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C O R O N A V I R U S

Abrupt but smaller than expected changes in surface air 
quality attributable to COVID-19 lockdowns
Zongbo Shi1*†, Congbo Song1*†, Bowen Liu2, Gongda Lu1, Jingsha Xu1, Tuan Van Vu3,  
Robert J. R. Elliott2, Weijun Li4, William J. Bloss1, Roy M. Harrison1‡

The COVID-19 lockdowns led to major reductions in air pollutant emissions. Here, we quantitatively evaluate 
changes in ambient NO2, O3, and PM2.5 concentrations arising from these emission changes in 11 cities globally by 
applying a deweathering machine learning technique. Sudden decreases in deweathered NO2 concentrations 
and increases in O3 were observed in almost all cities. However, the decline in NO2 concentrations attributable to 
the lockdowns was not as large as expected, at reductions of 10 to 50%. Accordingly, O3 increased by 2 to 30% 
(except for London), the total gaseous oxidant (Ox = NO2 + O3) showed limited change, and PM2.5 concentrations 
decreased in most cities studied but increased in London and Paris. Our results demonstrate the need for a sophis-
ticated analysis to quantify air quality impacts of interventions and indicate that true air quality improvements 
were notably more limited than some earlier reports or observational data suggested.

INTRODUCTION
Air pollution (both indoor and outdoor) is the single largest envi-
ronmental risk to human health globally, contributing to 8.8 million 
deaths in 2015 (1). The World Bank estimated that air pollution costs 
the global economy $3 trillion in 2015 (2). It has been suggested that 
poor air quality is correlated with a higher mortality rate from 
COVID-19 infection (3). Although a causal relationship between the 
two is difficult to confirm, air pollution contributes to respiratory 
and cardiovascular diseases and thus has the potential to cause in-
creased COVID-19 death rates (4).

In response to the COVID-19 crisis, governments around the world 
introduced severe restrictions on behavior or lockdowns, which led 
to the cessation of a large swathe of economic activity and thus re-
duced air pollutant emissions (5). The rapid and unprecedented 
reduction in the economic activity provides a unique opportunity 
to study the impact of a global-scale natural intervention on air pollu-
tion, which offers insights for the prioritization of future clean air actions.

Many recent studies have explored impacts of the COVID-19 
lockdowns on air quality. The most common approach is to under-
take a simple statistical analysis that compares air quality before and 
after the lockdowns began or during the lockdowns with the same 
periods in previous years (6, 7). Some studies also compared the air 
quality before and after lockdown started for periods with similar 
meteorological conditions (8). Satellite observations of NO2 have 
also been used to estimate the reduction in column NO2 due to the 
lockdowns (3, 9–11).

A major caveat in a number of these studies is that meteorology 
moderates the link between emissions and pollutant concentrations, 
and so, weather changes can mask the changes in emissions on air 

quality (12–14). Such methods cannot explain the observed severe 
pollution events during the lockdowns in some cities (15–17). 
Comparisons of pollutant levels in 2020 with previous years may 
assume that air pollutant emissions have not changed over the past 
few years, which is often not the case, particularly in those cities 
where clean air policy actions are in place (14, 18). Furthermore, air 
pollutant emissions change substantially from winter to spring; thus, 
a direct comparison of air pollutant concentrations before and during 
the lockdowns could also give unreliable results. Venter et al. (9) de-
veloped statistical models (regression) to estimate the impact of 
lockdowns on air quality in several countries. However, the perfor-
mance of the regression was often limited with correlation coefficients 
as low as 0.2. He et al. (19) applied a “difference- in-difference” 
approach, which may provide a more accurate estimate of air quality 
improvement; this method assumes that the control cities are not 
subject to any impacts.

Air quality modeling can also decouple the effect of emission 
changes from meteorology (20, 21) and is often applied for scenario 
analysis. A major challenge in evaluating the impacts of short-term 
interventions on real-world air quality is to estimate emission 
changes (16, 20, 21).

Machine learning offers an alternative and reliable method in 
quantifying changes in air quality due to emissions and meteorological 
factors (12–14). Myllyvirta and Thieriot (22) used a random forest 
(RF) method (13), which was developed for assessing long-term air 
quality changes, to estimate the short-term changes in NO2 and 
PM10 in Europe due to the COVID-19 lockdowns (see Materials 
and Methods).

The purpose of this study was to evaluate the impacts and impli-
cations of the natural experiment of the COVID-19 lockdowns in 
spring 2020 on air quality. To do this, we optimized a weather nor-
malization technique based on Grange and Carslaw (13) and Vu et al. 
(14) to decouple the effects of meteorology from short-term emis-
sion changes on surface air quality monitoring data in 11 global cities 
that were subjected to extensive lockdown measures. The deweathered 
data allow us to quantitatively evaluate the real-world changes in air 
quality due to the lockdown measures in these cities (see Materials 
and Methods). These selected cities cover a range of air pollution 
climates, from highly to less polluted and from PM2.5- to NO2-dominated 
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pollution. Data were divided into roadside, urban background, and 
rural sites to better understand the impacts of road traffic and urban 
emissions on air quality changes.

RESULTS
We first estimated the percentage change (P) in the observed or de-
weathered concentrations of air pollutants using the following equation

  P =    ̄ ¯¯  ( C  i   − C ) / C × 100%   (1)

where C is the average concentration in the second and third 
weeks before the lockdown date or equivalent (as a prelockdown 
baseline), and Ci is the average concentrations in the ith day (from 
the 1st to 28th day) starting in the second week after the lockdown 
start date for each city and for each year (see Fig. 1). For example

   P  2020   =    ̄ ¯¯  ̄     ( C  i,2020   −  C  2020   ) /  C  2020   × 100%   (2)

The week immediately before and after the lockdown date was 
considered a transition period and so was excluded in the calcula-
tions. We recognize that the transition may have started earlier in 
some cities such as London, but for consistency, we applied the 
same Eq. 1 for calculation. For clarification, we will use Pobs and 
Pdew to represent changes in observed and deweathered concentra-
tions, respectively.

We then estimated the detrended percentage change (P*) in the 
concentration of each air pollutant (deweathered only; Fig. 1), cal-
culated by

   P   *  =  P  2020   –  P  2016−2019    (3)

where P2020 and P2016–2019 are percentage changes in deweathered 
concentrations of air pollutants in 2020 and 2016–2019, respective-
ly. P* was calculated by Monte Carlo simulations (n = 10,000) based 
on the normal distribution of P2020 and P2016–2019.

