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Dental pulp stem cells (DPSCs) are ideal seed cells for the regeneration of dental tissues. However, DPSC senescence restricts its
clinical applications. Metformin (Met), a common prescription drug for type 2 diabetes, is thought to influence the aging
process. This study is aimed at determining the effects of metformin on DPSC senescence. Young and aging DPSCs were
isolated from freshly extracted human teeth. Flow cytometry confirmed that DPSCs expressed characteristic surface antigen
markers of mesenchymal stem cells (MSCs). Cell Counting Kit-8 (CCK-8) assay showed that a concentration of 100μM
metformin produced the highest increase in the proliferation of DPSCs. Metformin inhibited senescence in DPSCs as evidenced
by senescence-associated β-galactosidase (SA-β-gal) staining and the expression levels of senescence-associated proteins.
Additionally, metformin significantly suppressed microRNA-34a-3p (miR-34a-3p) expression, elevated calcium-binding protein
39 (CAB39) expression, and activated the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)
signaling pathway. Dual-luciferase reporter assay confirmed that CAB39 is a direct target for miR-34a-3p. Furthermore,
transfection of miR-34a-3p mimics promoted the senescence of DPSCs, while metformin treatment or Lenti-CAB39 transfection
inhibited cellular senescence. In conclusion, these results indicated that metformin could alleviate the senescence of DPSCs by
downregulating miR-34a-3p and upregulating CAB39 through the AMPK/mTOR signaling pathway. This study elucidates on
the inhibitory effect of metformin on DPSC senescence and its potential as a therapeutic target for senescence treatment.

1. Introduction

Stem cells are used for restoring injured tissues because of
their self-renewal, multipotent differentiation, and paracrine
signaling properties. Stem cells derived from dental tissues,
such as dental pulp, tooth germ, apical papilla, and peri-
odontal ligament, are abundant in number and easily acces-
sible. They are considered attractive candidates for tissue
engineering and regenerative medicine [1]. Dental pulp stem
cells (DPSCs) were the first human dental mesenchymal

stem cells (MSCs) to be isolated from pulp tissue [2]. These
cells can undergo chondrogenic, osteogenic, adipogenic,
neurogenic, and odontogenic differentiation [3] and can,
therefore, be used for dental tissue regenerative therapy in
pulp revascularization, dentine formation, and periodontal
regeneration [4].

Senescence is considered an inescapable and irreversible
state, which is characterized by specific changes in cell mor-
phology, function, and gene expression [5] and causes the
increased occurrence of age-related diseases. With increasing
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age, the number, regenerative capacity, biological activity,
and resistance to oxidative stress of stem cells decrease
[6–8]. Studies have reported that senescence suppresses
the proliferative capacity and differentiation potential of
DPSCs [9]. For instance, senescence affects the ability of
DPSCs to influence the mineralization processes and
decreases the osteogenic potential of aged human DPSCs
[10]. This suggests that DPSC senescence is likely to exert
negative adverse effects on their clinical applications in
cell-based therapies. Therefore, an in-depth understanding
of the molecular mechanisms of DPSC senescence and
their potential as targets for drug design is an important
research direction for senescence inhibition.

Metformin (Met), a first-line prescription drug for type 2
diabetes mellitus, has been proven to influence the aging pro-
cess [11]. Preclinical studies revealed that metformin exhib-
ited prolongevity and health span-extending properties in
Caenorhabditis elegans, mice, and human cell lines [12–15].
Metformin also reduces the incidence of human age-related
diseases [16] and has, thus, been proposed as a drug candi-
date for slowing aging in humans [17]. Mechanistically,
metformin-mediated gero-suppressive effects on metabolism
mainly depend on the activation of AMP-activated protein
kinase (AMPK), which leads to the downstream inhibition
of the mammalian target of rapamycin (mTOR) [18].
AMPK/mTOR signaling pathway has been widely used and
well-documented in current studies to counteract senescence
and is considered a crucial intracellular mechanism of
metformin in attenuating the hallmarks of senescence [19].
Furthermore, the calcium-binding protein 39 (CAB39), a
scaffold protein of liver kinase B1 (LKB1), activates the phos-
phorylation of AMPK and is, therefore, an upstream kinase
of the AMPK/mTOR signaling pathway [20]. However, it
has not been established whether metformin mediates DPSC
senescence by regulating CAB39/AMPK/mTOR signaling.
Moreover, the potential underlying mechanisms have not
been elucidated.

