 

severity. Only main effect of each factor was evaluated. Demographic information (e.g. age, sex), TBI, 540 

TRISS, treatment arm and total lipid concentration at 0h upon admission were included in the logistical 541 

regression model for early death in PAMPer dataset. Demographic information (e.g. age, sex), Lymphocyte 542 

count, CRP, LRS across each patient were included in the logistical regression for modeling severe 543 

COVID-19 patients in dataset of Guo et al. A multi-variable model of Cox regression was used for testing 544 

the time to discharged by ICU for trauma patients. Demographic information (e.g. age, sex), TBI, ISS, 545 

treatment arm and LRS score among patients at 72h after admission were included in the Cox regression for 546 

modeling Non-resolving patients in PAMPer dataset. External validation by using same variables except for 547 

treatment arm was conducted in TD-2 dataset. 548 

 549 

Correlation analysis 550 

Two types of correlation analysis either for between two continuous variables or categorial variables and 551 

continuous variables were including in this study. Continuous variables like cytokines, biomarkers and total 552 

lipid concentration was log2 transformed. Categorial variables like early death, treatment arm, TBI and 553 

coagulopathy were transformed into dummy variables. Euclidean distance matrix was calculated for 554 

correlation analysis. Spearman correlation coefficient was used for correlation between biomarkers and total 555 

lipid concentration or LRS due to consideration of non-linear relationship. Pearson correlation coefficient 556 

was used for correlation between lipid species due to the well-identified linear relationship. Statistical 557 

analysis for correlation coefficient is conducted by function rcorr() implemented in R package 558 

Hmisc(version 4.4.1). P values are approximate by using t distributions. 559 

 560 
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Pathway analysis 561 

R package clusterprofiler (version 3.11) was used to conduct pathway analysis for proteins which were 562 

correlated to LRS49. First, names of 152 positively (spearman r >0.3) and 24 negatively (Spearman r < -0.3) 563 

correlated proteins were transformed into Entrez ID. Then, the Reactome database was used to enrich 564 

positively or negatively correlated pathways. The P value of enriched terms was adjusted by the 565 

Benjamini-Hochberg method. Only pathways that meet a P value < 0.05 was consider to be significant. 566 

 567 

Statistical analysis and visualization 568 

Statistical analysis in this study was performed by using R language (version 3.6.0, 569 

https://www.R-project.org/)50. Pearson’s χ2 test and Kruskal-Wallis test were used for categorical variables 570 

or continuous variables in the contingency table of clinical data. Kruskal-Wallis test with post-hoc analysis 571 

by Dunn test was used for multiple group comparisons. Two-way ANOVA with pair-wise comparisons by 572 

Estimated Marginal Means test was applied for time-series analysis. P value was adjusted by 573 

Benjamini-Hochberg method with less than 0.05 for establishing significance. Visualization of heatmap was 574 

performed by using R package Complexheatmap (version 2.5.1)51. Hierarchical clustering based on 575 

Euclidean distance was applied in rows or columns for heatmap construction. 576 

 577 

External metabolomics or lipidomics dataset   578 

Three external datasets of untargeted metabolomics or lipidomics were included in this study. The first 579 

dataset was from survival cohort which consisted of trauma patients with untargeted metabolome 580 

measurement23. The same criterion for outcome classification was applied in this group of patients to that 581 

used for the PAMPer dataset (Resolving: ICU Days <7; Non-resolving: ICU Days >=7). The second dataset 582 

was from a cohort of COVID-19 patients with both untargeted metabolome and proteome measurements16. 583 

The patients were grouped by severity defined in the previous study and days to timepoint 0, which was set 584 

as day of progression for severe patients and day of symptom onset for non-severe patients. The third dataset 585 

was from separate cohort of COVID-19 patients with both targeted and untargeted metabolome 586 

measurements17. The patients were not grouped by sampling timepoint because of limited clinical 587 

information. Common lipids were identified by unique molecular formula or HMID from Human 588 

Metabolome Database among these 3 datasets and PAMPer lipidomic dataset. Mean z-score scaled value for 589 

each group for patients or healthy subjects was used to compare the lipid levels among 4 datasets. 590 

  591 
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Table 1: Demographic characteristics of the patients by outcome 695 