P* removes the “business-as-usual” variability in concentrations 
from winter to spring (i.e., 2016–2019 as a baseline, P2016–2019) and 
thus represents the change attributable to lockdown measures. This 
business-as-usual variability can be caused by changes in anthropo-
genic activities (e.g., domestic heating) and natural processes [e.g., 
biogenic volatile organic compound (VOC) emissions]. For example, 
when the domestic heating demand reduces in  local spring, there 
may be less local emissions of air pollutants; as a result, the concen-
trations of air pollutants are lower if emissions from other major 
sources do not increase and meteorological conditions are similar.

Changes in NO2, O3, and Ox
Observed NO2 levels are highly variable, with daily concentrations 
changing notably during the study period (Fig. 2 and fig. S1). Pollu-
tion events (e.g., spikes in Fig. 2) appeared repeatedly during the 
lockdowns, such as in Beijing, Wuhan, and Paris. Observed NO2 
at roadside sites decreased substantially in all cities after the lock-
downs began, with Pobs ranging from −29.3 ± 33.1% in Berlin to 
−53.5 ± 18.9% in London (table S1); observed NO2 at urban back-
ground sites also decreased substantially, with the Pobs ranging from 
−10.1 ± 36.6% in London to −60.2 ± 14.8% in Delhi; and observed 
NO2 at rural sites increased in London (Pobs = +115.8 ± 90.2%) and 
Paris (Pobs = +99.2 ± 66.7%) but decreased in other cities after lock-
down started.

Deweathered NO2 usually shows a similar pattern to the obser-
vations, but the magnitudes and sometimes even the signs of changes 
are different. A sudden drop, distinct from the data in 2018, is clearly 
observed at urban sites in 2020 after the lockdowns began in all cities 
except London and Los Angeles, which show a more gradual change 
(Fig. 2 and fig. S1). This confirms that the sudden changes in 2020 
are indeed due to the lockdown measures.

Deweathered NO2 at urban background sites in 2020 decreased 
in all cities after the lockdowns began, with Pdew ranging from 
−18.2 ± 6.0% in London to −52.9 ± 1.4% in Delhi (Table 1); de-
weathered NO2 at roadside sites decreased more markedly in most 
cities (Fig. 2, fig. S1, and table S2). We also noticed that deweathered 
NO2 (Pdew) in 2016–2019 decreased in almost all cities from winter 
to spring, although the magnitude of change is usually much smaller 
than in 2020 (Fig.  3). Thus, the absolute values of the detrended 
NO2 change, P*, is smaller than the corresponding Pdew. Table 1 
shows that the decline in NO2 due to the lockdown measures at ur-
ban background sites is mostly less than 30% in the studied cites. 

Deweathered NO and NOx (=NO + NO2) in 2020 dropped more 
markedly (table S2) after the lockdown began than was observed for 
NO2. For example, Pdew values for NO and NOx at urban background 
sites in London were approximately −24.8 ± 6.3 and −21.0 ± 5.9%, 
respectively, whereas that for NO2 was −18.2 ± 6.0%. At roadside 
sites in London and Rome, deweathered NOx decreased by more 
than 50% during the lockdowns, a much larger change than that 
for NO2 (−47.0% in London and −35.2% in Rome).

In contrast to changes in NO2, observed O3 at roadside sites in 
2020 increased in all cases (fig. S1 and table S1) after the lockdown 
began, with the Pobs values ranging from +19.5 ± 21.0% in Madrid 
to +155.6 ± 83.2% in Milan. Observed O3 at urban/rural sites also 
increased during the lockdowns (fig. S1). A sudden increase in 

Fig. 1. Concept of detrending air pollutant levels. C2016–2019 and C2020 are the 
average concentrations of an air pollutant in the second and third weeks before 
the lockdown start date or equivalent in 2016–2019 and 2020, respectively; Ci,2016–2019 
and Ci,2020 are the daily average concentrations of an air pollutant in the ith day 
starting in the second week after the lockdown start date or equivalent in 2016–2019 
and 2020, respectively. The vertical dashed line represents lockdown start date. 
P2016–2019 and P2020 are the percentage changes in air pollutant levels after versus 
before the lockdown began or equivalent in 2016–2019 and 2020, respectively 
(see Eq. 2 in the main text for definition). C2020Business as usual is the hypothetical con-
centration for the ith day starting in the second week after the lockdown date un-
der “business-as-usual” (i.e., no lockdown) conditions. This is calculated from the 
prelockdown concentration (C2020) assuming the same percentage change as in 
2016–2019 (P2016–2019, as the “business-as-usual” change). The detrended percent-
age change P* (i.e., the change in air pollutant concentration arising from lockdown 
effects alone) is given by P2020 − P2016–2019.



Shi et al., Sci. Adv. 2021; 7 : eabd6696     13 January 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 10

deweathered O3 after the lockdown began was observed in most of 
the cities (Fig. 1 and fig. S1). The Pdew values (Table 1 and table S2) 
for deweathered O3 range from +15.0 ± 3.0% in Los Angeles to 
+128.5 ± 41.9% in Milan at roadside sites, from +14.8 ± 2.2% in 
Los Angeles to +66.8 ± 29.2% in Milan at urban background sites, 
and from +1.5 ± 0.9% in London to +57.9 ± 6.3% in Milan at rural 
sites. However, there is an increasing trend in O3 levels at urban 
background sites during the same periods in 2016–2019 (Figs. 2 and 
3), with Pdew values ranging from +12.1 ± 9.1% in New York 
to +51.2 ± 23.4% in Milan (auxiliary data table S1). As a result, the 
detrended O3 changes (P*) at urban background sites are much 
smaller than those of the corresponding Pdew values; there is an ob-
vious increase in P* in Beijing, Wuhan, Milan, and Rome, but a small 
change or even a decrease in other cities (Table 1).