MicroRNAs (miRNAs), a type of endogenous small-
molecule noncoding RNA, have been reported to play crucial
roles in mediating cellular senescence. The microRNA-34a
(miR-34a) has been regarded as a potential sensor of senes-
cence, since its expression is increased in several aged tissues
and cells, including DPSCs [21–24]. Additionally, metformin
has a regulatory effect on miR-34a, where it regulates multi-
ple biological processes by up- or downregulating the expres-
sion of miR-34a [25–28]. A previous study demonstrated
that miR-34a exhibited an antiangiogenic action in mouse
microvascular endothelial cells, which could be modulated
by metformin [25]. In another study, metformin was found
to attenuate high glucose-stimulated fibrosis and inflamma-
tion in rat mesangial cells by negatively regulating miR-34a
[26]. Numerous studies have revealed that miR-34a is a direct
target of metformin. However, deeper insights between met-
formin and miR-34a are still lacking in DPSC senescence.

This study is aimed at determining the effects of metfor-
min on miR-34a-3p and investigating the molecular mecha-
nisms underlying the function of miR-34a-3p, specifically
focusing on its target gene CAB39 and the AMPK/mTOR
signaling pathway, in regulating the senescence of DPSCs.

2. Materials and Methods

2.1. Pulp Samples. Human dental pulp tissues were harvested
from 12 healthy donors undergoing tooth extraction for ther-
apeutic or orthodontic reasons without pulp inflammation,
severe periodontitis, or systemic disease. The samples were
classified into two age groups (6 donors per group): the
young group (18–27 years) and the aging group (65–74
years). All patients provided a written informed consent
prior to participation, and the experimental protocol was
approved by the Medical Ethics Committee of Chinese
People’s Liberation Army (PLA) General Hospital (ethics
approval no. S2018-094-01).

2.2. Cell Culture. The primary culture of DPSCs was carried
out by an enzyme digestion method. Briefly, the dental pulp
tissues were obtained from the crown and superior two thirds
of the root pulp. They were then cut into small fragments and
digested for 1 h at 37°C in a solution of 3mg/ml type I colla-
genase (Worthington Biochemical) and 4mg/ml dispase
(Sigma). Primary DPSCs were maintained in complete α-
MEM medium supplemented with 20% fetal bovine serum
(Invitrogen) and 100U/ml penicillin/streptomycin (Invitro-
gen). The culture was incubated in a humidified 5% CO2
incubator at 37°C. The media was changed every 3 days,
and cell passage was performed when the cells reached 80–
90% confluence. The growth status of young and aging
DPSCs was monitored and recorded under an optical micro-
scope (×100 magnification; Olympus, Japan). DPSCs at the
fourth passage were used to carry out a series of experiments.

2.3. Flow Cytometry Analysis. Flow cytometry was performed
to detect human DPSCs surface markers. Young and aging
DPSCs were collected, washed with phosphate-buffered saline
(PBS), and fixed in 4% paraformaldehyde (PFA). After fixa-
tion for 30min, the cells were permeabilized and incubated
with antibodies for 1h at 4°C. The following antibodies spe-
cific for human surface antigens were used: CD44-FITC (Bio-
legend, 103005), CD90-FITC (Biolegend, 328107), CD105-PE
(eBioscience, 4300023), CD11b-FITC (eBioscience, 4271325),
CD14-FITC (Biolegend, 301803), CD34-PE (Biolegend,
119307), and CD45-FITC (Biolegend, 304005). The corre-
sponding isotype-matched (IgG) antibodies conjugated to PE
and FITC served as negative controls. Data were analyzed
using the FlowJo software (FlowJo, Ashland, OR, USA).