Variables 
Resolving 

(N=41) 
Non-resolving 

(N=101) 
Early-Nonsurvivors 

(N=51) 
p-value 

Demographics     

Age (Median [IQR]) 48 (± 34) 46 (± 37) 46 (± 42) 0.916 

Sex (% Male) 31 (75.6%) 78 (77.2%) 36 (70.6%) 0.668 

Race (% White) 35 (85.4%) 89 (88.1%) 48 (94.1%) 0.365 

Injury characteristics     

ISS (Median [IQR]) 21 (± 10) 30 (± 16) 24 (± 23) <0.001 

Head AIS (Median [IQR]) 0 (± 3.0) 3.0 (± 2.0) 3.0 (± 4.0) <0.001 

TBI (%) 14 (34.1%) 66 (65.3%) 29 (56.9%) 0.003 

GCS (Median [IQR]) 14 (± 7.0) 3.0 (± 9.0) 3.0 (± 8.0) <0.001 

SBP<70mmHg (%) 19 (46.3%) 41 (40.6%) 25 (49.0%) 0.580 

HR (Median [IQR]) 120 (± 16) 120 (± 21) 120 (± 39) 0.218 

Injury type (% Blunt) 30 (73.2%) 93 (92.1%) 47 (92.2%) 0.017 

Prehospital     

Treatment arm 

Standard care (%) 25 (61.0%) 48 (47.5%) 36 (70.6%) 0.021 

FFP (%) 16 (39.0%) 53 (52.5%) 15 (29.4%)  

Transport time (Median 39 (± 18) 44 (± 17) 42 (± 18) 0.771 

CPR (%) 0 (0%) 3 (2.97%) 5 (9.80%) 0.044 

Intubation (%) 13 (31.7%) 65 (64.4%) 40 (78.4%) <0.001 

Blood (%) 11 (26.8%) 32 (31.7%) 22 (43.1%) 0.214 

Crystalloid (Median 800 (± 1400) 830 (± 1300) 1000 (± 1600) 0.891 

PRBC (Median [IQR]) 0 (± 1.0) 0 (± 1.0) 0 (± 2.0) 0.233 

Hospital     

Transfusion 24h (Median 2.0 (± 8.0) 7.0 (± 14) 12 (± 20) <0.001 

PRBC 24h (Median [IQR]) 2.0 (± 5.0) 5.0 (± 7.0) 8.0 (± 10) <0.001 

Plasma 24h (Median 0 (± 0) 2.0 (± 4.0) 4.0 (± 8.0) <0.001 

Platelets 24h (Median 0 (± 0) 0 (± 1.0) 1.0 (± 2.0) 0.002 

Crystalloid 24h (Median 4800 (± 3800) 5300 (± 4000) 4600 (± 3000) 0.095 

Vasopressors 24h (%) 19 (46.3%) 68 (67.3%) 44 (86.3%) <0.001 

INR (Median [IQR]) 1.2 (± 0.20) 1.3 (± 0.36) 1.6 (± 0.72) <0.001 

Other outcomes     

Coagulopathy (%) 16 (39.0%) 54 (53.5%) 44 (86.3%) <0.001 
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Pearson’s χ2 test was used for calculating p value of categorical variables. Kruskal-Wallis test was used for 696 

calculating p value of continuous variables. ISS, injury severity score; AIS, abbreviated injury score; TBI, 697 

traumatic brain injury; GCS, Glasgow coma score; SBP, systolic blood pressure; HR, heart rate; FFP, fresh 698 

frozen plasma; CPR, cardiopulmonary resuscitation; PRBC, packed red blood cells; INR, international 699 

normalized ratio; ALI, acute lung injury; NI, nosocomial infection ;MOF, multiple organ failure; ICU, 700 

intensive care unit; LOS, length of stay. 701 

  702 

ALI (%) 2 (4.88%) 47 (46.5%) 3 (5.88%) <0.001 

NI (%) 3 (7.32%) 43 (42.6%) \ <0.001 

MOF (%) 31 (75.6%) 98 (97.0%) \ <0.001 

Vent days (Median [IQR]) 2.0 (± 3.0) 10 (± 8.0) 1.0 (± 0) <0.001 

ICU LOS (Median [IQR]) 4.0 (± 3.0) 13 (± 9.0) 1.0 (± 1.5) <0.001 

Hospital LOS (Median 9.0 (± 10) 19 (± 19) 1.0 (± 1.0) <0.001 
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Figure 1. Temporal patterns in the circulating lipidome after severe trauma. 706 

