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Abstract

Although men of African ancestry have a high risk of prostate cancer (PCa), no genes or mutations 

have been identified that contribute to familial clustering of PCa in this population. We 

investigated whether the African ancestry–specific PCa risk variant at 8q24, rs72725854, is 

enriched in men with a PCa family history in 9052 cases, including 143 from high-risk families, 

and 8595 controls of African ancestry. We found the risk allele to be significantly associated with 

earlier age at diagnosis, more aggressive disease, and enriched in men with a PCa family history 

(32% of high-risk familial cases carried the variant vs 23% of cases without a family history and 

12% of controls). For cases with two or more first-degree relatives with PCa who had at least one 

family member diagnosed at age <60 yr, the odds ratios for TA heterozygotes and TT 

homozygotes were 3.92 (95% confidence interval [CI] = 2.13–7.22) and 33.41 (95% CI = 10.86–

102.84), respectively. Among men with a PCa family history, the absolute risk by age 60 yr 

reached 21% (95% CI = 17–25%) for TA heterozygotes and 38% (95% CI = 13–65%) for TT 

homozygotes. We estimate that in men of African ancestry, rs72725854 accounts for 32% of the 

total familial risk explained by all known PCa risk variants.
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We found that rs72725854, an African ancestry–specific risk variant, is more common in men with 

a family history of prostate cancer and in those diagnosed with prostate cancer at younger ages. 

Men of African ancestry may benefit from the knowledge of their carrier status for this genetic 

risk variant to guide decisions about prostate cancer screening.
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Prostate cancer (PCa) is highly heritable, and having a first-degree relative with PCa is 

associated with a two- to three-fold increased risk [1]. With the exception of a rare HOXB13 
European-specific mutation that accounts for ~5% of hereditary PCa [2,3] and variants in 

DNA repair pathway genes found in ~10% of inherited PCa cases [4], genes or mutations 

contributing to the familial clustering of PCa remain elusive. Despite the greater risk of PCa 

for men of African ancestry, no single mutation has been discovered that accounts for a large 

fraction of the aggregation of PCa within families of African ancestry.

We and others have shown that germline variation at 8q24 is the strongest PCa risk factor 

across racial and ethnic populations, with multiple independent risk variants discovered in 

the region (127.6–129.0 Mb) [5–7]. While most associations with 8q24 variants have been 

observed across racial/ethnic populations, less common, ancestry-specific variants have also 

been detected with odds ratios (ORs) >2.0. One such variant, rs72725854 (T risk allele 

frequency ~6%), is found only in men of African ancestry and is the strongest genome-wide 

signal for PCa (OR = 2.32; 95% confidence interval [CI] = 2.16–2.50; p = 1.1 × 10–109) 

discovered to date in this population [5]. Given the moderate effect size conveyed by this 

variant, we investigated whether the T allele is associated with PCa family history and age at 

diagnosis, characteristics that indicate a strong genetic influence of disease onset.

This study included 9052 PCa cases unselected for PCa family history (median age = 64 

[interquartile range = 12] yr, 20% with a PCa family history), of which 2041 had high-risk 

disease and 692 lethal disease, and 8595 controls (median age = 64 [interquartile range = 13] 

yr, 9.0% with a PCa family history; Supplementary Tables 1 and 2), Among cases, 23.7% 

carried at least one copy of the T allele versus 11.6% of controls; the ORs were 2.29 (95% 

CI = 2.10–2.49) for TA heterozygotes and 5.04 (95% CI = 3.36–7.55) for TT homozygotes 

(Table 1 and Supplementary Fig. 1). The percentage of cases carrying the T allele was 

significantly greater for men with a PCa family history (27.4% in those with a first/second-

degree relative with PCa vs 22.7% in those without, p = 0.002) and for men diagnosed at age 

<60 yr (28.2% vs 21.6% for those aged ≥60 yr at diagnosis, p = 0.002; Table 1). The mean 

age at diagnosis for TT homozygotes was 61.1 yr (standard deviation [SD] = 8.7) versus 

62.7 yr (SD = 9.1) for TA heterozygotes and 64.3 yr (SD = 8.9) for AA homozygotes (p = 

5.7E-14).

