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Age‑group determination of living 
individuals using first molar images 
based on artificial intelligence
Seunghyeon Kim1, Yeon‑Hee Lee2*, Yung‑Kyun Noh3, Frank C. Park1 & Q.‑Schick Auh2

Dental age estimation of living individuals is difficult and challenging, and there is no consensus 
method in adults with permanent dentition. Thus, we aimed to provide an accurate and robust 
artificial intelligence (AI)-based diagnostic system for age-group estimation by incorporating a 
convolutional neural network (CNN) using dental X-ray image patches of the first molars extracted via 
panoramic radiography. The data set consisted of four first molar images from the right and left sides 
of the maxilla and mandible of each of 1586 individuals across all age groups, which were extracted 
from their panoramic radiographs. The accuracy of the tooth-wise estimation was 89.05 to 90.27%. 
Performance accuracy was evaluated mainly using a majority voting system and area under curve 
(AUC) scores. The AUC scores ranged from 0.94 to 0.98 for all age groups, which indicates outstanding 
capacity. The learned features of CNNs were visualized as a heatmap, and revealed that CNNs focus on 
differentiated anatomical parameters, including tooth pulp, alveolar bone level, or interdental space, 
depending on the age and location of the tooth. With this, we provided a deeper understanding of the 
most informative regions distinguished by age groups. The prediction accuracy and heat map analyses 
support that this AI-based age-group determination model is plausible and useful.

Accurate age-group estimation of an individual is extremely important in forensic dentistry and for various 
medico-legal purposes. Age-group estimation is the process of determining a person’s age group based on biom-
etric features1. In particular, as immigration and the number of refugees around the world increase, the demand 
for rapid age estimation is growing2. In addition, age group classification can help in making robust, but rapid 
judgments, and has many applications in fields such as homeland security, passport services, statistical analysis 
of group-wise age distributions, and forensic science. As an active research area, machine-based age group 
estimation algorithms as well as human perception-based methods for age estimation have been reported in 
the literature3,4. Despite significant advances and ample work in related research areas, a definitive and effective 
method for age-group determination for all ages has not yet been achieved.

Teeth are considered a reliable biological marker of aging as they are highly durable, resistant to putrefaction, 
fire, and chemicals. Compared with an assessment of the ossification stage of the medial clavicular epiphysis in 
bone development, dental development, and eruption provides a reliable indication of chronological age5. Each 
state of dental mineralization is hardly affected by environmental or hormonal variations. Commonly utilized 
dental methods in children and adolescents include the analysis of dental development, tooth eruption, the 
mineralization of the tooth crowns and roots6,7, and open apices of the root8. For adults, other methods using 
the tooth-coronal index9, the level of the alveolar bone10–12, and the pulp/tooth area ratio13,14 have been reported; 
however, the accuracy is lower than that for children and adolescents. With increasing age, alveolar bone levels 
and pulp to tooth ratios tend to decrease, but the error range using direct measurements of the first molar is 
8.84 years15,16. Dental age estimation displays unique challenges owing to complex variations in the shapes and 
sizes of teeth, both within and across people. In addition, previous methods had a major drawback of focusing 
only on partial features of teeth with large error ranges in age estimation.

Considering the high potential for errors and bias associated with conventional age estimation methods, 
we hypothesized that the elimination of subjective aspects and automatic performance of age-group estima-
tion would result in improved performance. Throughout the last decade, continuous efforts to improve the 
accuracy of AI-based estimations, one of which is the incorporation of deep learning algorithms, have been 
made. Convolutional neural networks (CNNs) have been reliably used for various problems in the dental field, 
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using dental X-ray images17–19. The main difference between CNNs and conventional individual feature-based 
methods is that CNNs perform end-to-end learning and extract a set of relevant features directly from raw data, 
without human intervention. Although many methods have been derived and modified based on the Demirjian 
method, which was first described in 197320, it allows for subjective judgment by observers, and its wide error 
range is still an issue. As human-engineered procedures are not required with CNNs, an AI system significantly 
reduces the workload of human interpreters or observers in dental age prediction21. In addition because CNNs 
autonomously learn a holistic feature set from data, they exhibit robust performance with a large amount of data.