(A) Scheme of overall analysis strategy.  707 

(B) Representation of 996 lipid species detected in the lipidomic platform grouped by classes. 708 

(C) Uniform Manifold Approximation and Projection (UMAP) plot shows the distribution of healthy 709 

subjects (n=17) and patients with trauma (n=193), grouped by sampling timepoints (0h, 24h, 72h after 710 

admission). 711 

(D) Heatmap shows relative levels of 996 lipid species for healthy subjects and trauma patients, grouped by 712 

sampling timepoints using z-score normalized concentrations. Lipid species are clustered by Hierarchical 713 

clustering. 714 

(E) Quantitative comparison of circulating total lipid concentration among healthy controls (HC) and trauma 715 

patients, grouped by sampling timepoints. Asterisks indicate statistical significance based on Kruskal-wallis 716 

test with post-hoc analysis of Dunn test. The p value was adjusted by the Benjamini-Hochberg method: *, < 717 

0.05; **, < 0.01; ***, < 0.001. Box and whisker plots represent mean value, standard deviation, maximum 718 

and minimum values.  719 

Abbreviations: TAG, triacylglycerol; DAG, diacylglycerols; MAG, monoacylglycerols; PE, 720 

phosphatidylethanolamine; PC, phosphatidylcholine; PI, phosphatidylinositol; LPE, 721 

Lysophosphatidylethanolamine; LPC, Lysophosphatidylcholine; CER, Ceramides; HCER, hexosylceramides; 722 

LCER, lactosylceramide; DCER, dihydroceramides; CE, cholesterol ester. 723 

  724 



27 
 

725 

Figure 2. Association between temporal patterns of the circulating lipidome and outcome 726 

(A-B) Uniform Manifold Approximation and Projection (UMAP) plot shows the distribution of healthy 727 
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control subjects (n=17) and trauma patients (n=193), grouped together (A) and separated (B) by outcome 728 

and sampling timepoints.  729 

(C-E) Heatmaps show relative levels of 996 lipid species (C); 14 lipid classes (D) and 28 fatty acids labeled 730 

by carbon number: double bonds (E) for healthy subjects and trauma patients, grouped by outcome and 731 

sampling timepoints. z-score represents normalized concentrations. Rows are clustered by method of 732 

hierarchical clustering. 733 

(F) Quantitative comparison of circulating total lipid concentrations among healthy controls (HC) and 734 

trauma patients. Lipids are grouped by classes and fatty acids (saturated or unsaturated) identified as the acyl 735 

chains in the lipid classes. Patients are grouped by outcome and sampling timepoints. Center dots and error 736 

bars represent median value and median absolute deviation, respectively.  SFA: saturated fatty acid; USFA: 737 

unsaturated fatty acid. Asterisks indicate statistical significance based on Kruskal-wallis test among 3 groups 738 

at 0h with post-hoc analysis of Dunn test. The P value was adjusted by Benjamini-Hochberg method: *, < 739 

0.05; **, < 0.01. Number sign indicates statistical significance based on 2-way AVOVA test of time-series 740 

analysis of resolving and non-resolving groups. Pairwise Comparisons were conducted by Estimated 741 

Marginal Means test. The P value was adjusted by Benjamini-Hochberg method: #, < 0.05; ##, < 0.01; ###, 742 

< 0.001, #### < 0.0001. 743 

744 
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745 

Figure 3. Lipidome network in non-resolving trauma patients at 72h 746 

(A) Correlation network among 412 lipids from 14 classes represented in the lipidomic dataset. Each dot 747 
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indicates a lipid and is depicted in a circle if it belongs to one class. Highly correlated (Pearson coefficient > 748 

0.7) lipids are represented by edges. Only inter-class correlations are shown. Relative levels are color coded 749 

for each lipid species between non-resolving and resolving trauma patients at 72h after admission.  750 

(B) Synthesis pathways for the 14 lipid classes summarized from published literature. Colored by 751 

differential levels of each lipid class between non-resolving and resolving trauma patients at 72h admission. 752 