2.4. Cell Proliferation: Identification of Metformin Dose. To
determine the concentration of metformin to be used in
subsequent experiments, the proliferation capacity of young
and aging DPSCs treated with various concentrations of
metformin (10, 50, 100, 250, and 500μM) was determined
by Cell Counting Kit-8 (CCK-8) assay (Dojindo, Japan).
Samples without added metformin served as controls. Cells
were inoculated in 96-well culture plates at a density of 2 ×
103 cells/well for 24h and refreshed with a maintenance
medium containing metformin at different concentrations
for 1 to 10 days (n = 8). The medium was removed, and the
cells were washed with PBS. To each well, 110μl solution
(100μl α-MEM and 10μl CCK-8) was added, and the plate
was incubated for 1 h at 37°C. Absorbance was then
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measured at 450nm wavelength with an enzyme-labeling
instrument (Tecan Infinite 200 Pro, Switzerland).

2.5. Senescence-Associated β-Galactosidase (SA-β-gal) Staining.
SA-β-gal staining was conducted using a SA-β-gal staining kit
(Solarbio, Beijing, China) to detect the senescence of young
and aging DPSCs. Briefly, cells were fixed in 4% PFA for
15min at room temperature, washed three times with PBS,
and incubated with SA-β-gal staining solution at 37°C over-
night. The complete β-gal staining solution contained 40mM
sodium phosphate (pH6.0), 5mM potassium ferrocyani-
de, 5mM potassium ferricyanide, 150mM NaCl, 2mM MgCl2,
and1mg/ml X-Gal. The sections were washed with PBS,
mounted in glycerol, and visualized under an Olympus IX71
microscope (Olympus, Japan). SA-β-gal-positive cells appear-
ing as blue-stained cells were randomly imaged. The percentage
of aging DPSCs was determined as the ratio of positive DPSCs
to the total number of DPSCs obtained from five different fields
of view.

2.6. Transfection of miR-34a-3p Mimics. The miR-34a-3p
mimics and the corresponding negative control (NC) were
chemically synthesized by Integrated Biotech Solutions
(Shanghai, China). The miR-34a-3p mimics and miR-NC
sequences were 5′-CAAUCAGCAAGUAUACUGCCCU-3′
and 5′-UCACAACCUCCUAGAAAGAGUAGA-3′, respec-
tively. Lipofectamine 2000 transfection reagent (Invitrogen)
was used to perform transient transfection of the oligonucle-
otides according to the manufacturer’s instructions. Aging
DPSCs were pretransfected with miR-34a-3p mimics or
miR-NC to a final incubation concentration of 100 nM for
48 h, before stimulation with metformin for 48h. The trans-
fection efficiency was examined by reverse transcription-
quantitative polymerase chain reaction (RT-qPCR).

2.7. Dual-Luciferase Reporter Assay. The fragment of the
wild-type (WT) 3′UTR of CAB39 predicted to interact with
miR-34a-3p and mutant (MUT) CAB39-3′UTR (Gene-
Pharma, Shanghai, China) was amplified and subcloned into
the pmirGLO vector (Promega Corporation, Madison, WI,
USA). The constructed luciferase reporter plasmids were
named CAB39-3′UTR WT and CAB39-3′UTR MUT,
respectively. For dual-luciferase reporter assay, HEK-293T
cells were used because of their high transfection efficiency
[29]. Briefly, HEK-293T cells were seeded into 24-well plates
before transfection. When the cells reached 70 to 80% con-
fluency, cotransfection with either miR-34a-3p mimics or
miR-NC and either WT or MUT reporter plasmids was per-
formed using Lipofectamine 2000. After transfection for 48 h
at 37°C, the cells were collected, and luciferase activity was
analyzed using a Dual-Luciferase Reporter Assay System
(Promega Corporation, Madison, WI, USA).

2.8. Lentivirus Construction and Transfection. To overexpress
the CAB39 gene, lentiviral plasmids were purchased from
SyngenTech (Shanghai, China). For lentivirus constructs,
the coding sequence of CAB39 was inserted into the pHS-
AVC-LY027 lentiviral vector. The primer sequences used
were as follows: forward primer, 5′-TAAGATCTACAGCT

GCCTTG-3′, and reverse primer, 5′-TGACATTTCGA
CATATCTGA-3′. Lentiviral stocks were produced in HEK-
293FT cells (SyngenTech, Shanghai, China) according to
the manufacturer’s instructions. Briefly, the virus-
containing medium was collected 48 h after transfection
and filtered through a 0.45μm filter. To establish stable cell
lines, lentiviral transfection was performed by replacing the
medium with a virus-containing medium in the presence of
8μg/ml polybrene. At 48h posttransfection, the transfection
efficiency was measured by RT-qPCR.

