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Comprehensive analysis 
of metastatic gastric cancer tumour 
cells using single‑cell RNA‑seq
Bin Wang1, Yingyi Zhang1, Tao Qing2, Kaichen Xing3, Jie Li3, Timing Zhen3, Sibo Zhu2* & 
Xianbao Zhan1*

Gastric cancer (GC) is a leading cause of cancer-induced mortality, with poor prognosis with 
metastasis. The mechanism of gastric carcinoma lymph node metastasis remains unknown due 
to traditional bulk-leveled approaches masking the roles of subpopulations. To answer questions 
concerning metastasis from the gastric carcinoma intratumoural perspective, we performed single-
cell level analysis on three gastric cancer patients with primary cancer and paired metastatic lymph 
node cancer tissues using single-cell RNA-seq (scRNA-seq). The results showed distinct carcinoma 
profiles from each patient, and diverse microenvironmental subsets were shared across different 
patients. Clustering data showed significant intratumoural heterogeneity. The results also revealed 
a subgroup of cells bridging the metastatic group and primary group, implying the transition state of 
cancer during the metastatic process. In the present study, we obtained a more comprehensive picture 
of gastric cancer lymph node metastasis, and we discovered some GC lymph node metastasis marker 
genes (ERBB2, CLDN11 and CDK12), as well as potential gastric cancer evolution-driving genes (FOS 
and JUN), which provide a basis for the treatment of GC.

Globally, gastric cancer (GC) is the fifth most common and one of the leading cancers that cause mortality. In 
2012, there were 952,000 cases diagnosed, resulting in an estimated 723,000 annual deaths1. Gastric cancer repre-
sents a poor prognosis, and the total 5-year survival is less than 30%, despite treatment with surgery2. Lymphatic 
metastasis was expected to be associated with poor outcomes, and in poorer stages, more distant lymph nodes 
can be revealed through histopathology finding3,4. More accurate diagnosis and precision therapy are the priori-
ties of current clinical and fundamental research in gastric cancer. Based on distinct molecular subtypes in The 
Cancer Genome Atlas (TCGA) Network, gastric cancer is now regarded to have specific genomic abnormalities 
and targeted therapies5.

Biologists and clinicians are faced with many challenges, including gastric neoplasm metastasis. Genomic 
analysis revealed a series of significant actionable mutation loads or pathways in gastric cancer, such as PI3K/
AKT/mTOR, CLD18, and HER2/EGFR, which are likely to induce primary gastric cancer to develop into 
metastases6,7. Recently, transcriptomic data have revealed that the RhoA pathway is involved in the invasion 
and migration of the ‘diffuse’ growth phenotype in gastric cancer8. Metastatic cascades have been depicted by 
several steps, including the dissemination of circulating cells, adhesion to blood vessel endothelial cells and 
proliferation9. However, the mechanism of gastric carcinoma lymph node metastasis remains unknown, partly 
because data from metastasis studies were generated with the bulk approach, which were likely to mask the roles 
of subpopulations. Therefore, heterogeneity caused by diverse tumour cell subsets and complex microenviron-
ments has been a great challenge in diagnosis and treatment.

Single-cell RNA-seq (scRNA-seq) deciphers tissues into individual cells to distinguish neoplastic from nontu-
mourous cells and to profile expression patterns to infer subclones10. ScRNA-seq can be used to analyse metastatic 
cancer cells whose bulk-level expression profiles are affected by metastasized local tissue11–13. In the study of 
GC scRNA-seq, Li et al. found that some specific marker genes, including SLC11A2, KLK7 and SULT2B1, were 
related to the development of early GC cells14. Single-cell gene expression studies revealed widespread changes 
in cell numbers, transcriptional status, and intercellular interactions in the GC tumour microenvironment15. 
ScRNA-seq can be employed in analysing different degrees of GC, which is a potential good predictor of GC 
prognosis16. These studies have paid attention to the tumour heterogeneity of GC but lack research on GC 
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metastasis. To answer questions from the GC intratumoural perspective in metastasis, we performed single-cell 
level analysis on three GC patients with primary cancer and paired metastatic lymph node cancer tissue using 
the scRNA-seq approach.

