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Comparison of deep learning 
with traditional models to predict 
preventable acute care use 
and spending among heart failure 
patients
Maor Lewis1*, Guy Elad1, Moran Beladev1, Gal Maor1, Kira Radinsky1, Dor Hermann1, 
Yoav Litani1, Tal Geller1, Jesse M. Pines1,2, Nathan l. Shapiro1,3,5 & Jose F. Figueroa4,5,6*

Recent health reforms have created incentives for cardiologists and accountable care organizations 
to participate in value-based care models for heart failure (HF). Accurate risk stratification of HF 
patients is critical to efficiently deploy interventions aimed at reducing preventable utilization. The 
goal of this paper was to compare deep learning approaches with traditional logistic regression (LR) 
to predict preventable utilization among HF patients. We conducted a prognostic study using data on 
93,260 HF patients continuously enrolled for 2-years in a large U.S. commercial insurer to develop and 
validate prediction models for three outcomes of interest: preventable hospitalizations, preventable 
emergency department (ED) visits, and preventable costs. Patients were split into training, validation, 
and testing samples. Outcomes were modeled using traditional and enhanced LR and compared 
to gradient boosting model and deep learning models using sequential and non-sequential inputs. 
Evaluation metrics included precision (positive predictive value) at k, cost capture, and Area Under 
the Receiver operating characteristic (AUROC). Deep learning models consistently outperformed LR 
for all three outcomes with respect to the chosen evaluation metrics. Precision at 1% for preventable 
hospitalizations was 43% for deep learning compared to 30% for enhanced LR. Precision at 1% for 
preventable ED visits was 39% for deep learning compared to 33% for enhanced LR. For preventable 
cost, cost capture at 1% was 30% for sequential deep learning, compared to 18% for enhanced LR. 
The highest AUROCs for deep learning were 0.778, 0.681 and 0.727, respectively. These results offer a 
promising approach to identify patients for targeted interventions.

Annual U.S. costs for treating heart failure (HF) are estimated at nearly $30 billion; by 2030, about 3% of the 
population is expected to have HF, potentially increasing costs to $53 billion1. Considerable HF costs are poten-
tially preventable through high-quality ambulatory care, particularly costs related to emergency department 
(ED) visits and hospitalizations for acute HF exacerbations2,3. Over the past decade, the increasing shift away 
from fee-for-service (FFS) to value-based models has led to a new financial environment where cardiologists 
and accountable care organizations (ACO) assume greater accountability for their patients’ quality of care and 
preventable costs4.

Success in value-based models requires tools to facilitate identification of patients at high risk for preventable 
costs and utilization2,4. Such tools have traditionally employed statistical methods such as logistic or linear regres-
sion, which are limited as they tend to be unidimensional and focus on linking known predictors with outcomes. 
These models do not leverage the multifactorial effects of a large combinations of variables and do not account 
for dynamic change of variable over time5. By contrast, machine learning modeling is more suited to handle 
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nonlinear risk prediction and complex interactions among predictors. These abilities have led to a growing inter-
est in machine learning models in HF where combinations of clinical, demographic, and socioeconomic factors 
contribute to outcomes5. Deep learning, a subset of machine learning based on artificial neural networks, may be 
particularly useful in HF outcomes with demonstrated efficacy in areas where pattern recognition is necessary, 
as well as patient trajectory modeling, disease inference, and clinical decision support6,7.

Modeling of utilization in HF has traditionally focused on 30-day hospital readmissions, HF hospitalizations, 
high cost, and mortality5,8–10. A different approach is to focus solely on preventable outcomes. This approach may 
be more useful when the goal is to proactively identify patients with remediable utilization. To date, studies on 
preventable spending have assessed the trends, demographic disparities and geographic variation2,3,11,12. Yet, to 
our knowledge, only one study has attempted to predict preventable hospitalizations but did not focus specifically 
on HF and did not use machine learning13.

The goal of this study was to compare the performance of several deep learning approaches with traditional 
logistic regression in the prediction of preventable hospitalizations, ED visits, and costs using commercial claims 
data. We also describe the most prominent clinical factors that drive predictions.