2.9. RT-qPCR. The expression levels of miR-34a-3p and
CAB39 were determined by RT-qPCR. Total RNA was
isolated from DPSCs using the TRIzol reagent (Invitrogen,
Beijing, China) and reverse transcribed to generate cDNA
using a PrimeScript RT Reagent Kit (TIANGEN Biotech, Bei-
jing, China) according to the manufacturer’s instructions.
The RT-qPCR reactions were performed using SYBR-Green
PCR Master Mix (TransGen Biotech, Beijing, China) with
the ABI7500 System (Applied Biosystems; Thermo Fisher
Scientific, Inc., Waltham, MA, USA). The expression of
U6 snRNA and β-Actin served as internal controls to nor-
malize the miRNA and mRNA expression levels, respec-
tively. Relative expression levels of miR-34a-3p and
CAB39 were calculated using the 2-ΔΔCT cycle threshold
method. The primer sequences used were as follows: miR-
34a-3p forward sequence, 5′-CAATCAGCAAGTATAC
TGCCT-3′, U6 forward sequence, 5′-CGCAAGGATGA
CACGCAAATTC-3′, and the universal reverse primer
sequence of miR-34a-3p and U6, 5′-GTGCAGGGTCC
GAGGT-3′; CAB39 forward sequence, 5′-AAATCTCCA
GCAGACATTGTG-3′, and reverse sequence, 5′-CAAGTC
AATGAGCTGTAAATCA-3′; and β-Actin forward
sequence, 5′-CATGTACGTTGCTATCCAGGC-3′, and
reverse sequence, 5′-CTCCTTAATGTCACGCACGAT-3′.

2.10. Western Blotting. The protein levels of CAB39, phos-
phorylated (p-) AMPK, AMPK, p-mTOR, mTOR, p53, p21,
and p16 were determined by western blotting. Briefly, total
proteins of DPSCs were extracted using RIPA buffer (Beyo-
time, Shanghai, China). Protein concentrations were mea-
sured using the bicinchoninic acid (BCA) protein assay kit
(Beyotime, Shanghai, China). A total of 30μg equal protein
samples were resolved in 10% sodium dodecyl-sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and trans-
ferred onto polyvinylidene fluoride (PVDF) membranes
(Millipore, Darmstadt, Germany). 5% nonfat milk was used
to block the membrane in TBST for 2 h at room tempera-
ture. The membranes were incubated at 4°C overnight with
the following primary antibodies: anti-CAB39 (Abcam,
ab51132), anti-p-AMPK (CST, 2535S), anti-AMPK (Pro-
teintech, 66536-1-Ig), anti-p-mTOR (Abcam, ab109268),
anti-mTOR (Abcam, ab32028), anti-p53 (Proteintech,
10442-1-AP), anti-p21 (Proteintech, 10355-1-AP), anti-p16
(Proteintech, 10883-1-AP), and anti-β-Actin (Proteintech,
20536-1-AP). Subsequently, the membranes were washed
three times with TBST and incubated with secondary anti-
bodies (1 : 1000, Beyotime, Shanghai, China) for 1 h at
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37°C. β-Actin was used as an internal control. All protein
blots were chemiluminated using an enhanced chemilumi-
nescence (ECL) detection kit (High-sig ECL Western Blot-
ting Substrate; Tanon, Shanghai, China).

2.11. Statistical Analysis. All experiments were repeated at
least three independent times. Data were analyzed using
GraphPad Prism 5.0 statistical program (GraphPad Software,
La Jolla, CA, USA) and presented as the mean ± standard
deviation (SD). Comparisons between two groups were
assessed by Student’s t-test, whereas multigroup compari-
sons were analyzed by one-way ANOVA followed by Tukey’s
multiple comparison test. A p value of < 0.05 was considered
statistically significant.