Accordingly, the observed levels of total gaseous oxidant (i.e., 
Ox = NO2 + O3), a parameter unaffected by the titration reaction 
between NO and O3 but representing net photochemical production 
of O3, showed a different pattern to NO2 and O3, with little change 
before and during the lockdowns, whether at roadside, urban back-
ground, or rural sites (Fig. 4). Observed Ox at urban background 

sites in 2020 range from 35.0 ± 5.4 parts per billion (ppb) in Madrid 
to 44.8 ± 8.5 ppb in Delhi during the 10-week period with lockdown 
start date in the middle. Deweathered Ox mixing ratios at urban 
background sites were remarkably similar across the cities, at ap-
proximately 40 ppb (Fig. 4). Only a small change in deweathered 
Ox, before and after lockdown started in 2020, was observed at 
urban background sites in all the cities, with Pdew values ranging 
from −4.6 ± 3.5% in Delhi to +10.5 ± 0.8% in Berlin (Table 1). Small 
changes were also seen during the same periods in 2016–2019, with 
Pdew for deweathered O3 ranging from −1.2 ± 7.1% in Beijing to 
+8.7 ± 1.7% in Berlin (Fig. 2 and auxiliary data table S1). Detrended 
Ox at urban background sites generally decreased during the study 
period in most of the cities, but the absolute change is relatively small, 
i.e., mostly within ±5%; changes at rural sites are more variable with 
almost half of the cities showing a slight increase (table S3).

Changes in PM2.5 and PM10
Figure 5 and fig. S2 show that the average observed PM2.5 levels in 
2020 reduced after lockdown started in the two more polluted cities, 
Wuhan and Delhi. No clear changes were observed in other cities, 
particularly when comparing levels to those in previous years (Fig. 5 
and fig. S2). In Beijing, Paris, and London, pollution events were 
observed after the lockdowns began (Fig. 5). Unlike NO2, the peak 
levels observed during the lockdowns were sometimes even higher 
than those before lockdown began (e.g., London). The Pobs values 
for observed PM2.5 in 2020 range from −40.8 ± 28.4% in Los Angeles 
to +107.6 ± 148.5% in London at roadside sites, from −38.6 ± 17.2% 
in Madrid to +152.9 ± 165.0% in London at urban background sites, 
and from −34.2 ± 26.8% in Delhi to +164.5 ± 148.7% in London at 
rural sites (table S1).

Deweathered PM2.5 in 2020 showed a clearer pattern than that 
apparent in the observations (Fig. 5). Unlike deweathered NO2 and 
O3, a sudden decrease in PM2.5 after lockdowns started was not de-
tected in most of the cities, with the exceptions of Wuhan and Rome 
(fig. S1). However, sudden decreases were observed in some cities 
(such as Los Angeles, New York, Beijing, and Wuhan) a few days after 
or before the lockdowns began. Figure 5 and fig. S2 show that the 
deweathered PM2.5 before the lockdown began in 2020 was similar to 
that in 2018 in Beijing, lower in Wuhan, London, Paris, and Berlin, 
but higher in Rome and Delhi. In Beijing, there was an increase in 
deweathered PM2.5 after the lockdown began initially, but there was 
a decrease afterward (Fig. 5). Deweathered PM2.5 in London and Paris 
also increased after the lockdowns began, but in contrast, there was 
no obvious decrease even 3 weeks from the lockdown date.

The changes in deweathered PM2.5 are similar at different site 
types (Fig. 5 and fig. S2). Deweathered PM2.5 at roadside sites in 
2020 increased slightly during the lockdowns by +1.0  ±  7.2% in 
London and +0.2 ± 9.1% (Pdew) in Paris but decreased with changes 
(Pdew) ranging from −2.8 ± 1.3% in New York to −37.8 ± 4.8% in 
Los Angeles (table S2). A similar trend is also observed in the de-
weathered PM2.5 at urban background and rural sites (Fig. 5 and fig. 
S2). An obvious decrease in deweathered PM2.5 at urban background 
sites during the same study periods was also observed in 2016–2019 
in some cities but not in others (Fig. 3 and auxiliary data table S1). 
The detrended change (P*; Table 1) in PM2.5 at urban background 
sites shows a decrease in Los Angeles (−40.3 ± 26.9%), Madrid 
(−24.1 ± 18.4%), Wuhan (−15.7 ± 24.8%), New York (−13.9 ± 6.9%), 
and Delhi (−5.2 ± 4.8%), but little changes or even increases in the 
other cities.

µg

Fig. 2. Observed and deweathered daily NO2 and O3 concentrations in selected 
cities before and after the lockdown start dates or equivalent in 2020 versus 
2018. Columns correspond to (A) NO2 at roadside sites, (B) NO2 at urban back-
ground sites, and (C) O3 at urban background sites; rows show different cities as 
indicated. Fine and heavy lines indicate observed and deweathered concentra-
tions, respectively. Data are shown from December to May, shown as day of year 
(DOY; 1 January = 1), where the vertical dashed lines represent lockdown date. The 
sudden drop in deweathered NO2 and corresponding increase in deweathered O3 
are apparent in Beijing, Wuhan, and Paris, whereas London and Los Angeles show 
more gradual changes. The saw-like shape in the deweathered data in some cities 
captures the weekly cycles of NO2 and, to a lesser extent, O3, particularly in western 
cities. Results from other cities/sites are shown in fig. S1. No data are available for 
roadside sites in Wuhan.
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The overall patterns of variations in observed and deweathered 
PM10 (fig. S4) are similar to those of the PM2.5 (fig. S3). A slight 
difference in some cities is that there were more variabilities/
contrasting patterns at different types of site. For example, a larger 
decline in Pdew for deweathered PM10 at roadside sites than that at 
urban background sites is observed in Beijing, Madrid, London, 
Paris, and Berlin (table S2), potentially reflecting a coarse particle 
source from road traffic (e.g., non–exhaust emissions) (23). Fur-
thermore, in Los Angeles and Delhi, the decline in deweathered 
PM10 is significantly larger than that of PM2.5 whether at urban 
background or rural sites (table S2), implying a reduced contribu-
tion of coarse particles to PM10.

Changes in CO and SO2
Deweathered CO levels were lower after lockdown started than be-
fore in 2020. This pattern is different from that in 2018 (fig. S4). A 
sudden change is observed in Rome and Wuhan only. In Beijing, 

deweathered CO increased slightly after the lockdown began, be-
fore falling for about 2 weeks, after which there was a substantial 
increase at all three types of sites. Thereafter, the deweathered CO 
decreased substantially, ~40% (Pdew) lower than that during the 
same period in 2018. In New York (roadside sites), a decline in de-
weathered CO is observed a week after the lockdown began. In Delhi, 
the decreasing trend in deweathered CO at urban background sites 
is not distinguishable from that in 2018, whereas at rural sites, CO 
clearly declined from a few days before the lockdown began.