Methods
We used 12 years of U.S. commercial claims data to compare the predictive performance of traditional logistic 
regression modeling to deep learning models for the prediction of preventable hospitalizations, ED visits, and 
costs among HF patients. We used Python version 3.7 (Python Software Foundation) to perform analyses. Our 
study included completely de-identified data and therefore is not considered as a human subject research; a for-
mal Institutional Review Board (IRB) review was not necessary. The study followed the Transparent Reporting 
of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement14.

Data source.  The study included 12 years of commercial claims data from a single large U.S. insurer between 
January 2006 and December 2017. The data encompassed all-payer insurance plans: individual, fully insured 
group, self-insured group, and Medicare Advantage plans. Diagnoses, procedures, and medications codes were 
grouped into a manageable number of clinically meaningful categories: ICD-10 (International Classification of 
Diseases 10th revision) diagnosis codes were grouped into CCS (Clinical Classifications Software) diagnosis 
categories15; CPT (Current Procedural Terminology) and ICD-10 procedure codes were grouped into CCS pro-
cedure categories16,17; National Drug Code (NDC) drug codes were grouped into RXIngredient and Anatomical 
Therapeutic Chemical (ATC) categories18. Annual costs were calculated as insurer payments for each patient in 
2016 and 2017. To limit the impact of extreme outliers, we winsorized the top 1% to the 99th percentile.

Study design and study population.  Data were divided into two time periods: an observation period 
(prior to 1/1/2017) and a prediction period (starting at 1/1/2017). We identified within observation period a 
cohort of HF patients aged 18 years or older using the CMS’ Chronic Conditions Warehouse (CCW) algorithm19. 
We included HF patients continuously enrolled in an insurance plan between January 2016 to December 2017 
with one or more medical and pharmacy claims (to ensure both were covered by their plan). In addition, we 
excluded patients with evidence of a life-limiting malignancy (LLM)20 within the observation window to avoid 
overestimating preventable costs. The process of patient selection is presented at Fig. 1.

Outcomes.  We focused on three binary outcomes. First, any preventable hospitalization within 6 months 
from 1/1/2017. Second, any preventable ED visit within 6 months from 1/1/2017. We chose 6 months as the pre-
diction period because we reasoned that shorter-term utilization may be more clinically actionable. Third, any 
preventable costs, defined as costs of preventable hospitalizations and preventable ED visits within 1 year from 
1/1/2017, which is a commonly used cost horizon.

To identify potentially preventable ED visits, we used a combination of two validated algorithms. The first was 
an updated version of an algorithm created by Billings et al.22,23 and validated by Ballard et al.24. It uses principal 
diagnosis codes to separate non-admitted ED visits into four categories: non-emergent; emergent but primary 
care treatable; emergent, ED care needed, but preventable; and emergent, ED care needed, and not preventable. 
We then used a second procedure-based algorithm, created by Moore et al.25, on the remaining unclassified visits 
to capture additional preventable visits where there was an absence of "ED-indicating procedures”.

To identify potentially preventable hospitalizations, we used the Agency for Healthcare Research and Quality 
(AHRQ) Prevention Quality Indicators (PQI)26. PQIs define potentially preventable hospitalizations, also known 
as ambulatory care sensitive conditions, as those related to conditions such as HF, diabetes, hypertension, and 
asthma, for which good outpatient care may prevent the need for hospitalization if provided in a timely manner. 
The algorithm has been validated and used in prior work27.

Predictors.  Patient features (i.e. predictors) were categorized as either knowledge-driven (i.e. traditional 
covariates) or data-driven (i.e. machine learning based covariates). Knowledge-driven features were constructed 
from patients’ medical histories using a one-year observation window (i.e. January to December 2016). Data-
driven features were constructed using either a 3- or 11-year observation window, as described below. A detailed 
description of the feature development process is presented in Online Table 1 and Online Fig. 1.

We manually compiled a set of 939 knowledge-driven features (based on domain experts’ specifications) 
including demographics, episode counts and trends, hospital length of stay, readmission rates, costs, comorbidity 
indicators, major procedure indicators and chronic medications. Specific HF-related features included clinical 
subtypes, episodes, procedures, and HF medication adherence indicators.
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Data-driven features are machine learning based representations of each patient’s medical codes which serve 
as inputs for machine learning predictive models. We created these features using the Word2vec algorithm28, a 
natural language processing method which creates for each medical code in a patient’s history a feature vector 
(i.e. an array of numbers representing each code). To form vectors representing each patient rather than a single 
code, patients’ sets of vectors were summed and represented in two different approaches: single patient-level 
vectors (i.e. non-sequential vector inputs), containing the sum of a patient’s 11-year medical history; temporal 
patient-level vectors (i.e. sequential vector inputs), containing 36 consecutive monthly vectors, each summing 
the medical codes for one month.