This study was designed to propose a novel deep learning system that provides a fully automated model for 
age-group determination using panoramic radiographs of the first molar. To the best of our knowledge, this is the 
first study of dental age-group estimation based on CNNs that directly uses images of first molars. Using CNN 
allows us to grasp the entire radiographic feature of panoramic radiographs, not only the partial radiographic 
characteristics of the first molar. As AI-based approaches can process large amounts of data, it is expected that our 
method will be useful for verifying age groups in mass disasters and refugee issues, and various anthropological 
and legal issues. Furthermore, our method may reduce the shortcomings of previous methods by minimizing 
errors caused by subjective experiences and increasing diagnostic accuracy and speed. Through a heat map using 
a gradient-weighted class activation mapping (Grad-CAM) algorithm, we provide visualizations of the infor-
mation and recognized tooth and alveolar bone regions in the X-ray image patches extracted from panoramic 
radiographs used by the CNNs for the determination of age groups.

Materials and methods
Study population.  The overall workflow of this study is demonstrated in Fig. 1. Panoramic radiographs 
were collected from 2025 patients who consecutively visited Kyung Hee University Dental Hospital between 
December 1, 2018, and January 31, 2019. In the panoramic radiograph dataset, only images of people with four 
intact first molars (#16, #26, #36, and #46) were included, and if any of the four first molars had been lost or 
replaced with a dental prosthesis, the images were excluded. Non-standardized or low-resolution radiographs 
were also excluded from the study. Thus, 439 images were excluded from the study, and a total of 1586 patients 
were included. The 1586 patients were distributed in different age groups according to their legal age as follows: 
199 patients aged 0 to 10 y, 197 patients aged 10 to 19 y, 545 patients aged 20 to 29 y, 267 patients aged 30 to 39 
y, 182 patients aged 40 to 49 y, 65 patients aged 50 to 59 y, and 131 patients aged greater than 60 y. The number 
of patients in the young adult group (aged 20 to 29 y) was the highest, and the number of patients aged greater 
than 60 y was the lowest. The images of 1,586 patients were divided into training, validation, and test datasets 
according to the following ratio: training:validation:test = 1078:190:318. This division ratio was applied equally 
to patients across all age groups. With this division ratio, we performed five-fold cross-validation to develop and 
evaluate the model.

This study was conducted as a preliminary study on an AI-based approach for the estimation of an age group, 
rather than an estimation of the exact age. For clarity of classification through panoramic radiography, the partici-
pants were divided into three age groups: children and adolescents (ages 0–19), young adults (ages 20–49), and 
older adults (age > 50 years). First, for a wide range of age determination (20 y intervals, three groups in total), 
the accuracy of the AI model was analyzed. The young adults’ group, which had the largest number of samples, 
was further divided into three subgroups (ages 20–29, ages 30–39, and ages 40–49). Therefore, we compared the 
results obtained by dividing the participants into three age groups, and the results obtained by subdividing the 
young adults into further groups, thereby generating a total of five age groups. In other words, possible changes 
in estimation accuracy with an increasing number of predicted groups and differences in subdivided groups 
within young adults were also investigated. The accuracy for estimating the age group for each tooth and for 
each individual was determined.

Informed consent was obtained from all participants. This study was approved by the Institutional Review 
Board (IRB) of the Kyung Hee University Dental Hospital and was carried out in accordance with relevant 
guidelines and regulations.

Tooth‑wise age‑group prediction with CNN model.  As the first molar is considered to be the most 
reliable tooth for estimating dental age15,22, we selected it for developing a CNN model for the age-group deter-
mination. From a panoramic radiograph of each patient, image patches of teeth #16, #26, #36, and #46 were 
manually extracted. The goal of extracting image patches from the panoramic radiographs was to include com-
plete contours of the teeth. As a result, a total of 4,312 image patches of first molars were collected from 1078 
patients for training, and every tooth patch was resized into a fixed size of 151 × 112. To minimize any unneces-
sary variance in the dataset and to improve the performance of the model, the dataset was augmented23, and we 
used the following selective data augmentation techniques: the tooth images were flipped left and right, upside 
down, rotated, and reversed by 90°.