The change in deweathered SO2 after the lockdowns began is 
dependent on the site or city (fig. S4). No sudden change is observed 
in any of the cities immediately after the lockdowns. In Beijing, de-
weathered roadside and urban SO2 increased initially and then de-
creased by ~20%. In all cases, the deweathered SO2 concentration in 
2020 is much lower than that in 2018. In London, deweathered SO2 
declined for a few days before the lockdown began at roadside sites. 
Deweathered SO2 in Wuhan and Rome decreased about a month 

Table 1. Percentage changes (%) in deweathered (Pdew) and detrended (P*) NO2, O3, PM2.5 mass concentrations, and Ox mixing ratios at urban 
background sites in the studied cities. See Eqs. 1 to 3 for definition of Pdew and P*. N.A., data not available. 

Beijing Wuhan Milan Rome Madrid London Paris Berlin New York Los Angeles Delhi

NO2 Pdew −33.4 ± 2.2 −43.9 ± 2.2 −27.4 ± 8.3 −33.2 ± 6.1 −49.7 ± 3.1 −18.2 ± 6.0 −33.6 ± 3.3 −25.4 ± 6.0 −23.3 ± 2.0 −23.8 ± 3.4 −52.9 ± 1.4

P* −18.5 ± 9.2 −33.9 ± 7.3 −16.3 ± 11.4 −27.1 ± 7.7 −35.2 ± 21.3 −7.7 ± 7.7 −25.8 ± 7.1 −11.3 ± 13.1 −17.0 ± 8.3 −9.9 ± 6.1 −51.0 ± 5.2

O3 Pdew 28.9 ± 2.0 44.5 ± 3.4 66.8 ± 29.2 55.8 ± 6.7 28.0 ± 3.8 15.8 ± 1.8 22.2 ± 2.4 29.9 ± 3.0 17.4 ± 3.9 14.8 ± 2.2 26.2 ± 5.8

P* 14.8 ± 5.3 21.8 ± 13.6 15.4 ± 37.6 29.8 ± 10.1 11.2 ± 18.3 −1.6 ± 8.1 7.0 ± 5.1 2.6 ± 8.9 5.3 ± 9.8 2.3 ± 5.3 8.2 ± 8.4
PM

2.5 Pdew −19.3 ± 9.6 −27.0 ± 18.7 N.A. −16.4 ± 5.2 −43.1 ± 3.4 8.6 ± 8.3 16.5 ± 10.7 N.A. −21.5 ± 2.6 −18.0 ± 5.4 −12.7 ± 2.8

P* −2.4 ± 14.7 −15.7 ± 24.8 N.A. −0.7 ± 9.6 −24.1 ± 18.4 10.9 ± 16.7 27.4 ± 15.3 N.A. −13.9 ± 6.9 −40.3 ± 26.9 −5.2 ± 4.8

Ox Pdew −1.1 ± 2.0 1.1 ± 1.4 −1.3 ± 1.0 4.1 ± 1.2 −0.4 ± 1.3 4.2 ± 0.8 2.1 ± 0.6 10.5 ± 0.8 −1.0 ± 1.8 −2.3 ± 1.0 −4.6 ± 3.5

P* 0.1 ± 7.4 −0.7 ± 4.4 −7.2 ± 5.9 −2.0 ± 2.9 −3.4 ± 3.2 −2.4 ± 1.3 −0.6 ± 2.3 1.8 ± 1.9 −6.4 ± 6.8 −4.1 ± 1.7 −9.8 ± 6.3

A

B

C

D

Fig. 3. Box plots of percentage change (Pdew) in deweathered concentrations of air pollutants in 2020 versus 2016–2019. Rows represent (A) NO2, (B) O3, (C) PM2.5, 
and (D) Ox. Lower and upper box boundaries represent the 25th and 75th percentiles, respectively; line and triangle inside boxes represent median and mean values, 
respectively; lower and upper error lines represent 1.5 * IQR (interquartile range) below the third quartile and above the first quartile, respectively. Number of samples for 
Pdew in 2020 and 2016–2019 is usually 28 and 112, respectively.
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before the lockdowns but did not change during the lockdowns. In 
New York (roadside sites), a decline in deweathered SO2 is observed 
a week after the lockdown began. Delhi saw a substantial decrease in 
deweathered SO2 about 2 weeks after the lockdown started, and the 
decrease in deweathered CO at urban background sites is not dis-
tinguishable from that in 2018, whereas at rural sites, it clearly de-
clined from a few days before the lockdown began.

DISCUSSION
The deweathered and detrended data are used to understand how the 
air quality responded to the changes in activity associated with the 
COVID-19 lockdowns of early 2020 and the potential implications 
of such interventions for developing future air pollution abate-
ment strategies and thus improving human health.

The importance of deweathering and detrending
Large differences between the deweathered and observed concen-
trations of air pollutants were observed in the studied cities (Fig. 2 
and figs. S1 to S3). Observed daily average NO2 concentrations are 
much higher than the deweathered ones during some periods. Our 
estimated NO2 decline in Wuhan due to lockdown effects is much 
lower than that estimated by Le et al. (15), who reported up to 93% 
reduction in NO2 in Wuhan during the lockdown. If we look at the 
observations only, we can indeed see >90% decrease from the peak 
concentration before the lockdown began to the lowest one after-
ward (Fig. 2), but this is mainly due to changes in meteorological 
conditions, not emissions. The observed PM2.5 also exhibited 

remarkable meteorologically driven variability regardless of cities 
or site types and sometimes differed by more than a factor of 3 
when compared with deweathered concentrations (Fig. 5 and 
fig. S2). In general, major differences are apparent between the ob-
served and deweathered results when the meteorological conditions 
change substantially over the study period. For example, the chang-
es in observed and deweathered PM2.5 at urban background sites in 
Beijing before and after the lockdown began were +19.2 ± 108.6% 
(Pobs) and −19.3 ± 9.6% (Pdew), respectively. In this case, emission 
reductions and the unfavorable meteorological conditions drove 
changes of approximately −19.3 and +38.6% in the observed levels, 
respectively, leading to an overall +19.2% increase in PM2.5. Our 
results demonstrate that meteorological variations, rather than 
emission changes on the scale of those occurring during the 
COVID-19 lockdowns, dominate short-term variability in air pol-
lutant concentrations, which is consistent with previous studies 
(12, 14, 20, 24).