The percentage of cases carrying the T allele was highest among men with both a family 

history and an early diagnosis (30.8%; Table 1 and Supplementary Fig. 1). For men with a 
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PCa family history and aged <60 yr at diagnosis versus controls, the ORs were 2.85 (95% CI 

= 2.33–3.49) for TA heterozygotes and 11.56 (95% CI = 6.00–22.27) for TT homozygotes.

The T allele was over-represented in advanced PCa cases (Supplementary Table 3), with the 

percentage of men carrying the T allele ranging from 26.0% for lethal PCa (metastatic 

disease, prostate-specific antigen [PSA] >100 ng/ml, or PCa death), 25.4% for high-risk 

disease (stage T3/T4, Gleason 8–10, or PSA = 20–100 ng/ml), 24.6% for intermediate-risk 

disease (Gleason 7, stage T1/T2, and PSA = 10–20 ng/ml), and 21.4% for low-risk disease 

(Gleason <7, stage T1/T2, and PSA < 10 ng/ml; heterogeneity p = 0.03). This pattern was 

consistent in cases with (35.1%, 28.8%, 27.4%, and 27.2%, respectively; heterogeneity p = 

0.2) and without (24.8%, 24.2%, 24.1%, and 19.4%, respectively; heterogeneity p = 0.01) a 

PCa family history.

Given the enrichment of the T allele in cases with a PCa family history and early-onset 

disease, we examined a dose-response relationship between the risk allele and strength of 

family history using an independent sample of 143 high-risk families (Supplementary 

material and Supplementary Tables 1 and 2). Among affected probands, 32.2% carried the 

risk allele, with 3.5% being homozygotes. Comparing these familial cases with the 8595 

controls, the ORs for TA heterozygotes and TT homozygotes were 3.33 (95% CI = 2.29–

4.85) and 13.92 (95% CI = 5.15–37.63), respectively (Table 1). The percentage of cases 

carrying the T allele was greater for those with two or more first-degree relatives with PCa 

(n = 76, 32.9%) and for those who also had at least one family member aged <60 yr at 

diagnosis (n = 51, 39.2%). For this latter subset of cases, the ORs for TA heterozygotes and 

TT homozygotes were 3.92 (95% CI = 2.13–7.22) and 33.41 (95% CI = 10.86–102.84), 

respectively.

We estimated the absolute risk of PCa based on the log-additive effects of rs72725854 and 

family history (Supplementary material and Supplementary Table 4). Among men without a 

family history, the absolute risks for PCa by age 60 yr for TA heterozygotes and TT 

homozygotes were 9.0% (95% CI = 8.6–10%) and 16% (95% CI = 8.7–23%), respectively, 

versus 4.3% (95% CI = 4.1–4.5%) for nonrisk allele carriers (Fig. 1 and Supplementary 

Table 5). Among men with a PCa family history, the absolute risk by age 60 yr reached 21% 

(95% CI = 17–25%) for TA heterozygotes and 38% (95% CI = 13–65%) for TT 

homozygotes, versus 9.0% (95% CI = 8.2–9.8%) for nonrisk allele carriers. Lifetime 

absolute risk of PCa for heterozygotes and homozygotes with a family history reached 60% 

(95% CI = 53%−66%) and 79% (95% CI = 57–100%), respectively.

While the T allele is more common in men with a higher percentage of global African 

ancestry (Supplementary Fig. 2 and Supplementary material), its frequency varies widely 

between African populations. Based on genotype data from the current and previously 

published studies and from the 1000 Genomes Project, the T allele is found to range from 

2.5% in Acholi men from North-Central Uganda to 15.0% in men from the Democratic 

Republic of the Congo (Supplementary Table 6), suggesting that in some populations, over 

25% of men may be carriers of the risk allele (compared with 11.6% of unaffected men in 

our study, the majority of whom were African American).