The residual deep neural network with 152 layers (ResNet-152)23 was trained to predict the age-group tooth-
wise, that is, for each tooth. The weights of the network were initialized using pre-trained weights from ImageNet 
dataset24. Then, the entire network was fine-tuned for the target age-group estimation problem. Although the 
ImageNet base dataset does not include teeth images, various studies have shown that the fine-tuning of a pre-
trained network with several images of ImageNet helps improve the performance in disease-related problem 
learning using medical images25–27. The network was trained using the cross-entropy loss function and adap-
tive moment estimation (Adam) optimizer28 with a learning rate of 1e-5 and a batch size of 32. We trained the 
network for 40,000 iterations and validated it using validation data every 1000 iterations with a classification 
accuracy metric to determine whether to stop the training. The network showing the highest validation accuracy 
was selected as the final model and used for testing.
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Patient‑wise age‑group prediction using majority voting.  In the field of forensic dental medicine, 
age estimation is meaningful at the individual level rather than at the tooth level. Therefore, tooth-wise predic-
tion results obtained from the CNN model based on the four first molar images were ensembled using a majority 
voting method.

The overall test process for predicting a patient-wise age group is illustrated in Fig. 2. First, four image patches 
of the first molars were extracted from the panoramic radiograph of a patient. Then, each tooth image patch 
was feed-forwarded to the trained CNN model, and the resulting softmax scores for every age-group class were 
obtained. The softmax score of each age group represents the probability value that CNNs predict the tooth to 
the corresponding age group, and the accuracy of the classification task29. The age group with the highest soft-
max score was selected as the prediction result for the age group of each tooth. Finally, among the age-group 
prediction results of four individual teeth of one person, the age group with the highest number of votes was 
selected as the patient age group.

Performance metrics and methodology.  We evaluated the age-group estimation performance using 
the area under curve (AUC) and classification accuracy. For AUC, we constructed a receiver operating charac-
teristic (ROC) curve for each age group using the one versus all strategy, in which classification is performed 
using binary labels: for each age group, a positive class for the target group, and a negative class for the remaining 
groups. From the ROC curve of each age group, the corresponding AUC score was calculated. For classification 
accuracy, we calculated the ratio of the number of correctly estimated patients to the total number of tested 
patients. Along with the classification accuracy, we also report the corresponding confusion matrix.

Figure 1.   Overall workflow.
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As mentioned earlier, CNN models were trained to estimate age groups for two different sets: three age groups 
and five age groups. Different CNN models were trained for three age groups and five age groups with three and 
five nodes in their output layers, respectively. Because the numbers of age groups predicted by these CNNs differ, 
it is impossible to compare the performance metrics of these two CNNs directly. To compare the classification 
accuracies of the two CNNs directly, patients predicted as young adults in the five-age-group set (ages 20 to 29, 
30 to 39, and 40 to 49 y) were merged into the young adult class in the three-age-groups set (ages 20 to 49 y), 
as shown in Fig. 3. In other words, the prediction results for the five age groups were regrouped into three age 
groups, allowing the classification accuracies of the two CNNs to be compared. Similarly, for regrouping the AUC 
results of the five age groups, softmax scores of the CNN model for the ages 20–29, 30–39, and 40–49 of the five 
age groups were merged by summation to determine the softmax score of ages 20–49 of the three age groups.

Visual analysis of the learned representation in CNNs.  Analyzing the learned features from CNNs 
can provide a deeper understanding of the most informative region by CNN models in distinguishing age 
groups. To verify the usefulness and feasibility of this AI-based age-group estimation method, we visualized the 
learned representation of the trained CNN model using a heatmap image using a gradient-weighted class activa-
tion mapping (Grad-CAM) algorithm29. For each class c in the CNN, the Grad-CAM Lc

Grad−CAM
 is calculated 

with a linear combination of the k-th feature maps of the convolutional layer Ak and the importance weight αc
K

 , 
followed by ReLU activation:

The weight parameter αc
K

 is calculated by the average of the gradient of the score of class c with respect to 
Ak, so that it represents the effect of feature map k on target class c. Therefore, each pixel value of Grad-CAM 
L
c

Grad−CAM
 represents the feature sensitivity to changes in the score of class c, with a large value indicating the 

importance of the pixel for predicting target class c. We explored the regions with large Grad-CAM values on a 
tooth to investigate which parts of the teeth trained CNNs were recognized as more important than others when 
classifying the age group of a tooth.