Apart from deweathering, detrending the “business-as-usual” 
changes is also crucial in estimating real changes attributable to in-
terventions (i.e., lockdowns). In the “business-as-usual” scenario, air 
pollutant emissions (both anthropogenic and natural) and, thereby, 
concentrations may change from winter to spring, whether there is 
a lockdown or not (see 2016–2019 data in Fig. 3). For example, a 
general increase in deweathered O3 is observed from winter to 
spring in 2016–2019 in all the studied cities (Figs. 2 and 3 and fig. 
S1). Such an increase reflects changing photochemical steady-state 
partitioning from NO2 to O3 (Northern Hemisphere cities moving 
into spring with increased solar radiation intensity and day length), 

A

B

C

D

E

F

4th–5th weeks 4th–5th weeks

Roadside_observed

Roadside_deweathered

Urban_observed

Urban_deweathered

Rural_observed

Rural_deweathered

2nd–3rd weeks 2nd–3rd weeks

Fig. 4. Observed and deweathered Ox (i.e., NO2+ O3) mixing ratios in the 5 weeks before and after the lockdown start dates in the studied cities in 2020. The six 
rows (from top to bottom) show results from roadside observed (A) and deweathered (B), urban background observed (C) and deweathered (D), and rural observed 
(E) and deweathered (F) mixing ratios. Deweathered Ox shows little change before and after the lockdown dates in 2020 and is similar across all urban background sites 
(all close to 40 ppb). Error bars (included for all points) represent 1 SD (n = 14). Transition period refers to the 2 weeks with the lockdown start date in the middle.
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alongside wider increases in photochemical ozone formation, 
enhanced by increased emission and chemical reactivity of VOCs. 
Taking this “business-as-usual” variability into account, the detrended 
percentage changes (P*) in O3 are much smaller than the correspond-
ing Pdew (Table 1 and table S3). Not accounting for this seasonality 
would lead to a different conclusion, as by Sicard et al. (7), that O3 
concentration increased substantially in response to the lockdowns.

In some cities, there are considerable variabilities in Pdew in 
2016–2019 (Fig. 3). This may be partly due to specific events such as 
holidays around the lockdown dates, leading to a decrease in air 
pollutant emissions for a particular year. In this instance, the abso-
lute value of Pdew in 2016–2019 could be slightly overestimated, and 
thus that of the P* underestimated. However, because we included 
4 years of data (2016–2019) for detrending, the impact of a specific 
event on the P* values is small.

Our detrended results (Table 1 and table S3) demonstrate that 
the decreases in NO2 and increases in O3 due to the COVID-19 
lockdowns are not as large as previous studies have reported (7, 21) 
or as the raw observational data show (table S1). Note also that an-
thropogenic air pollutant emissions reduce year by year, such as in 
London and Beijing, as a result of clean air policy actions and vehi-
cle fleet evolution (14, 18). Thus, the approach widely used in the 
literature to estimate the lockdown effects by subtracting NO2 during 
the equivalent periods in earlier years from that in 2020 (6, 7, 11, 15) 

may also overestimate the effects attributed to the lockdowns (Fig. 3 
and Table 1).

Considering urban background sites in Wuhan (a widely studied 
city) as an example, observed NO2 and O3 changed by −47.3 ± 17.4% 
and +166.5 ± 60.5% (Pobs values, obtained from unadjusted concen-
tration data before/during lockdown; table S1), values similar to those 
reported by Shi and Brasseur [−54 ± 7% and + 220 ± 20% (25)]; 
changes of approximately −51.8 and +40.0% are obtained by sub-
tracting NO2 and O3 concentrations during the second to fifth weeks 
after the lockdown dates in 2016–2019 from those in 2020 (i.e., 
without adjustment for meteorology), values which are similar to 
those reported by Sicard et al. [−57 and +36% (7)]. Our estimated 
changes in deweathered NO2 and O3 (Pdew) are −43.9 ± 2.2% 
and +44.5 ± 3.4%, which are similar to those reported by Zhao et al. 
[−51.7 and +58% (21)]. However, these estimations (7, 21, 25) are 
considerably higher (sometimes by a factor of 10) than our detrend-
ed results (P*), which are −33.9 ± 7.3% for NO2 and +21.8 ± 13.6% 
for O3. This may at least partially explain why the estimated changes 
in NO2 and O3 due to the lockdown effects in the studied cities re-
ported here are lower than those published elsewhere (7, 11, 15, 21, 25), 
and demonstrate the necessity of disentangling the changes due to 
meteorological variation and seasonality and from the lockdown- 
driven changes in emissions to understand the resulting differences 
in air pollutant concentrations.

Drivers of changes
The deweathered NO2 showed a sudden decrease after the lock-
down began in most of the cities (Fig. 2 and fig. S1). Detrended NO2 
at urban background sites declined the most in Delhi (−51.0 ± 5.2%), 
Madrid (−35.2 ± 21.3%), and Wuhan (−33.9 ± 7.3%) (Table 1). A 
given reduction in NOx emission, and hence NOx abundance, is ex-
pected to lead to a smaller reduction in ambient NO2 levels, as the 
fast NOx-O3 photochemistry shifts the NO2/NOx ratio in favor of 
NO2. The fact that the NOx changes are larger than those of NO2 
supports this argument (tables S1 and S2). A substantially larger 
decline in NOx and NO2 was observed at roadside than at urban 
background sites, suggesting that the decline in NO2 during the 
lockdowns is largely driven by changes in road traffic as the domi-
nant source of NOx in urban atmosphere (16). Mobility data from 
Google Maps (https://google.com/covid19/mobility/) suggest that 
traffic volumes reduced by 60 to 80% in the cities considered here. 
However, this mobility decrease does not correspond directly to the 
same reduction in road traffic–related NOx emissions. For example, 
in London, although private car use reduced by about 80%, heavy 
good vehicles (HGVs) on the road only reduced by 30 to 40%. It is 
possible that if the change in the number of HGVs, which account 
for a smaller percentage of total vehicle population but a large pro-
portion of vehicular NOx emissions (26, 27), is small, then the 
changes in total road traffic emissions of NOx may be much smaller 
than expected. Decreases in activity levels from other combustion 
sources, such as power plants and industry (22), may have contrib-
uted to the decline in NO2, at least in some cities, as shown by the 
small decline in SO2 in some cities (fig. S4). Such changes are diffi-
cult to quantify, but the much smaller (and absence of any sudden) 
changes in SO2 compared with NO2 (Fig. 2 and fig. S2)—as indicated 
by the increase in SO2/NO2 ratio in Wuhan, London, Paris, Rome, 
and Delhi (auxiliary data table S1)—suggest that reductions in NOx 
emissions from stationary sources were less than those from traffic 
emissions. This is consistent with Le Quéré et al. (5), who estimated 

A B C

µg

Fig. 5. Observed and deweathered daily PM2.5 concentrations in the selected 
cities before and after the lockdown start dates or equivalent in 2020 versus 
2018. Columns correspond to (A) roadside, (B) urban background, and (C) rural 
sites; rows show different cities as indicated. Fine and heavy lines indicate ob-
served and deweathered concentrations, respectively. Data are shown from 
December to May, shown as day of year (1 January = 1), where the vertical dashed 
lines represent lockdown start date. Results from other cities/sites are shown in fig. 
S2. No data are available for roadside sites in Wuhan.

https://www.google.com/covid19/mobility/
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that in Europe and the United States, electricity use reduced by 9 
and 5%, respectively. Note also that domestic emissions may have 
increased with an increase in people working or studying from home. 
We recognize that our methodology is unable to attribute the actual 
changes in emissions on a sector-by-sector basis. This could be re-
visited in the future when emission inventories for the spring 2020 
lockdown period are developed and evaluated against observations.