Prediction models construction.  We initially randomized our final cohort into training, validation and 
testing datasets using a 7:2:1 ratio (Fig. 1). Models were developed using the training set. The validation set was 
used to evaluate model fit on the training set while tuning model hyperparameters (i.e. model configuration 
parameters) and choosing the best performing models. Results are reported from the testing set.

We created five alternative prediction models for comparison (Table 1): two traditional LR models with a 
limited set of features, an enhanced LR model with a complete set of knowledge-driven features, and two machine 
learning models with different approaches. Traditional LR model 1 included the traditional features of age, gender 
and disease risk scores (CCS score29 and Chronic Condition Indicator (CCI) score30). In traditional model 2 we 
added cost features (inpatient, outpatient specialists, pharmacy, and primary care costs). These two models have 
been commonly used in risk scores in U.S. for diagnosis-based and pharmacy-based cost-prediction tools31,32. 
The enhanced LR model used the full set of 939 knowledge-driven features.

Machine learning models were regarded as sequential or non-sequential, according to the models’ input 
features. Machine learning models using non-sequential inputs (i.e. single patient-level vectors) included feed-
forward neural network (FNN) (Online Fig. 2) and gradient boosting model (GBM). Deep learning models using 
sequential inputs (i.e. temporal patient-level vectors) included Convolutional Neural Networks (CNN)33 and 
Long-Short Term Memory (LSTM)34 with an attention mechanism35 (Online Fig. 3). For each of the approaches, 
we chose the best performing models based upon the evaluation metrics. Additional information regarding the 
model development process is presented at Online Table 2.

Figure 1.   Patient Selection Process and the Creation of Training, Validation, and Testing Datasets. Patients 
were first defined as HF patients using the CMS’ CCW algorithm. Next, patients with missing data or existing 
LLM were excluded. Finally, the cohort was randomly split using a 7:2:1 ratio into training, validation, and 
testing datasets. The figure was created using Adobe Illustrator Creative Cloud version 24.2.121. CCW, Chronic 
Condition Warehouse; HF, Heart Failure; LLM, Life-Limiting Malignancies.
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Evaluation methods and statistical analysis.  Initially, we compared patient characteristics across the 
training, validation and testing samples using chi-square tests for categorical variables, Analysis of Variance 
(ANOVA) tests for continuous variables or corresponding nonparametric tests, as appropriate. Differences were 
considered statistically significant at p < 0.05. The 95% CIs were computed with 100 bootstrap replicates36.

Preventable hospitalizations and preventable ED visits were evaluated using the precision at k metric. Preci-
sion, which is also known as positive predictive value (PPV), is the proportion of patients predicted to have a 
preventable hospitalization or ED visits that actually have them.

Precision at k considers only the topmost patients (top k%) ranked by the model, and therefore presents the 
model’s ranking accuracy at a specific threshold (we evaluated the thresholds between 1 and 10%). As an example, 
precision of 0.5 at k = 1% means 50% occurrence of an event among the patients ranked by the model at the top 
1%. Preventable costs were evaluated using the cost capture metric37, defined as the ratio between the predicted 
preventable costs to actual preventable costs. This measure has been used to evaluate cost-prediction models in 
actuarial reports and health risk-assessment literature32. We reported the cost capture at k (i.e. the cost capture 
among the patients ranked by the model at the top k%) for the same thresholds. We also reported the Area Under 
the Receiver operating characteristic (AUROC) for all outcomes. Finally, we reported the features with the highest 
contribution to the model’s performance. Because no standardized methods exist to identify individual important 
predictors from the deep learning models, we reported the top 15 important predictors from the GBM model.