L
c

Grad−CAM
= ReLU(

∑

K
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Figure 2.   Classification of a panoramic dental X-ray using learned networks to predict age-group of the patient.

Figure 3.   Conversion of the age-group prediction result of the five age-groups to the three age-groups.
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Statistical analysis and evaluation.  ROC curves and the AUC were used to investigate system perfor-
mance. In addition, we compared the age-group prediction results of CNNs trained for predicting two different 
groupings: three age groups and five age groups. All five age-group prediction results were re-grouped into the 
three age-group prediction results, and their mean prediction accuracies were compared. To compare the mean 
values, the unequal variance t-test was performed using the Python package Scipy version 1.4.0. A two-tailed 
p value < 0.05 was considered statistically significant. For a deeper understanding of the learned regions of the 
model, we generated a heat map with class activation mapping30. This map visually highlights the tooth regions 
of the x-ray patches from the panoramic radiographs that are most informative for distinguishing the age group.

Results
Tooth‑wise age‑group prediction using CNNs.  The accuracy of tooth-wise age-group prediction using 
a CNN model is shown in the first column of Table 1. The overall accuracy when using individual teeth ranges 
between 87.04 and 88.33%. However, the accuracy of tooth-wise age-group prediction did not differ signifi-
cantly according to the location of the first molar and the number of age-groups. The high accuracy of each 
tooth showed that the image of any individual first molar is sufficient for determining the age group of a person. 
For the networks trained for the three age groups, teeth #36 and #46 were slightly more useful, with accura-
cies of 88.33 ± 0.94% and 88.18 ± 0.71%, respectively, than the networks for #16 and #26 (87.36 ± 0.53% and 
87.39 ± 0.48%, respectively). On the contrary, for networks trained to predict five groups, #16 and #26 were 
determined to be more useful for our CNNs with accuracies of 87.76 ± 0.67% and 88.16 ± 0.71%, respectively, 
compared with accuracies of 87.04 ± 0.81% and 87.04 ± 0.71% for teeth #36 and #46, respectively. The results 
partly confirm the hypothesis of this study that the information in different first molar teeth and in different 
regimes of each tooth can be used in diverse ways, which was the motivation for applying AI algorithms. Inter-
estingly, in tooth-wise prediction, no particular tooth was always the most useful for all target settings used.

Visualization of Grad‑CAM for tooth‑wise age‑group prediction.  To investigate which visual fea-
tures of the teeth are important for CNNs, we visualized the learned representation in CNN. Figure 4 shows the 
heatmaps of the Grad-CAMs for the given input teeth images and represents the feature sensitivity of the CNNs 
for tooth-wise prediction. Every first molar X-ray image extracted from the panoramic radiograph in Fig. 4 was 
used to predict the correct age group with CNN with a softmax confidence of more than 0.99. For each original 
X-ray of an individual tooth, the heatmap for the three age-group network (middle) and the heatmap for the 
five age-group network (right) are shown. In each heatmap image, the important regime for the CNN decision 
is marked in red, and the less important area is marked in blue.

Interestingly, even if the same X-ray image is given as input, it can be seen that the important parts for CNNs 
are different depending on the age grouping. For ages 0–9, when classifying three age groups, the relationship 
with the second molar and the degree of eruption of the second molar were recognized. In contrast, when clas-
sifying five age groups, the pulp of the first molar was recognized as the most important feature (Fig. 4a). Ages 
10–19 were recognized by alveolar bone condition and maxillary sinus when classifying the three age groups. In 
contrast, in the classification using five age groups, the pulp of the first molar was recognized (Fig. 4b). For ages 
20–29, the pulp of the first molar was recognized when classifying the three age groups. The periapical area of 
the first molar was recognized when classifying the five age groups (Fig. 4c). For ages 30–39, the pulp of the first 
molar was recognized when classifying the three age groups.