Abbreviations: ATGL, Adipose Triglyceride Lipase; DAGT, diacylglycerol acyltransferase; G3P, 753 

glycerol-3-phosphate; CDP-Eth, Cytidine diphosphate-Ethanolamine; CDP-Ch, Cytidine 754 

diphosphate-Choline, CDP-DAG, Cytidine diphosphate-diacylglycerol, EPT, Ethanolamine 755 

phosphotransferase; CPT, Choline phosphotransferase; IPT, inositol phosphatidyltransferase. PLA, 756 

phospholipase A; PEMT, Phosphatidylethanolamine N-methyltransferase; LCAT, cholesterol acyltransferase; 757 

SMS, Sphingomyelin Synthase; SMase, Sphingomyelin phosphodiesterase; DEGS, dihydroceramide 758 

desaturase. 759 

  760 
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 761 

Figure 4. Potential casual effect for fresh frozen plasma (FFP), Lipid concentration and early 762 

mortality 763 
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(A-B) Uniform Manifold Approximation and Projection (UMAP) plot shows the distribution of healthy 764 

subjects (n=17) and patients with trauma (n=193) (A), separated by treatment arms with sampling timepoints 765 

(B). 766 

(C) Heatmap show relative levels of 996 lipid species for healthy subjects and trauma patients, grouping by 767 

treatment arms and sampling timepoints. Exp, z-score normalized concentration. Rows are clustered by 768 

hierarchical clustering. 769 

(D) Relationship of predicted mortality and total lipid concentration at 0h upon admission. Trauma patients 770 

are grouped by treatment arms; tendency lines are modeled by loess methods for 2 groups separately, dash 771 

line in the x-axis means 0.5 and y-axis means the median concentration. D indicates patients who died less 772 

than 72h after admission. 773 

(E) Forest plot showing log odds ratios from logistical regression of clinical factors; Lipid concentration; 774 

FFP effect for early-nonsurvivors versus others. 775 

(F) Correlation heatmap showing correlation among cytokines, biomarkers, clinical variables, total lipid 776 

concentration and outcome. r: Spearman correlation coefficient.  777 

(G) Casual network among factors in (E) constructed by FCI (see also methods). The presence of “edges” or 778 

connections between nodes in the graph correspond to conditional dependencies relationships. Orientations 779 

in the causal network indicate what can be inferred about the cause-effect relationships between variables in 780 

the dataset. A directed edge A --> B indicates that A is a cause of B (i.e., a change in A is expected to affect a 781 

change in B). A bidirected edge A <-> B indicates that there is unmeasured confounder affecting both A and 782 

B. A partially directed edge A o-> B indicates that B is not a cause of A, but it is unclear whether A is a cause 783 

of B or if there is a latent confounder that causes both A and B. An undirected edge A o-o B indicates that we 784 

cannot make inferences about the causal orientation of that edge. 785 

Abbreviations: TRISS, Trauma and injury severity score; FFP, Fresh frozen plasma; TBI, traumatic brain 786 

injury; ISS, injury severity score; GCS, Glasgow coma score; PH; Prehospital; INR, international 787 

normalized ratio. 788 

Asterisks in (E) indicate statistical significance in multi-variable logistic regression model: *, < 0.05; **, < 789 

0.01. Asterisks in (F) indicate statistical significance for correlation coefficient. P-values are approximated 790 

by using the t distributions: *, < 0.05; **, < 0.01; ***, <0.001. 791 

 792 
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 793 

 794 

Figure 5. Comparison of temporal patterns of common lipids for patients with trauma or COVID-19 795 
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(A-D) Heatmaps show the relative levels of 29 common lipid species from four major classes across patients. 796 

Data comes from trauma patients from PAMPer lipidomics dataset (A) and TD-2 untargeted metabolomics 797 

dataset (B); COVID-19 patients from untargeted metabolomics dataset (Guo et al Cell, 2020) (C) and 798 

lipidomics dataset (Shui et al, Cell metabolism, 2020) (D). Patients are grouped by outcome and sampling 799 

timepoint (except for D).  800 

Asterisks indicate lipids with statistical significance (p value <0.05) and log2 fold change >0.4 by Wilcoxon 801 

Rank Sum test between non-resolving and resolving trauma patients at 72h (A); non-resolving and resolving 802 

trauma patients at D2-D5 (B); severe and non-severe Covid-19 patients (C); severe and mild Covid-19 803 

patients (D). 804 

 805 

  806 
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 807 

Figure 6. Lipid Reprogramming Score (LRS) is an independent risk factor for outcome after trauma 808 

or COVID-19 809 
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(A) Graphical scheme of generation and evaluation of LRS. 810 