Results
Patient characteristics.  A total of 93,260 HF patients were identified and met inclusion criteria (Fig. 1), 
of which 65,282 were included in the training set, 18,652 in the validation set and 9326 in the testing set. Table 2 
summarizes the baseline patient characteristics across cohorts. The overall cohort included 49.1% males, with an 
average age of 72 years. 67.8% of patients were enrolled in a Medicare Advantage program while the remainder 
in mostly fully insured and self-insured group plans. The average number of CCW comorbidities was 5.6 (the 
full CCW comorbidity list is presented at Online Table 3). The most prevalent comorbidities were hypertension 
(89.6%), hyperlipidemia (76.7%) and diabetes (42.4%). In the testing set, 9.1% of patients had either preventable 
hospitalizations or ED visits within the prediction period (1/1/2017–1/7/2017); 4.1% of patients had only pre-
ventable hospitalizations; 4.5% of patients had only preventable ED visits; 0.5% of patients had both preventable 
hospitalizations and ED visits. No significant differences were demonstrated between the training, validation, 
and testing sets.

Model predictive performance.  Of the five candidate modeling approaches evaluated, the sequential 
deep learning models consistently provided the best predictive performance across all three outcomes and was 
closely followed by the non-sequential machine learning models (Table 3; Fig. 1). Highest AUROCs obtained for 
preventable hospitalizations, preventable ED visits and preventable costs were 0.778 (95% confidence interval 
[CI] 0.784–0.79), 0.681 (95% CI 0.68–0.685) and 0.727 (95% CI 0.725–0.728), respectively. These results repre-
sent an improvement in AUROC over traditional model 1 (age, gender, CCS and CCI scores) of 15.1, 11.4 and 
13.9%, respectively.

Figure 2 depicts the superiority of deep learning models over LR when evaluating precision and cost capture 
for all thresholds between 1 and 10%. At k = 1% for example the sequential deep learning model demonstrated 
superiority over all other methods and reached a precision at 1% (PPV among patients ranked at the top 1%) 
of 39% and 43% for preventable hospitalizations and preventable ED visits, respectively (compared to 12% and 
15% in traditional model 1); Cost capture at 1% was 30.1% for preventable costs (compared to 15% in traditional 
model 1). At k = 5%, the sequential deep learning model reached a precision at 1% of 26% and 21% for prevent-
able hospitalizations and preventable ED visits, respectively (compared to 12% and 8.4% in traditional model 1); 
Cost capture at 5% was 30% for preventable costs (compared to 15.6% in traditional model 1).

Feature contribution using GBM.  We examined the 15 most influential features per outcome selected 
by GBM (Fig. 3). No feature vectors or costs were included in the analysis to focus solely on clinical features. 
Previous healthcare utilization features such as annual ED visits, outpatient visits, hospitalizations and LOS were 
selected across all outcomes with relative influence (RI) values ranging from 5.3 to 31.5. Chronic obstructive pul-
monary disease (COPD) and chronic kidney disease were the most influential clinical comorbidities for prevent-

Table 1.   Description of alternative traditional and enhanced risk prediction models. CNN, Convolutional 
Neural Network, GBM, Gradient Boosting Model; LR, Logistic Regression; LSTM, Long Short-Term Memory.

Model Model type Feature description Knowledge-driven feature count Data-driven feature type

Traditional model 1 LR Age, gender, disease risk scores 4 –

Traditional model 2 LR Age, gender, disease risk scores, costs 14 –

Enhanced model LR Full knowledge- driven feature set 939 –

Non-sequential machine learning models FNN, GBM Full knowledge- driven feature set, data 
driven features 939 Single patient-level feature vectors

Sequential deep learning models CNN, LSTM Full knowledge- driven feature set, data 
driven features 939 Temporal patient-level feature vectors
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Table 2.   Baseline characteristics of the training, validation, and testing datasets. *Results were calculated 
according to the observation period: 1/1/2016 – 12/31/2016. † Among the CCW comorbidities evaluated at 
Online Table 3. ‡ Defined as prescription drugs prescribed in the period of 7/1/2016–12/31/2016 as follows: 
at least one prescription of > 60 days, at least 2 prescriptions of 20 < days < 60. Oral, respiratory intravenous, 
intramuscular, and subcutaneous medications were included. §  The number of codes is important when 
comparing deep learning algorithms. The number represents each patient’s sum of codes throughout all 
of his history in the data. ** Calculated within the prediction period (1/1/2017–1/7/2017). CCS, Clinical 
Classifications Software; CCW, Chronic Condition Warehouse (CCW); COPD, Chronic Obstructive 
Pulmonary Disease; ED, Emergency Department.