The interdental space between the first molar and the second molar was recognized in the five age-group 
classifications (Fig. 4d). For ages 40–49, the pulp of the first molar was recognized when classifying the three 
age groups. The inter-dental space and alveolar bone level between the first molar and the second molar were 
recognized for five age groups (Fig. 4e). For ages 50–59 years, the inter-dental space and the alveolar bone level 
between the first molar and the second molar were recognized when classifying the three age groups. Alveolar 
bone levels were observed in the five age groups (Fig. 4f). For patients aged > 60 years, occlusal levels of the 
teeth were recognized when classifying the three age groups. The pulp of the first molar was recognized in the 

Table 1.   Age-group estimation accuracy of tooth-wise and patient wise predictions. The results were 
obtained using unequal variance t-tests. A two-tailed p value < 0.05 was considered statistically significant. *p 
value < 0.05. Significant variables and results shown in bold text.

Tooth-wise accuracy Patient-wise accuracy
Combining the 
prediction results

Tooth Accuracy (%) Accuracy (%) p value Accuracy (%) p value

Three age-group prediction

#16 87.36 ± 0.53

89.05 ± 0.68

0.117

90.37 ± 0.93

0.043*

#26 87.39 ± 0.48 0.114 0.043*

#36 88.33 ± 0.94 0.595 0.205

#46 88.18 ± 0.71 0.452 0.136

Five age-group prediction

#16 87.76 ± 0.67

89.21 ± 0.44

0.150 0.079

#26 88.16 ± 0.71 0.298 0.132

#36 87.04 ± 0.81 0.079 0.043*

#46 87.36 ± 0.53 0.055 0.036*
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five age-group classifications (Fig. 4g). The learned features and focused regions of the panoramic radiographic 
images by CNNs varied according to the location of the first molar, the age, and the criteria for age grouping. 
Overall, diverse visual features were recognized for determining correct targets, depending on age, and tooth 
location of the input teeth images.

Patient‑wise age‑group prediction using majority voting.  The accuracy of patient-wise age-group 
prediction with this CNN model is shown in Table 1 (the second column). The accuracies of patient-wise predic-
tion for the three age-grouping and the five age-grouping were 89.05 ± 0.68% and 89.21 ± 0.54% (p value = 0.83), 
respectively. Similar to the tooth-wise age-group prediction, there was no significant difference in classification 
accuracy between the two age groups. However, the average accuracy of the patient-wise age-group predic-
tion obtained using majority voting is higher than the maximum accuracy for an individual tooth for both the 
three—and five-age-group predictions.

Figure 5 shows the corresponding confusion matrix of the three age-group predictions (Fig. 5a) and five age-
group predictions (Fig. 5b). Each element of the confusion matrix represents the average number of patients 
over five-fold cross-validation. Although the accuracies do not significantly differ, the corresponding confusion 
matrices show different trends in predictions for different age groups. When we compare the second columns of 

Figure 4.   Example of correctly classified teeth patches and their Grad-CAM results. The figures show the 
original molar image (left), Grad-CAM for three age-group prediction (middle) and Grad-CAM for five age-
group prediction (right). Note that the softmax score for every first molar image in the figure is above 0.99.
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Fig. 5a,b, the network trained to predict using the three age groups shows a higher tendency to classify teeth as 
being of ages 20–49 than the network trained for five age-group predictions. From Fig. 5, the trained network 
for the three-age-group prediction can better discriminate adults and elderly, and the trained network for five 
age-group prediction discriminates children, adolescents, and adults better.

Figure 6 shows the patient-wise age-group prediction performance of each age group using the ROC curves 
and AUC scores for the discrimination of each group. AUC achieved high scores for all age groups, ranging from 
0.94 to 0.98. The high AUC scores indicate that the images of first molars #16, #26, #36, and #46 contain age-
related visual features, and that the CNNs successfully exploited those features to predict the correct age groups. 
In addition, there were non-significant p-values between the AUC scores of the three age-group predictions and 
five age-group predictions (p values of ages 0–19: 0.97, ages 20–49: 0.12, and ages over 50: 0.98), which indicates 
that different age groups do not significantly affect the classification ability and accuracy scores.