3. Results

3.1. Isolation, Culture, and Identification of DPSCs. The
human pulp tissues were isolated from freshly extracted teeth
of young and aging donors (Figure 1(a)). Primary DPSCs
were cultured using an enzymatic digestion method. The
morphology of wall-adherent cells was long spindle-shaped
or polygonal under the inverted optical microscope
(Figure 1(b)). Flow cytometry demonstrated that both young
and aging DPSCs positively expressed human MSC surface
markers CD44 (99.9%, 99.9%), CD90 (99.9%, 100%), and
CD105 (99.4%, 99.5%), while negatively expressing hemato-
poietic cell markers CD11b (0%, 0.61%), CD14 (1.33%,
0.82%), CD34 (0.12%, 0.035%), and CD45 (0.49%, 0.87%)
(Figure 1(c)). These results indicated that DPSCs conformed
to the characteristics of MSCs.

3.2. The Influence of Metformin Treatment on DPSC
Proliferation. The influence of metformin on cell prolifera-
tion was evaluated, and a suitable therapeutic concentration
was established. The proliferation capacity assessed by
CCK-8 showed a nonlinear metformin dose-dependent
curve. Compared to the control group, 100μM metformin
significantly promoted the proliferation of young DPSCs on
the first three days and of aging DPSCs on the third day
(p < 0:05, Figures 2(a) and 2(b)). However, 250μM metfor-
min significantly inhibited the proliferation of aging DPSCs
on the ninth and tenth days (p < 0:01, Figure 2(b)). Further-
more, metformin at a high concentration (500μM) decreased
the proliferation activity of young DPSCs on the ninth and
tenth days and of aging DPSCs after the fifth day (p < 0:05,
Figures 2(a) and 2(b)). Based on these findings, 100μM
metformin was selected as the concentration to be used in
subsequent experiments.

3.3. Metformin Inhibits Senescence in DPSCs. The SA-β-gal
staining was performed to identify the effect of metformin
on the senescence of young and aging DPSCs. The results
showed that the percentage of SA-β-gal-positive cells in
aging DPSCs was markedly higher than that in young DPSCs
(p < 0:01, Figures 3(a) and 3(b)). However, when treated with
metformin, the percentage of SA-β-gal-positive cells signifi-
cantly decreased in both young and aging groups (p < 0:01,
Figures 3(a) and 3(b)), indicating that metformin could
inhibit senescence in DPSCs.

The protein levels of p53, p21, and p16 were assessed
by western blotting. The results demonstrated that metfor-
min stimulation suppressed the levels of p53, p21, and p16
in young and aging DPSCs (p < 0:01, Figures 3(c) and
3(d)), suggesting that metformin inhibited the senescence
of DPSCs by inhibiting the expression of senescence-
associated proteins.

3.4. Metformin Inhibits miR-34a-3p Expression and Activates
the AMPK/mTOR Signaling Pathway in DPSCs. To investi-
gate the effect of metformin on the expression of miR-
34a-3p and downstream signaling pathway molecules, the
expression of miR-34a-3p and CAB39 was determined by
RT-qPCR, while the expression of p-AMPK, AMPK, p-
mTOR, and mTOR was determined by western blotting.
RT-qPCR results showed that in aging DPSCs, miR-34a-3p
was significantly upregulated while CAB39 was significantly
downregulated when compared to young DPSCs (p < 0:01,
Figures 4(a) and 4(b)), suggesting that both miR-34a-3p
and CAB39 might be associated with DPSC senescence.
The expression of miR-34a-3p was significantly decreased
following metformin treatment (p < 0:01, Figures 4(a) and
4(b)), whereas the expression of CAB39 was significantly
increased in both young and aging DPSCs (p < 0:01,
Figures 4(a) and 4(b)). These results clearly illustrated that
metformin inhibited miR-34a-3p expression and induced
CAB39 expression.

Western blotting analysis showed that the expression
of p-AMPK was significantly downregulated, while the
expression of p-mTOR was significantly upregulated in
aging DPSCs when compared to young DPSCs (p < 0:01,
Figures 4(c) and 4(d)), indicating that the AMPK/mTOR
signaling was associated to the senescence of DPSCs. Sim-
ilarly, in metformin-treated cells, the p-AMPK expression
level was significantly elevated, whereas the p-mTOR
expression level was significantly suppressed (p < 0:01,
Figures 4(c) and 4(d)), indicating that the administration
of metformin led to the activation of the AMPK/mTOR
signaling pathway.