Training set (n = 65,282) Validation set (n = 18,652) Testing set (n = 9326)

Age*, mean (SD) 72 (11.9) 72.1 (11.9) 72.1 (11.8)

Male, % 48.9 48.9 50.1

Medicare Advantage beneficiariesa, % 67.7 67.9 67.9

US region*

Northeast, % 15.1 15.5 15

Midwest, % 34.3 34.7 34.5

South, % 24.6 24 24.5

West, % 25.2 25 25.1

Comorbidities*

Diabetes, No. (%) 36.6 37.5 36.3

Ischemic Heart Disease, % 48.8 49.3 49.4

Atrial fibrillation, No. (%) 23.7 23.9 23.9

COPD, No. (%) 17.3 17.5 17.3

Depression, No. (%) 11.5 11.3 11.2

Chronic kidney disease, No. (%) 32.4 32.8 32.6

Alzheimer’s disease, No. (%) 2.9 2.9 2.7

Hypertension, No. (%) 72.1 71.4 70.9

Hyperlipidemia, No. (%) 48.9 49.4 48.8

Number of CCW comorbidities*,†, mean (SD) 5.6 (2.8) 5.6 (2.8) 5.5 (2.9)

Chronic medications*,‡, mean (SD) 5.8 (3.5) 5.8 (3.5) 5.8 (3.5)

Annual total cost*, US$ median (IQR) 19,247 (10,925–38,274) 19,638 (11,171–39,212) 19,197 (11,032–37,706)

All hospitalizations per 1000 patients** 170.4 162.6 170.2

Preventable hospitalizations per 1000 patients** 52.2 51.7 51.8

All ED visits per 1000 patients** 178.4 180.5 179.3

Preventable ED visits per 1000 patients** 47.9 46.9 48.8

Code counts per patient§

Diagnoses (CCS) per person, mean (SD) 210.6 (178) 208.8 (172.1) 209.3 (174.4)

Procedures (CCS) per person, mean (SD) 123.8 (116.5) 122.7 (112.7) 122.5 (111.9)

Medications (RxIngredient) per person, mean (SD) 270.1 (214.4) 272 (215) 269.8 (212.5)

Table 3.   Discriminative performance comparison of alternative traditional and enhanced risk prediction 
models for the prediction of preventable hospitalizations, preventable emergency department visits, and 
preventable costs among heart failure patients. AUROC, Area Under the Receiver Operating Characteristic; CI, 
Confidence Interval; LR, Logistic Regression.

AUROC (95% CI)

Preventable hospitalizations Preventable ED visits Preventable costs

Traditional LR model 1 0.676 (0.674–0.677) 0.611 (0.608–0.614) 0.638 (0.637–0.640)

Traditional LR model 2 0.711 (0.709–0.713) 0.632 (0.630–0.635) 0.659 (0.657–0.661)

Enhanced LR model 0.747 (0.744–0.751) 0.652 (0.649–0.654) 0.718 (0.716–0.719)

Non-sequential machine learning models 0.770 (0.773–0.779) 0.665 (0.664–0.667) 0.726 (0.725–0.730)

Sequential deep learning models 0.778 (0.784–0.790) 0.681 (0.680–0.685) 0.727 (0.725–0.728)
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able hospitalizations (RI of 17.7 and 5.3, respectively) and cost (RI of 9.1 and 4.2, respectively). For preventable 
ED visits, anxiety disorder was the most dominant comorbidity (RI = 2.4).

Discussion
Novel payment models have increased the need for cardiologists to employ better prediction tools to identify 
preventable utilization for HF patients. We found that deep learning models outperformed traditional logistic 
regression models for HF outcomes with respect to discrimination, precision, and cost capture in identifying 
patients at highest risk for preventable utilization and cost. This suggests a promising role for deep learning in 
efficiently managing population health and HF costs.

