Skip to main content
. 2018 Jun 26;5:78. doi: 10.3389/frobt.2018.00078

Table 3.

Offline error rates using bilateral sensor information to control a powered leg prosthesis with an intent recognition framework.

Steady-state (%) Transitional (%) Overall (%)
1. Prosthesis only 0.53 3.75 0.90
2. Prosthesis, Contra Shank 0.36 3.00 0.67
3. Prosthesis, Contra Shank 1.26 4.99 1.69
4. Prosthesis, Contra Thigh 0.30 2.50 0.55
5. Prosthesis, Contra Thigh 1.42 3.99 1.72
6. Prosthesis, Contra Thigh/Shank 0.20 1.50 0.35
7. Prosthesis, Contra Thigh/Shank 1.02 3.49 1.31
8. Prosthesis, Contra Thigh/Shank 0.53 3.74 0.90
Total decisions 3,027 400 3,427

Error rates are shown for different mode-specific classifier configurations with varying amounts of kinematic information from the non-prosthesis side. The total number of classifier decisions for each step type is also shown in the bottom row.

Control system neither merges LW and RA classes nor includes 90 ms delay.

Control system neither merges LW and RA classes nor includes 90 ms delay; toe off classifier uses prosthesis signals only.