3.5. miR-34a-3p Downregulates CAB39 Expression. To ver-
ify the potential relationship between miR-34a-3p and
CAB39, aging DPSCs were treated with metformin or
miR-34a-3p mimics, and the expression levels of miR-34a-
3p and CAB39 were determined. It was found that the
expression level of miR-34a-3p was significantly increased
following transfection with miR-34a-3p mimics and signifi-
cantly decreased following metformin treatment (p < 0:01,
Figure 5(a)), confirming the successful transfection of miR-
34a-3p mimics. Additionally, the transfection of miR-34a-
3p mimics led to a significant decrease in the CAB39 expres-
sion level, while the metformin-induced upregulation of
CAB39 was attenuated at both the mRNA and protein levels
(p < 0:01, Figures 5(b)–5(d)), indicating that miR-34a-3p
downregulated the expression of CAB39.

To further examine the role of miR-34a-3p in the regula-
tion of CAB39, a dual-luciferase reporter assay was performed.
The potential miR-34a-3p binding site of CAB39-3′UTR was
predicted by the TargetScan database (http://www.targetscan
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Figure 1: Isolation, culture, and identification of DPSCs. (a) The human pulp tissues were obtained from freshly extracted teeth. (b) Young
and aging DPSCs were observed at P0 and P1 using an optical microscope (magnification, ×100). (c) Surface marker profiling of young and
aging DPSCs was evaluated by flow cytometry.
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Figure 2: The influence of metformin treatment on DPSC proliferation. (a) The influence of metformin on young and (b) aging DPSC
proliferation. Young and aging DPSCs were treated with 10, 50, 100, 250, and 500 μM metformin for 1 to 10 days; cells with no drug
added (0 μM) served as controls. Cell proliferation was determined by CCK-8 assay. The absorbance value was read at a wavelength of
450 nm. a, p < 0:01, 100μM versus 0μM; b, p < 0:05, 100μM versus 0 μM; c, p < 0:01, 500 μM versus 0μM; d, p < 0:05, 500 μM versus
0μM; e, p < 0:01, 250 μM versus 0 μM.
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Figure 3: Metformin inhibits senescence in DPSCs. Young and aging DPSCs were treated with 100 μM metformin for 48 h. (a) Cellular
senescence was determined using SA-β-gal staining. Representative images are shown (scale bar: 20 μm). (b) Quantitative analysis of SA-
β-gal-positive cells. (c) Representative blots of p53, p21, and p16 protein expression levels by western blotting. (d) Quantitative analysis of
p53, p21, and p16 proteins. Data are expressed as the mean ± standard deviation (n = 3). ∗∗p < 0:01, with comparisons indicated by lines.
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.org/), a bioinformatics prediction tool (Figure 5(e)). The rela-
tive luciferase activity was significantly downregulated when
CAB39 WT was cotransfected with miR-34a-3p mimics when
compared to miR-NC cotransfection (p < 0:01), while the
inhibitory role was abolished when CAB39-3′UTR was
mutated (p > 0:05, Figure 5(f)), indicating that miR-34a-3p
was specifically bound to the predicted CAB39-3′UTR.

3.6. Metformin-Induced miR-34a-3p Downregulation
Suppresses Senescence in DPSCs through the AMPK/mTOR
Signaling Pathway. To explore the role of miR-34a-3p in
metformin-mediated inhibition of senescence, aging DPSCs
were treated with metformin or miR-34a-3p mimics. The
SA-β-gal staining results revealed that transfection of
miR-34a-3p mimics significantly upregulated the ratio of
SA-β-gal-positive cells (p < 0:01, Figures 6(a) and 6(b)).
Additionally, the metformin inhibitory effect on the senes-
cence of DPSCs was reversed by the overexpression of
miR-34a-3p (p < 0:01, Figures 6(a) and 6(b)). Western blot-
ting analysis showed that the transfection of miR-34a-3p
mimics yielded a significant increase in the expression
levels of senescence-associated proteins p53, p21, and p16