Darst et al. Page 3

Eur Urol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We also evaluated four other 8q24 risk variants found to be associated with PCa in men of 

African ancestry [5] and found that these variants were not over-represented in men with a 

PCa family history (Supplementary Table 7). When combining the five 8q24 variants in a 

genetic risk score (GRS; Supplementary material), the PCa OR for the top 10% versus 

median 40–50% GRS was 2.33 (95% CI = 2.08–2.62). This was considerably diminished, 

after excluding rs72725854, to 1.54 (95% CI = 1.35–1.77; Supplementary Fig. 3). This 

association between PCa and a GRS excluding rs72725854 was similar between those with 

and without a PCa family history and those diagnosed at younger and older ages 

(Supplementary Table 8). Findings were similar for a GRS of the 180 known PCa risk 

variants, with ORs for the top 10% versus median 40–50% GRS of 2.84 (95% CI = 2.53–

3.18) including and 2.28 (95% CI = 2.03–2.56) excluding rs72725854 (Supplementary Fig. 

3 and Supplementary Table 8). These results suggest that rs72725854 is uniquely over-

represented in men with PCa who have a family history and are diagnosed at a younger age.

We estimate that in men of African ancestry, the 180 known genetic risk variants collectively 

explain 29–38% of the familial relative risk of PCa (based on observed familial risk to first-

degree relatives of PCa cases, ranging from 2.0 to 2.5, as described in the Supplementary 

material and Supplementary Table 9). The five African ancestry 8q24 variants explain 14–

18% of familial risk of PCa (accounting for 49% of the total familial risk explained by the 

180 variants; Supplementary Table 9), which is twice the amount of familial risk explained 

by 8q24 in men of European ancestry (~25%) [8]. The variant rs72725854 alone explains 

9.2–12% of the familial relative risk (32% of the total familial risk explained by the 180 

variants), a considerably larger contribution to familial risk than any other known risk 

variant (Supplementary Table 10), compared with the rare HOXB13 PCa risk variant found 

only in men of European ancestry, which is estimated to be ~5% of the total familial risk 

explained by all known PCa risk variants [8] and accounts for ~5% of all familial cases [3]. 

Our findings support the importance of 8q24 germline variation, while highlighting the 

much larger contribution of 8q24 risk variants to familial risk for men of African versus 

European ancestry.

We demonstrate that the germline variant rs72725854 is significantly enriched among PCa 

cases of African ancestry with a PCa family history. The T allele was observed in 32% of 

familial cases, with a 33-fold increase in the percentage of high-risk familial cases who were 

homozygous risk allele carriers (7.8%) compared with controls (0.35%). Although the 

biological and functional relevance of this risk variant has not been determined, it is located 

in a noncoding intergenic region near Prostate Cancer Associated Transcript 1 (PCAT1) and 

other PCa-associated long noncoding RNAs implicated in the promotion of PCa through 

regulation of the downstream MYC oncogene [9,10]. The lack of this variant in European 

ancestry populations emphasizes differences underlying the genetic architecture of PCa in 

men of African versus European descent.

Given the association of the germline variant rs72725854 with a high absolute PCa risk and 

an increased risk of aggressive and lethal disease, men of African ancestry may benefit from 

the knowledge of their carrier status for this genetic risk variant to guide decisions about 

PCa screening. Carriers of the rare HOXB13 mutation or BRCA2 mutations have been 

recommended to start PCa screening with a baseline PSA measurement at age 40 yr or 10 yr 
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prior to the diagnosis of the youngest PCa patient in the family [11]. Men of African 

ancestry carrying the rs72725854 risk allele could benefit from similar screening 

recommendations. Further research is needed, particularly a prospective investigation of 

rs72725854 T allele carriers, to determine when and how to incorporate rs72725854 into 

PCa screening and whether combining rs72725854 genotype information with screening 

measures, such as PSA, the 4Kscore, the Stockholm-3 model, or the Prostate Health Index, 

could effectively identify PCa and aggressive disease earlier in men of African ancestry.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 –. 
Absolute risk of prostate cancer by rs72725854 genotype and family history. Absolute risks 

are estimated using the odds ratios for each genotype/family history category, which are 

indicated in the table, combined with mortality and incidence rates for African-American 

men (see the Supplementary material).

CI = confidence interval; FH+ = participants with at least one first- or second-degree relative 

with prostate cancer; FH− = participants with no family history of prostate cancer; Hom = 

homozygote; Het = heterozygote; OR = odds ratio.
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