Our main evaluation method for preventable hospitalizations and ED visits was precision at k. This method 
was adapted from the field of information retrieval38, where web search engines are a common use case. In web 
search, precision at k evaluates search results and corresponds to the proportion of relevant results among the 
top k percentile, as search engine users are mostly interested in the topmost retrieved results. Applying this same 
theory to HF patients, a cardiologist or an accountable care organization (ACO) may search for patients based 
on their risk of future preventable use or cost, with the goal of deploying limited resources, i.e. care management 
team, for interventions. Using this approach, assume in a population of 10,000 HF patients, resources exist for a 
care management program to be applied to 100 or 1% of a population. With LR results (Fig. 2), 12 in the top 100 

Figure 2.   Predictive Models to Assess the Precision at k and Cost Capture at k for the Prediction of Preventable 
Hospitalizations, Preventable Emergency Department Visits, and Preventable Costs among Heart Failure 
Patients. (a, b) precision (PPV) at k for different thresholds (k). Precision at k considers only the topmost 
patients (top k%) ranked by the model, and therefore presents the accuracy of the model’s ranking at a certain 
threshold. E.g. precision at 10% corresponds to PPV among the patients ranked by each model at the top decile. 
(c) cost capture at k for different thresholds (k), E.g. cost capture at 10 corresponds to the ratio between the 
predicted preventable costs to the actual preventable costs among the patients ranked by each model at the 
top decile. The figure was edited using Adobe Illustrator Creative Cloud version 24.2.121. CNN, Convolutional 
Neural Network; FNN, Feedforward Neural Network; GBM, Gradient Boosting Model; LSTM, Long Short-
Term Memory; LR, Logistic Regression; PPV, Positive Predictive Value.
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would have preventable hospitalizations, while with sequential deep learning model would correctly predict 39 
in 100. Cost capture at k evaluates the proportion of preventable costs captured by the model among the patients 
ranked by the model at the top k percentile. Similar to the previous example, assuming the top 1% of predicted 
patients received a care management program, this would potentially impact 15% of the preventable costs using 
LR, while with sequential deep learning model would impact 30.1%. Therefore, deep learning allows for better 
patient identification and potentially greater expected cost reductions with the same investment in resources.

Our study adds to a growing body of literature that compared machine learning methods to traditional models 
for HF (and other chronic conditions) outcomes. Desai et al.5 demonstrated superior predictive performance of 
GBM modeling over LR as well as random forest modeling in predicting HF hospitalizations. Using claims data 
only, they reported an AUROC of 0.745, which was lower than our study (0.778) for overall preventable hospi-
talizations. Other work by O’Donovan et al.39 that used claims data and more granular clinical data from EHRs 
similarly reported an AUROC of 0.8 on the prediction of unplanned HF admissions. Inclusion of detailed clinical 

Figure 3.   Most Influential Predictors Selected by the GBM for the Prediction of Preventable Hospitalizations, 
Preventable Emergency Department Visits, and Preventable Costs among Heart Failure Patients. Relative 
influence values range from 0 to 100 and indicate the relative contribution of a feature in predicting the outcome 
of interest. Relative influence from the GBM is plotted for the top 15 features of each of the three outcomes. The 
figure was edited using Adobe Illustrator Creative Cloud version 24.2.121. LOS, Length of Stay; COPD, Chronic 
Obstructive Pulmonary Disease; ED, Emergency Department; GBM, Gradient Boosting Model; GP, General 
Practitioner; HF, Heart Failure.
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data to our deep learning models may therefore This suggests that the deep learning models can be improved on 
if health systems and clinical leaders can augment their claims data on patients with detailed EHR data.

Another study by Min et al.40 compared several deep learning methods with LR for 30-day readmissions 
among COPD patients, finding no significant improvement in prediction with deep learning. This means that 
deep learning may be more suited to predict certain types of outcomes – perhaps with longer prediction periods 
rather than shorter ones; however, future study will be needed to determine which types of health outcomes are 
best predicted by deep learning.

Nevertheless, there are criticisms of deep learning, the main one being the lack of model interpretability. 
Much like search results, these models are often regarded as "black boxes", where only the input and output are 
clear6. To illustrate the main drivers for each outcome, we conducted GBM with solely clinical predictors as inputs 
(Fig. 3). We found that prior healthcare utilization was the dominant predictor for all three outcomes, along 
with several comorbidities such as COPD, chronic kidney disease (CKD), and anxiety disorder. Our results were 
largely similar to those of Desai et al. for HF hospitalizations using claims data. Yet, the addition of electronic 
health record (EHR) data by Desai also added important predictors such as laboratory and echocardiography 
results. This suggests that applying deep learning methods with more detailed EHR data, if available, may not 
only improve the predictive performance but also improve the clinical interpretability of the results5.