relative to those in the miR-NC group (p < 0:01, Figures 6(c)
and 6(d)). Moreover, the metformin inhibitory effects on
senescence-associated protein expression were attenuated
upon miR-34a-3p overexpression in aging DPSCs (p < 0:05,
Figures 6(c) and 6(d)). In addition, the expression of p-
AMPK was reduced after transfecting miR-34a-3p mimics,
while the expression of p-mTOR was elevated, indicating the
activation of the AMPK/mTOR signaling pathway (p < 0:05,
Figures 6(e) and 6(f)). It is also important to note that miR-
34a-3p overexpression significantly abrogated metformin-
mediated increase in p-AMPK/AMPK ratio and the decrease
in p-mTOR/mTOR ratio (p < 0:01, Figures 6(e) and 6(f)).
Collectively, this study demonstrated that miR-34a-3p aggra-
vated DPSC senescence by activating the AMPK/mTOR
signaling pathway, while metformin treatment suppressed
senescence by inhibiting miR-34a-3p.

3.7. CAB39 Alleviates miR-34a-3p-Induced Senescence in
DPSCs through the AMPK/mTOR Signaling Pathway. To
explore the effect of CAB39 on miR-34a-3p-induced DPSC
senescence, CAB39 lacking the miR-34a-3p target site was
overexpressed in aging DPSCs, and the cells were treated
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with miR-34a-3p mimics. After transfection with Lenti-
CAB39, the miR-34a-3p-induced increase in the positive rate
of SA-β-gal staining was significantly decreased (p < 0:01),

whereas no statistical difference was observed in the vehicle-
treated control group (p > 0:05, Figures 7(a) and 7(b)).
Furthermore, western blotting results established that Lenti-
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CAB39 treatment significantly reversed the alteration of
several critical senescence-associated proteins induced by
miR-34a-3p mimics, including an increase in the expression

levels of p53, p21, p16, and p-mTOR and a reduction in the
expression of p-AMPK (p < 0:01, Figures 7(c)–7(f)). Overall,
these results suggested that CAB39 could rescue miR-34a-
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3p-induced senescence in DPSCs by modulating the
AMPK/mTOR signaling pathway.

4. Discussion

Cellular senescence is an inevitable biological phenomenon
that is associated with age or with prolonged culture
in vitro. It is characterized by a general degeneration in
physiological functions. Stem cell senescence is considered
a major cause of the declines in tissue and organ functions
and is likely to affect the efficacy of stem cell-based thera-
pies [30]. In this study, metformin treatment was, for the
first time, shown to upregulate CAB39 and activate the
AMPK/mTOR signaling pathway by downregulating miR-
34a-3p, which alleviated DPSC senescence. This study
elucidates on the inhibitory effect of metformin on DPSC
senescence and provides a basis for the potential clinical
application of metformin in delaying senescence.

In this study, human DPSCs were successfully isolated
from the dental pulp tissues of freshly extracted teeth. The
cultured DPSCs displayed a fibroblast-like spindle-shaped
morphology. Both young and aging DPSCs positively
expressed typical mesenchymal surface markers (CD29,
CD90, and CD105), while barely expressing hematopoietic
markers (CD11b, CD34, CD45, and CD14). The expression
of cell surface antigens was consistent with the criteria for
MSCs [31]. These results suggested that the isolated young
and aging DPSCs were identified as MSCs.

Previous studies have reported that metformin mediated
cell proliferation in a dose-dependent manner; therefore,
determination of a suitable drug dosage for use in in vitro
studies is extremely important to obtain the desired effect
[32, 33]. It has been reported that 100 and 200μMmetformin
exerted the greatest proproliferative effect on osteoblast-like
cells [34]. Similarly, another study found that 100μM
metformin enhanced the proliferative activity of DPSCs
[35]. In the present study, 100μM metformin was found to
have the best enhancing effect on the proliferation of DPSCs.
However, the results demonstrated that a high concentration
of 500μM metformin exerted antiproliferative effects
towards DPSCs, thus limiting its application.

The inhibitory role of metformin in various senescence
processes has been elucidated in multiple model organisms
and human cell lines. Metformin has been found to have a
gero-therapeutic effect on stem cells, including targeting
stem cell exhaustion, delaying cellular attrition, maintaining
cellular function, and preventing premature senescence. As
previously reported, metformin inhibited the senescence of
intestinal stem cells (ISCs) in Drosophila and enhanced the
lifespan of human MSCs [15, 36]. Recently, metformin was
found to partially reverse the dysregulation of rejuvenation
and differentiation ability of aged oligodendrocyte progenitor
cells (OPCs), further restoring the remyelination capacity
[37]. This study focused on the effects of metformin on
young and aging DPSCs, and the results confirmed the
gero-suppressive effect as evidenced by a significant decrease
in SA-β-gal activity and the expression levels of senescence-
associated proteins.