O3 is a secondary pollutant, and its variation is driven by several 
factors. Dominant among these is the NOx-O3 photochemical steady 
state. The decrease in NO (tables S1 and S2) led to reduced O3 titra-
tion, through which reductions in traffic-related NO emissions trans-
late directly into increases in O3, relative to the prelockdown period; 
the time constant for this NOx-O3 interaction in daylight is of the 
order of minutes. The fact that deweathered O3 increased suddenly 
after the lockdown began and that changes in deweathered NO 
were more pronounced than those in NOx and NO2, particularly at 
roadside sites (fig. S1 and table S2), support this well-understood 
atmospheric chemistry (28). This effect—of a reduced urban decre-
ment in O3—will be partially offset by reductions in primary NO2 
emissions from traffic and, on a much longer time scale (hours to 
days, rather than minutes), by net O3 production. Under an extreme 
condition, if all traffic-related NOx emissions are assumed to be NO, Ox 
would remain unchanged in response to lockdown-driven changes 
in traffic (but NO2 would decrease, and O3 would increase). In real-
ity, primary NO2 emissions from road traffic decreased during the 
lockdowns, so Ox should fall. Detrended Ox fell slightly at roadside 
and urban background sites in most of the cities (Table 1 and table S3). 
Detrended Ox increased at rural sites in some of the cities (table S3), 
which indicates an increase in net photochemical production of O3 
at some of the studied sites (28). The different pattern of changes in 
detrended O3 represents a nonlinear response of O3 formation rates to 
the (relative) changes in NOx and VOC emissions, depending on 
the prevailing O3 production regime at each location, but usually 
with a greater impact downwind of conurbation locations (29, 30).

Drivers of the response of PM2.5 levels to the lockdown measures 
are more complex since both primary emissions and secondary for-
mation contribute to PM2.5 in ambient air. Deweathered PM2.5 re-
duced after the lockdowns began at urban background sites in most 
of the cities, including Wuhan, Rome, New York, Los Angeles, and 
Delhi (fig. S2). This could be explained by (i) the expected reduc-
tions in primary emissions of PM2.5 and its gaseous precursors (e.g., 
NO2, SO2, and VOCs) during the lockdowns and (ii) limited change 
in the formation rate of secondary aerosol as shown by the small 
variation in PM2.5/CO ratio (fig. S5).

Deweathered PM2.5 increased in London and Paris for an extended 
period (more than 3 weeks) after the lockdowns began (Fig. 5). It 
also increased in Beijing after the lockdown began, although for a 
shorter period. One possible explanation for this unexpected result 
is that enhanced secondary aerosol formation overwhelmed the re-
duced primary PM2.5 emissions. In Chinese megacities, secondary 
particles typically contribute to >50% of PM2.5 mass (31, 32). In 
London, secondary aerosols contribute roughly half of PM2.5 at 
roadside sites, increasing to ~90% of PM2.5 at rural sites, with the 
contribution lying between these values at urban background sites 
(33). Such contributions are even larger during pollution events 
(15, 16, 31). Thus, changes in PM2.5 are often driven by variations in 
secondary aerosols, particularly during pollution events. In Beijing, 
Sun et al. (34) noted that primary aerosol decreased by 30 to 50%, 
while secondary inorganic aerosol and secondary organic aerosol 

(SOA) increased by 60 to 110% and 52 to 175%, respectively, during 
the early periods of the lockdown in 2020. The fact that substantial 
increases in PM2.5/PM10 (Paris) or PM2.5/CO (London; fig. S5) 
ratios accompanied the increase in deweathered PM2.5 (Fig. 5 and 
fig. S2) also supports the greater role of secondary aerosol during 
the study period in Paris and London. Zhao et al. (35) suggested 
that SOA formation depends nonlinearly on the ratio of VOCs to 
NOx; reduction in NOx emissions may lead to increased production 
of SOA given imbalanced emission abatement of NOx and VOCs. 
Le et al. (15) indicated that multiphase chemistry and enhanced atmo-
spheric oxidative capacity drove haze events in China during the 
lockdowns. Huang et al. (16) also suggested that increase in oxidative 
capacity during lockdown in China/Beijing caused the observed 
air pollution events; however, the changes in deweathered Ox levels 
(Pdew) at urban background sites are rather small: Beijing (−1.1 ± 2.0%), 
London (+4.2 ± 0.8%), and Paris (+2.1 ± 0.6%) (table S2).

Another possible explanation is associated with changes in long-
range transport, which brings air pollutants from nonlocal sources 
and thus contributes to the increase in deweathered PM2.5. In theo-
ry, the RF models should have normalized the impacts from long-
range transport by including back-trajectory clusters. However, the 
model may not be able to perfectly reproduce secondary formation 
processes arising from long-range transport if there were limited 
cases to learn from, especially as such events tend to be episodic in 
nature. In this case, the model will treat pollution events arising 
from long-range transport as if there are higher emissions; this at-
tribution will be retained during deweathering. This will cause un-
certainties in the model. More observational data and modeling are 
needed to fully understand the phenomenon of increases in PM2.5 
in London, Paris, and Beijing during the lockdowns. However, it is 
clear that a small reduction in primary PM2.5 emissions (e.g., from 
vehicular emission changes during lockdown) could be readily over-
whelmed by enhanced secondary formation and/or PM2.5 transported 
from more polluted regions.