Combining the prediction results of different age groupings.  We further extended the majority 
voting method to patient-wise predictions by combining the tooth-wise predictions of the three age groups and 
the five age groups together. As a result, a total of eight tooth-wise age-group predictions, based on four predic-
tions from three age groups and four predictions from five age groups, were used for majority voting. Patient-
wise age-group prediction is determined as the most frequently predicted age group among the eight tooth-wise 
predictions. As a result of extended majority voting, the average accuracy of patient-wise prediction is further 
improved to 90.37% (the third column of Table 1). In addition, lower p-values between the extended majority 
voting and each individual tooth-wise prediction show that majority voting using eight tooth-wise predictions 
significantly improves accuracy compared with majority voting using only four tooth-wise predictions.

Figure 5.   Confusion matrix of the age-group estimation results of the predictions for the three age-groups 
and five age-groups. In (a), the network trained for predicting three age-groups. In (b), the network trained 
for predicting five age-groups is used for three age-group prediction. Each element of the confusion matrix 
represents the average number of patients over five-fold cross validation.

Figure 6.   A comparison of average ROC curves over five-fold cross validation between the networks to 
obtain predictions for three age-groups and five age-groups. Each curve is obtained by binary classification 
to discriminate one age-group from others. The network that learned to predict five age-groups is used to 
predict the three age-groups. The AUC of each age-group shows (a) ages 0–19: Three-age group = 0.98 ± 0.01 
and five-age group = 0.98 ± 0.01 (p value = 0.97), (b) ages 20–49: three-age group = 0.95 ± 0.01 and five-age 
group = 0.94 ± 0.01 (p value = 0.12), (c) ages over 50: three-age group = 0.97 ± 0.01 and five-age group = 0.97 ± 0.01 
(p value = 0.98).
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Discussion
Age determination is important in the forensic field, not only for the identification of the deceased, but also for 
living individuals. Among the various biological markers for age determination, teeth are a crucial indicator of 
aging31. Methods for age determination are mostly based on X-rays, and assess crown formation, mineralization 
of a tooth, root growth and apex maturation, and order of eruption of the teeth into the mouth32,33. While these 
various dental age estimation methods have been confirmed for children and adolescents, there are few reliable 
methods with low error rates and high reliability for adults and the elderly. In addition, these conventional meth-
ods focus on one or two characteristics in panoramic radiographic images, and do not consider other parts of the 
images except for the parts with attention34,35. Image classification using a CNN model is the task of categorizing 
images into one of several predefined classes using computer vision36. Overall, we present a breakthrough dental 
age estimation method with high accuracy, as patient-wise estimation accuracy was 89.05 to 90.27%, which 
automatically looks at multiple features in one of the first molar X-ray images. The AI-based CNN model with 
majority voting proposed here can be used in age group estimation in forensic dentistry across all age groups.

Furthermore, important features for tooth-wise prediction were highlighted through Grad-CAM visualiza-
tion. Grad-CAM can produce a coarse localization map highlighting the important regions in an image that 
aids prediction and wherein the algorithm is focused on37. In our CNN model, CNNs learn from various other 
regions, including a lowered occlusal surface due to tooth attrition, decreased alveolar bone level, and increased 
interdental space, however, usually from the pulp of the tooth, depending on the shape and location of the first 
molar when classifying the age group. Tooth pulp was considered an important visual feature in determining 
age14,38. In addition, loss of alveolar bone is associated with aging10. However, unlike human observations and 
conventional dental age estimation methods that use only specific individual features, the AI-based age-group 
estimation model has the overwhelming strength of using comprehensive and automatic judgment of various 
anatomical factors39. In this respect, Grad-CAM is very useful, but as this is the first study in which it is applied 
to tooth X-ray images obtained from panoramic radiographs, further research on dental X-ray applications is 
needed.