(B) Comparison of LRS from patients with trauma. Patients are grouped by outcome and sampling timepoint. 811 

Center dots and error bars represent median value and median absolute deviation, respectively.   812 

(C) Recovery probability (defined as discharged from intensive care unit) of different LRS groups across 813 

days after injury revealed by K-M curve. LRS groups are based on tertiles at 72h after admission for each 814 

patient. 815 

(D) Forest plot showing hazard ratio of clinical factors and LRS score for recovery using a Cox regression 816 

model. 817 

(E) Comparison of LRS for patients with COVID-19. Patients are grouped with diseases outcome and 818 

sampling timepoint. Center dots and error bars represent median value and median absolute deviation, 819 

respectively.   820 

(F) Comparison of predictive value of LRS, lymphocyte count, and CRP for Non-severe versus Severe 821 

outcome for the COVID-19 cohort from Guo et al by ROC curve. 822 

(G) Forest plot showing log odds ratio of clinical factors from logistical regression and LRS score for 823 

Non-severe versus Severe COVID-19 patients. 824 

Abbreviations: ISS, injury severity score; Lym, lymphocyte count; CRP, C-reaction protein. 825 

Asterisks in (B) indicate statistical significance in based on 2-way AVOVA test of time-series analysis of 826 

resolving and non-resolving groups. Pairwise Comparisons was conducted by Estimated Marginal Means 827 

test. The P value was adjusted by Benjamini-Hochberg method: **** < 0.0001. Asterisks in (E) indicate 828 

statistical significance based on Kruskal-wallis test among 6 groups of COVID-19 patients with post-hoc 829 

analysis of Dunn test. The P value was adjusted by Benjamini-Hochberg method: *, < 0.05. Asterisks in 830 

(D&G) indicate statistical significance in multi-variable regression model: *, < 0.05; **, < 0.01. 831 

 832 

  833 
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 834 

Figure 7. Association between LRS and circulating biomarkers  835 
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(A) Heatmap showing correlation of LRS and circulating biomarkers in 0h upon admission in trauma 836 

patients, measured by Spearman correlation coefficients.  837 

(B) Heatmap showing correlation of LRS and circulating proteins in COVID-19 patients, measured by 838 

Spearman correlation coefficients.  839 

(C) Schematic of proposed paradigm showing the relationship between circulating lipid levels and outcomes 840 

after severe injury. Early loss of circulating lipids correlates with adverse outcomes while failure to resolve 841 

critical illness is associated with the selective increase in glycerolipids and PE. 842 

Asterisks in (A&B) indicate statistical significance for correlation coefficient. P-values are approximated by 843 

using the t distributions: *, < 0.05; **, < 0.01; ***, <0.001. 844 

  845 
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 846 

Figure S1. Consort diagram. Screening, randomization and sampling for lipidomic analysis. 847 

 848 
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 849 

 850 

Figure S2. Relationship of the circulating lipidome to injury severity.  851 
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(A) Uniform Manifold Approximation and Projection (UMAP) plot shows the distribution of healthy 852 

subjects (n=17) and patients with trauma (n=193), grouped by injury severity and sampling timepoints. 853 

(Minimal: ISS<10, Moderate: 10<=ISS<25, Severe: ISS>=25) 854 

(B) Heatmap showing relative levels of 996 lipid species for healthy subjects and trauma patients, grouped 855 

by injury severity and sampling timepoints. Exp, z-score normalized concentration. Rows are clustered by 856 

hierarchical clustering. 857 

(C-D) Relationship of ISS to absolute concentration of total saturated fatty acid (C) and unsaturated fatty 858 

acid (D) at 0h revealed by scatterplot. 859 

ISS, injury severity score; SFA: saturated fatty acid; USFA: unsaturated fatty acid. 860 

  861 
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 862 

Figure S3. Lipid intra-class network in non-resolving trauma patients at 72h 863 
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Correlation network for 412 lipids from 14 classes from the lipidomic dataset. Each dot indicates a lipid and 864 

is organized by circle if it belongs to one class. Edge between 2 dots designates high correlation (Pearson 865 

coefficient > 0.7). Only intra-class correlations are shown. Coloring indicates levels between non-resolving 866 

and resolving trauma patients. 867 

  868 
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 871 
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 872 