In Wuhan, the deweathered PM2.5 decreased to a small degree 
during the 2 weeks after the lockdown began (Fig. 5). However, the 
deweathered PM2.5/CO increased during the lockdowns (fig. S5), 
which suggests that enhanced secondary pollution (36) offsets the 
benefits of the reduction in primary emissions during the first 2 weeks 
of the lockdown. Thereafter, the deweathered PM2.5 did decrease 
more significantly (Pdew = −27.0 ± 18.7%). Similarly, in Beijing, the 
deweathered PM2.5 decreased 2 weeks after the lockdown began, so 
overall Pdew is negative (−19.3 ± 9.6%). These results suggest that if 
the reduction in emissions of gaseous precursors is sufficiently 
large, it should eventually lead to an overall decline in PM2.5. Such a 
hypothesis should be tested with chemical transport models with 
up-to-date emission inventories when these are available.

Implications for future air pollution control
Our results demonstrate that restrictions on economic activities, 
particularly traffic, brought an immediate decline in detrended NO2 
in all the studied cities. If similar levels of restriction were to have 
remained in place, the annual average NO2 concentration would 
comply with the air quality guidelines from the World Health Organi-
zation (WHO) (i.e., 40 g m−3 for annual NO2) for the cities consid-
ered under average meteorological conditions, except for a limited 
number of roadside sites. However, the detrended percentage de-
cline (i.e., attributed to lockdown effects) in NO2 is mostly below 
30%. This is lower than the expected decline, partly due to the 
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NOx-O3 photochemical steady state (converting NO to NO2), along-
side seasonal effects, and partly due to the still important emissions of 
NOx from stationary and mobile pollution sources. Detrended O3 in-
creased in most cities. This adds to the complexity of air pollution 
control, considering the potentially adverse impacts of O3 on hu-
man (37, 38) and environmental health, including crop yields (39).

PM2.5 exhibited a more complex response to the lockdown mea-
sures. PM2.5 did not show an immediate decline to the lockdown 
measures except in Wuhan, Rome, and Los Angeles, even at the 
roadside sites. This is not too unexpected considering the relatively 
small contribution of road traffic to primary PM2.5 in most of the 
cities studied here and a large contribution from secondary sources 
(16, 31). In China, much of the recent decrease in PM2.5 came 
from the reductions in residential solid fuel use and industrial activ-
ity rather than traffic emissions (18, 40). Nevertheless, a decrease in 
deweathered PM2.5 is observed in most of the cities.

In Delhi, Wuhan, and Beijing, annual average PM2.5 concentra-
tions are so far in exceedance of the WHO guideline (10 g m−3) 
that the decline is far from sufficient to bring levels into compliance. 
Even in those cities where the annual average PM2.5 is close to 10 g 
m−3, such as London and Paris, emission reductions on the scale of 
the spring 2020 COVID-19 lockdown measures may still be insuffi-
cient to bring concentrations into compliance with the current WHO 
guidelines. In addition, the frequent PM2.5 pollution events during 
the lockdowns in some cities, such as Beijing, London, and Paris, 
showed that actions of a magnitude similar to the lockdown mea-
sures are far from sufficient to avoid episodic pollution events in 
these cities. The mechanisms driving such changes have been ex-
plored in more detail by recent studies (15–17, 20).

Li et al. (41) suggested that aggressive reductions in NOx and 
aromatic VOC emissions should be particularly effective for decreasing 
both PM2.5 and O3 in China. The huge reduction in NOx (fig. S3) 
and VOCs (16) in response to the COVID-19 lockdowns did reduce 
PM2.5 pollution in Beijing and Wuhan, but detrended O3 increased 
substantially (Table 1), at least up until mid-May. A slower pace of 
VOC emission reduction, relative to that for NOx, could risk a fur-
ther increase in O3 pollution.

In summary, emission changes associated with the early-2020 
COVID-19 lockdown restrictions led to complex and substantial 
changes in air pollutant levels, but the changes are smaller than 
expected. The decrease in NO2 will likely have benefits on public 
health, but the increase in O3 would counteract at least some of this 
effect (37, 38). The magnitude and even the sign of changes in PM2.5 
during the lockdowns differ significantly among the studied cities. 
Chemical processes of the mixed atmospheric system add complexity 
to efforts to abate secondary pollution (e.g., O3 and PM2.5) through 
reduction of precursor emissions (e.g., NOx and VOCs) (42). Future 
control measures will require a systematic approach toward NO2, 
O3, and PM2.5 tailored for specific cities, taking into account both 
primary emissions and secondary processes, to maximize the over-
all benefits to air quality and human health.

MATERIALS AND METHODS
Selected cities and data
Eleven cities were selected to ensure coverage of contrasting pollu-
tion climate: Beijing and Wuhan in China, Milan and Rome in Italy, 
Madrid in Spain, London in United Kingdom, Paris in France, 
Berlin in Germany, New York and Los Angeles in the United States, 

and Delhi in India. Of those, eight are capital cities. Wuhan was 
added because it was the first city where COVID-19 was reported 
and lockdown was first imposed. Milan was included because it is in 
northern Italy, one of the most seriously hit areas after Wuhan. In 
the United States, New York was the most seriously affected city, 
whereas Los Angeles was reported to have observed a greater decline 
in air pollution levels (43). All the study cities have been significantly 
affected by COVID-19 and implemented stringent lockdown mea-
sures to contain the COVID-19 pandemic in early 2020. Such measures 
were first implemented in Wuhan from 23 January 2020 and then 
2 days later in all provinces in China (including Beijing). Tightened 
restrictive measures were implemented from 23 January 2020 in 
northern Italy, 13 March 2020 in the United States, 14 March 2020 
in Spain, 17 March 2020 in France, 22 March 2020 in Germany, 
23 March 2020 in the United Kingdom, and 25 March 2020 in India.

Site-specific hourly concentration of six criteria pollutants (PM2.5, 
PM10, O3, NO2, CO, and SO2) and other auxiliary pollutants (NO 
and NOx) from December 2015 to May 2020 were obtained from 
websites of local or national environmental agency or accredited 
third parties (table S4). In most cases, data from multiple stations 
for each site type are available. The NO2 concentrations reported 
from local governments, typically performed by the widely used 
molybdenum conversion/chemiluminescence method, may slightly 
overestimate true NO2 levels due to conversion of other labile N 
species to NO in the convertor stage. This problem is usually small 
for polluted urban sites but is larger for rural sites where overestimates 
of 17 to 30% have been reported (44). This is due to the conversion 
of NOx from primary sources to secondary nitrogen compounds 
during its transport toward more rural locations. Hence, concentra-
tions reported as NO2 contain a small proportion of other NOy spe-
cies, and the “true” NO2 levels would be lower than those officially 
reported, particularly at rural locations. We note that such uncer-
tainties are effectively “built in” to monitor NO2 with respect to reg-
ulatory standards. NOx and NO data were obtained in cities where 
those data were publicly available. Data were usually downloaded from 
official sources, which are validated by the authorities. For those 
cities where data were not available from recognized official sources 
(i.e., Los Angeles and New York) at the time of access, we obtained 
the air quality data from the “OpenAQ” platform (https://openaq.org/). 
Data from Los Angeles were downloaded from the U.S. Environmental 
Protection Agency (USEPA) later (after the data analyses were done 
here), which were then compared with those from OpenAQ. We 
found that the site-specific data in Los Angeles from OpenAQ are 
highly correlated (slope = ~1, intercept = ~0) with those from USEPA. 
Air quality monitoring stations were selected to cover roadside, urban 
background, and rural sites when possible, and the site types were based 
on official classifications and maps. The downloaded data were screened 
and cleaned when necessary, following established methods (24).