Strengths and limitations.  There are some key strengths of our study. First, we focused on a set of 
non-traditional preventable outcomes defined by validated algorithms. Previous studies dealing with prevent-
able utilization and spending mainly evaluated the aspects of trends, demographic disparities and geographic 
variations2,3,11,12. Second, we suggest a novel approach for the definition of preventable ED visits (and conse-
quently preventable costs) which takes into account unclassified cases by the Billings algorithm. We believe that 
this modified definition provides a more accurate estimation of preventable costs. Third, we used a large data 
sample which is crucial to properly train deep learning models.

Our study also has several limitations. First, working with de-identified claims data, our data did not include 
key information such as socioeconomic data (race, marital status, income level etc.), laboratory results and other 
EHR data which have shown to be strong predictors of HF readmissions and mortality41. This information was 
not available in the commercial data for analysis. Second, although our definition of preventable hospitalization 
has been well-validated previously, not all hospitalizations identified by the algorithm are necessarily prevent-
able. There also may be other hospitalizations that may have been preventable that were not classified as so by 
the PQIs. Studies focusing on broadening and sharpening the current definitions of preventable visits may help 
researchers in honing predictions. Third, working on a single dataset, our results were internally validated with 
a random split of validation and testing datasets and did not include external validation. Further analyses should 
include external validation on a separate dataset. Fourth, while it is possible that the results may be marginally 
different depending on the ratio use for the training, validation, and testing tests, we chose the ratio of 7:2:1 based 
on prior literature using data science approaches41. Fifth, we focused our main analysis on precision at k from 
1 to 10% given that this is a commonly used threshold in the literature to define high-need, high-cost popula-
tions, including in a recent report by the National Academy of Medicine42, and considered a clinically actionable 
range for a population health approaches to target individuals at highest risk. Although further analysis at higher 
precision cutoffs may yield different results, we think that is unlikely given the clear trends in Fig. 2 with lower 
performance at higher k percentiles. Sixth, we used a large amount of longitudinal data (11 years). Given more 
recent data are likely of greater importance because of the progressive nature of heart failure, and thus more 
likely follow a Markov process, it is possible similar results could have been obtained using less data, which may 
be more efficient to implement in practice. Future work should examine the relationship between data volume / 
timing and model performance . dataset. Fourth, while it is possible that the results may be marginally different 
depending on the ratio use for the training, validation, and testing tests, we chose the ratio of 7:2:1 based on 
prior literature using data science approaches42. Fifth, we focused our main analysis on precision at k from 1 to 
10% given that this is a commonly used threshold in the literature to define high-need, high-cost populations, 
including in a recent report by the National Academy of Medicine43, and considered a clinically actionable range 
for a population health approaches to target individuals at highest risk. Although further analysis at higher 
precision cutoffs may yield different results, we think that is unlikely given the clear trends in Fig. 2 with lower 
performance at higher k percentiles. Sixth, we used a large amount of longitudinal data (11 years). Given more 
recent data are likely of greater importance because of the progressive nature of heart failure, and thus more 
likely follow a Markov process, it is possible similar results could have been obtained using less data, which may 
be more efficient to implement in practice. Future work should examine the relationship between data volume/
timing and model performance.

Conclusions
Our study suggests that deep learning methods have superior predictive performance over traditional statistical 
methods in identifying patients at high risk for preventable outcomes. Therefore, cardiologists and health system 
leaders should consider employing deep learning techniques to identify patients with potentially preventable 
acute care events and use these approaches to tailor targeted interventions to reduce unnecessary spending.

Data availability
The data that support the findings of this study originate from a large U.S. insurer. Restrictions apply to the avail-
ability of these data and they are therefore not publicly available. Due to restrictions, these data can be accessed 
only by request to the authors.
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Code availability
The code used in this study for the architecture of the machine learning models is available at https​://githu​b.com/
Diagn​ostic​Robot​ics/dr-chf-model​s.
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