Figure S4. Prehospital fresh frozen plasma (FFP) can enhance levels of major lipid class 873 

(A) Comparison of circulating total lipid concentration between standard care and prehospital FFP. Lipids 874 

are grouped by classes and fatty acid (saturated or unsaturated) contained in the lipids. Patients are grouped 875 

by treatment and sampling timepoints. Center dots and error bars represent median value and median 876 

absolute deviation, respectively. SFA: saturated fatty acid; USFA: unsaturated fatty acid. Asterisks indicate 877 

statistical significance between baseline and prehospital FFP arm. Number sign indicates statistical 878 

significance between treatment arms in 0h. Kruskal-wallis test was used among baseline and treatment arms 879 

at 0h with post-hoc analysis of Dunn test. p value was adjusted by Benjamini-Hochberg method: *, < 0.05; 880 

**, < 0.01, ***, < 0.001; #, < 0.05; ##, < 0.01; ###, < 0.001, #### < 0.0001. 881 

(B) Heatmap shows temporal pattern of circulating cytokines in trauma patients at 0h,24h and 72h after 882 

admission. 883 

(C) Heatmap shows temporal pattern of circulating biomarkers in trauma patients at 0h and 24h after 884 

admission. 885 

 886 

 887 

 888 
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 889 

Figure S5. Temporal pattern of common lipids of trauma patients from PAMPer and TD-2. 890 
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(A-B) Heatmap shows relative levels of 99 common lipid species from 9 major classes across patients. 891 

Patients are group by outcome and sampling timepoint. Data comes from PAMPer lipidomics dataset (A) or 892 

TD-2 untargeted metabolomics dataset (B).  893 

Number sign (#) indicate lipids with log2 fold change >0.4 between non-resolving and resolving trauma 894 

patients at 72h (A); non-resolving and resolving trauma patients at D2-D5 (B). 895 

 896 
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 897 

Figure S6. Evaluation and external validation of lipid reprogramming score (LRS). 898 
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(A) Volcano plot shows the differential lipids in non-resolving patients compared to resolving patients at 72h 899 

after admission. 900 

(B) Correlation heatmap of 8 common lipids and 37 selected differential lipids. 901 

(C) UMAP plot of LRS and LRS group among trauma patients. 902 

(D) Comparison of LRS from patients with trauma in TD-2 dataset. Patients are grouped according to 903 

outcome and sampling timepoint. Center dots and error bars represent median value and median absolute 904 

deviation respectively.   905 

(E) Comparison of LRS from patients with COVID-19. Patients are grouped with outcome. Center dots and 906 

error bars represent median value, median absolute deviation respectively.   907 

(F) Recovery probability (defined as discharged by intensive care unit) of different LRS groups across days 908 

since injury revealed by K-M curve in TD-2 dataset.  909 

(G) Forest plot shows the Hazard ratios of clinical factors and LRS score for recovery using cox regression 910 

in the TD-2 dataset. ISS, injury severity score. 911 

Asterisks in (D) indicate statistical significance in based on 2-way AVOVA test of time-series analysis of 912 

resolving and non-resolving groups. Pairwise Comparisons was conducted by Estimated Marginal Means 913 

test. p value was adjusted by Benjamini-Hochberg method: * < 0.05. Asterisks in (E) indicate statistical 914 

significance based on Kruskal-wallis test among 4 group with post-hoc analysis of Dunn test. p value was 915 

adjusted by Benjamini-Hochberg method: **, < 0.01. 916 

 917 

 918 

 919 
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 920 

Figure S7. Association between LRS and circulating biomarkers or pathways 921 
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(A-B) Heatmap shows the correlation between LRS and circulating biomarkers at 24h and 72h after 922 

admission in trauma patients, measured by spearman correlation coefficients.  923 

(C-D) Heatmap shows 150 positive (C) and 24 negative (D) correlating proteins with LRS in COVID-19 924 

patients, measured by spearman correlation coefficients.  925 

(E-F) Enriched pathways among 150 positive correlated proteins (E) and 24 negative correlated proteins (F). 926 

P value was adjusted by Benjamini-Hochberg method. 927 

Asterisks in (A&B) indicate statistical significance for correlation coefficient. P-values are approximated by 928 

using the t distributions: *, < 0.05; **, < 0.01; ***, <0.001. 929 

 930 

 931 
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