Although the same X-ray image patches extracted from panoramic radiographs are given as inputs, the 
recognized regions from the CNNs differ depending on the age grouping while training the network. This can 
be observed for every age group that CNNs were trained with, the three age group and five age-group predic-
tions focused on completely different regions of the same X-ray image patches. In training CNNs, even if the 
same data are given, different parts of the data can be learned depending on the task40. With CNNs, multi-task 
learning has become possible, and this method improves the accuracy of a target task by simultaneously learn-
ing targets and by recognizing related adjacent structures41. Thus, this characteristic of an AI-based age-group 
estimation model is a very useful aspect in forensic dental medicine that can generally be well applied across 
various people and age groups.

What is the meaning of improved patient-wise prediction accuracy via majority voting? We obtained patient-
wise age-group predictions using the majority voting method of the individual tooth-wise age-group predictions. 
According to Karaarslan et al.42, age estimation by evaluating panoramic radiographs with the naked eye was the 
most accurate for the first decade of life (89.6%) and the lowest for the fourth decade of life (41.7%). However, 
with the AI-based approach, we achieved high numerical accuracy for all age groups. The results of patient-wise 
predictions show that the accuracy of patient-wise prediction increases as the number of tooth-wise predictions 
used for majority voting increases. Age estimation by humans may be focused on the same features for a single 
individual, even if several teeth or anatomical features are used15,43. Of course, the improved accuracy using the 
four first molars indicates that CNNs learn partially independent information from the four different first molars, 
even for only one person. The improved performance upon majority voting may indicate that each individual 
prediction provides partially independent information44,45. Even within an individual, teeth in different locations 
and of different sizes and shapes can provide independent information.

Furthermore, as a result of extending the ensemble of eight presentations, the average accuracy was improved 
to 90.37% compared with the accuracy obtained by an ensemble of only four predictions with 89.05% for the 
three age groups and 89.21% for the five age groups. An ensemble method is a meta-algorithm that combines 
several deep learning techniques into one predictive model, and aims to decrease variance, bias, and improve 
predictions46. Moreover, as the amount of data that can be learned increases and varies, the accuracy of an AI-
based model is bound to increase by47. Further improved accuracy was obtained when combining the predictions 
of different age groupings, which indicates that CNNs learn different information from the same teeth when the 
age grouping is varied during training. Our results from majority voting were consistent with the visual analysis. 
As a result, we confirm the following two properties of CNNs for predicting the age groups of teeth: CNNs learn 
different features from each individual tooth, and CNNs learn different features from the same tooth depending 
on the age grouping used for learning.

It is worth reporting that this is the first attempt to differentiate age groups using CNN models for teeth. 
Unfortunately, we only targeted the first four molars of an individual. In addition, the number of subjects was 
limited because patients had to actually have undergone panoramic radiographs. Another limitation is that the 
data are biased toward young adults (20 to 49 y) because patients in that age group visited the hospital frequently 
during the data collection period. As follow-up research, we will include additional teeth and adjacent structures 
of a large number of subjects for deep learning, which can further increase the age estimation performance. 
Through neural network ensembles, the estimation accuracy was increased when eight predictions were syn-
thesized, and age-group estimation was performed. Therefore, as the prediction number increases, the accuracy 
may increase, so it is necessary to further investigate the targeting of multiple teeth or the simultaneous analysis 
of various anatomical factors of the entire orofacial area.
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Conclusion
In this study, we showed that CNNs are well suited to the task of estimating the age groups of the maxillary and 
mandibular first molars. The high AUC score and classification accuracy for age-group estimation implies that 
the first molars contain age-related visual features. A visual investigation using Grad-CAM reveals that CNNs 
learn a set of age-related holistic features and find important features in the shape of the target tooth. In addition, 
the Grad-CAM visualization also shows that CNNs trained with different age-group resolutions learn to not 
necessarily use the same visual features on identical teeth. The boosted performance in ensemble experiments 
supports the fact that CNNs learn diverse information from different first molars and varying the age-group 
resolution leads CNNs to learn partially independent information across each age-group resolution. Although 
this study used only the four first molars, the ensemble result suggests that the age-group estimation performance 
can be further improved with the inclusion of additional teeth of a large number of subjects with age-related 
information to the learning of CNNs in the future.
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