The hourly temperature, relative humidity, atmospheric pressure, 
wind speed, and wind direction data for selected sites were obtained 
from the nearest meteorological observation site from the NOAA 
(National Oceanic and Atmospheric Administration) Integrated 
Surface Database (ISD) using the “worldmet” R package (https://
CRAN.R-project.org/package=worldmet). In addition, hourly data 
for boundary layer height, total cloud cover, surface net solar radia-
tion, and total precipitation at the selected sites were downloaded 
from the ERA5 reanalysis dataset (ERA5 hourly data on single levels 
from 1979 to present). For each site, 72-hour back trajectories at an 
hourly resolution were calculated using the Hybrid Single-Particle 

https://openaq.org/
https://CRAN.R-project.org/package=worldmet
https://CRAN.R-project.org/package=worldmet
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Lagrangian Integrated Trajectory (HYSPLIT) model. The starting 
height was set as 100 m to ensure that the receptor was aloft but 
remained within the boundary layer throughout the study period. 
The back trajectories were then clustered into 12 clusters using the 
Euclidian distance by “openair” R package (https://CRAN.R-project.
org/package=openair). Those clusters were used to represent the 
common air masses that the sites were exposed to.

Observations at the air quality stations are used for official com-
pliance purpose. Although these stations were built to represent the 
specific environment of the city (i.e., roadside, urban background, 
and rural), there may be some variabilities in the concentrations of 
air pollutants at different stations of the same type. This could cause 
potential uncertainties in our analyses if to represent the whole city. 
In this study, wherever possible, we used data from multiple sta-
tions for each site type (table S4), which reduced this uncertainty. 
Where only one station is available for a site type, the data may be 
subject to more influence from local emission sources. Therefore, 
what we reported here should be treated in the context of the site 
availability (see table S4). Furthermore, we would like to emphasize 
that our analyses focus on the high-resolution temporal variations, 
and thus, the trend will be broadly representative.

RF model and weather normalization
Weather conditions change rapidly, causing variations in the con-
centration of air pollutants even when emissions do not change. Here, 
we applied a machine learning–based RF algorithm to decouple the 
effects of meteorological conditions. To do this, we first build an RF 
model for each pollutant and for each year (December to May). The 
RF model–based weather normalization technique was introduced 
in Grange et al. (12). Briefly, the RF model was built independently 
for each period (December 2015 to May 2016, December 2016 to 
May 2017, December 2017 to May 2018, December 2018 to May 2019, 
and December 2019 to May 2020), each pollutant, and each site type 
within a city. Seventy percent of the original data were randomly 
selected to build the model, which was then evaluated with the re-
mainder (30%) of the dataset. Model performance for each pollutant 
and each time period (i.e., 2016–2020) is illustrated in fig. S6. Similar 
to Grange et al. (12, 13) and Vu et al. (14), the perform ance of the 
models is usually very good, much better than that of regression 
models (9). The weather normalization was conducted using the 
“rmweather” R package, available at https://cran.r-project.org/web/
packages/rmweather/index.html.

In the Grange et al. (12) approach, a new dataset of input pre-
dictor features including time variables (day of the year, day of the 
week, and hour of the day, but not the Unix time) and meteorolog-
ical parameters (wind speed, wind direction, temperature, and relative 
humidity) is first resampled from the original observation dataset. 
Vu et al. (14) modified the default method to investigate the seasonal 
variations in trends for comparison with trends in primary emissions, 
by only resampling the weather variables (not the time variables). 
Specifically, weather variables at a specific hour of a particular day 
in the input datasets were generated by randomly selecting from the 
historical weather data (past 30 years) at the particular hour of dif-
ferent dates within a 4-week period (i.e., 2 weeks before and 2 weeks 
after that selected date). The two methods are fit for their own pur-
poses but were not used here because (i) Grange et al. (12) normal-
ized the diurnal and seasonal variations of the primary emissions, 
which is unrealistic in the real world, and (ii) although Vu et al. (14) 
provided diurnal and seasonal variations of the primary emissions, 

this is inappropriate in detecting short-term emission interventions 
because the normalized concentrations for a particular hour of a 
Julian day were not comparable with those from the different hour 
of a different Julian day, considering that they were resampled from 
different weather datasets, which would be affected by different sea-
sonal weather conditions.

To address those limitations and better investigate the impacts 
of short-term lockdown on air quality, we applied a mixed method. 
We only normalized the weather data but not time variables, similar 
to Vu et al. (14), and resampled from the whole study period, simi-
lar to Grange et al. (12). The improved method is more suitable for 
tracking emission changes. The input features for the model included 
time variables (i.e., Unix time, Julian day, day of the week, and hour 
of the day), meteorological data from surface observations (i.e., 
temperature, relative humidity, wind speed, wind direction, and 
atmospheric pressure), meteorological data from ERA5 reanalysis 
dataset (i.e., boundary layer height, total cloud cover, surface net 
solar radiation, and total precipitation), and air mass clusters based 
on the HYSPLIT back trajectories. The day of week and air mass 
clusters were categorical variables, while all others were numeric. 
Following Vu et al. (14), the parameters for the RF models are as follows: 
a forest of 300 trees, n_tree = 300; the number of variables that may 
split at each node, mtry = 3; and the minimum size of terminal 
nodes, min_node_size = 3. For every weather normalization, the 
explanatory variables were resampled (excluding the time variables) 
without replacement and randomly allocated to a dependent variable 
observation. The 1000 predictions were then aggregated using the 
arithmetic mean to obtain the deweathered concentration.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/3/eabd6696/DC1
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