AMPK functions as a key nutrient and energy sensor,
which is involved in diverse pathophysiological processes
[38]. Studies have reported that metformin indirectly induces
AMPK to prevent cellular senescence caused by a decrease in
AMPK activity in aging MSCs [39]. Besides, AMPK is con-
sidered to be a key factor involved in blocking mTOR signal-
ing, an essential regulator of senescence. Activation of mTOR
leads to a reduction in autophagy, thereby promoting cellular
senescence [40]. Accumulating evidence indicates that the
AMPK/mTOR signaling pathway is involved in the control
of senescence [41], and metformin exhibits an inhibitory role
in the phosphorylation of mTOR by activating AMPK [19].
Furthermore, CAB39, a component of the trimeric LKB1-
STRAD-CAB39 complex, contributes to the stabilization of
LKB1 to STRAD binding and is recognized as an upstream
activator of AMPK due to its role in activating AMPK signal-
ing by phosphorylating AMPKα1 on residue Thr-172 [42]. It
has been reported that CAB39 is associated with MSC senes-
cence, which occurs in an AMPK-dependent manner [43]. In
the current study, our results showed a decrease in the
expression of CAB39 and p-AMPK and an increase in the
expression of p-mTOR in aging DPSCs when compared to
young DPSCs. Remarkably, following metformin treatment,
the expression levels of CAB39 and p-AMPK were upregu-
lated in both young and aging DPSCs, while p-mTOR was
downregulated. Taken together, these results imply that the
signaling activity of CAB39/AMPK/mTOR is associated with
a metformin-mediated gero-suppressive effect.

In recent years, miR-34a, a member of the conserved
miR-34 family, has been intensively studied. Previous studies
document that miR-34a is involved in multiple biological
processes, including cell cycle, development, differentiation,
apoptosis, and senescence [44–46]. Inhibition of miR-34a
reduces senescence in human adipose-derived mesenchymal
stem cells (AMSCs) [46]. In a previous study, microarray
analysis revealed that miR-34a is significantly elevated in
aging DPSCs, indicating that it could be a vital age-related
miRNA of DPSCs [24]. Our results are consistent with pre-
vious findings that miR-34a-3p was highly expressed in
aging DPSCs. Additionally, metformin has been shown to
play an important role in the regulation of the miR-34a
expression [25–28]. In this study, metformin exhibited
inhibitory effects on the expression of miR-34a-3p. Further
studies showed that overexpression of miR-34a-3p pro-
moted cellular senescence in aging DPSCs, while metformin
significantly attenuated miR-34a-3p-mediated senescence
through the activation of the AMPK/mTOR signaling path-
way. Moreover, miR-34a-3p downstream targets were iden-
tified, and CAB39 was found to be a direct target gene of
miR-34a-3p. Treatment with miR-34a-3p mimics signifi-
cantly reduced the expression of CAB39 and attenuated
the metformin-induced upregulation of CAB39. Notably,
enhancement of senescence in DPSCs by miR-34a-3p
mimics was partially reversed by Lenti-CAB39 transfection.
In addition, involvement of the AMPK/mTOR signaling
pathway was also confirmed in this process. Collectively,
we established that metformin-induced miR-34a-3p down-
regulation alleviates DPSC senescence by targeting CAB39
through the AMPK/mTOR signaling pathway. However,
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AMPK/mTOR possesses various bypass signaling cascades
that modulate its functions; besides CAB39, we cannot rule
out that miR-34a-3p regulates the activation of the
AMPK/mTOR signaling pathway through other molecules
or pathways.

5. Conclusions

In summary, we found that metformin inhibits DPSC
senescence by downregulating miR-34a-3p, which leads to
the upregulation of CAB39 and the activation of the
AMPK/mTOR signaling pathway. These results indicate
that metformin can be used to alleviate cellular senescence
in DPSCs, and the miR-34a-3p-CAB39/AMPK/mTOR axis
may be a novel therapeutic target of metformin which alle-
viates senescence.
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