Materials and methods
Experimental design.  The experiment was performed by comparative sequencing analysis using scRNA-
seq from the primary tumour tissue (TT) and paired lymph node (LN) metastasis tumour tissue in three gastric 
cancer patients. The clinical characteristics of each patient used in this study are shown in Table 1. Tumour tis-
sues were obtained from Changhai Hospital affiliated to Second Military Medical University during operations. 
The study was approved by the Ethical Committee of Changhai Hospital (CHEC2016-157). Informed consent 
was written by each of the patients and their guardians, and all procedures were conducted per the Helsinki Ethi-
cal Principles for Medical Research. All libraries were prepared with the Smart-seq2 scRNA-seq protocol and 
sequenced on a HiSeq2500 instrument with 50 bp single-end sequencing mode (Fig. 1).

Solid tumour decomposition and single cell isolation simulation.  Biopsy or metastatic tumour 
were dissected and transferred to a 2 ml tube (Axygen, China), each containing 1 ml prewarmed M199 media 
(Thermo Fisher Scientific, USA), 2 mg/ml collagenase P (Roche, USA) and 10 U/µl DNase I (Roche, USA) as 
described by Tirosh et al.17. Tissues were digested for 60 min at 37 °C and then pipetted up and down every 
ten times every 10 min. The tissue suspensions were then filtered with a 70 µm nylon mesh (Thermo Fisher 
Scientific, USA) and centrifuged at 450g for 5 min. Pellets were resuspended for live cell staining using CFSE 
incubation for 5 min.

Single‑cell whole‑transcriptome library preparation and sequencing.  Single cells from each tis-
sue were manually picked under fluorescence microscopy (X71, Olympus, Japan) using a mouth pipette. Each 
of the harvested single cells was transferred into 2 µL of cell lysis buffer (CLB) in 0.2 mL PCR tubes. Libraries of 
isolated single cells were then prepared as per the Smart-seq2 protocol18 with modifications on reverse transcrip-
tion and amplification cycles.

Oligo-dT primed RT (reverse transcription) was performed by Smartscribe (Takara, Japan) reverse tran-
scriptase and locked TSO oligonucleotide (Exiqon, Danmark) upon single cells. Full-length cDNA amplification 
was conducted by PCR amplification for 22 cycles with Hifi HotStart ReadyMix reagent (KAPA Biosystems, 
USA) and purified by 0.6 × AMPure beads (BD, USA). Barcoded libraries were fragmented and segmented with 
a Library Prep kit (Nextera XT, Illumina, USA). Pooled libraries with unique N5–N7 barcodes were sequenced 
with a HiSeq 2500 sequencer (Illumina, USA) and a 50 SE read flow cell.

Table 1.   Clinical characteristics of each patient used in the scRNA-seq study and the cell number of each 
sample after quality control. PT patient, TT tumour tissue, LN lymph node, CEA carcinoembryonic antigen, 
CA carbohydrate antigen, CSP17 centromere-specific probe 17, HER2 human epidermalgrowth factor 
receptor-2, IHC immunohistochemistry, FISH fluorescence in situ hybridization.

Clinical characteristics

Patient

PT1 PT2 PT3

Numbers of analysis cells (TT/LN) 19/4 27/13 19/12

Age 55 33 67

Sex Male Male Male

Histopathological diagnosis Moderately differentiated adenocarcinoma Moderatly low differentiation adenocarcinoma Moderately low differentiation adenocarcinoma

Pathological stage IIIA IIA IIIB

T 1b 2 3

N 2 0 1

M 0 0 0

Site of origin Gastric angle Antrum Cardia/GNor

Infiltration degree Submucosal Muscularis Serosa

Tumour size (cm) 2.5 × 4 × 0.4 2.6 × 2.1 × 0.5 5.5 × 5.5 × 0.6

CEA (ng/mL) 2.20 2.68 2.88

CA724 (U/mL) 6.53 1.64 1.65

CA199 (U/mL)  < 2.20 14.93  < 2

HER2 IHC 3 +  Negative 1 + 

HER2 FISH Positive Negative Positive

HER2/CSP17  > 2 1.07 2.51

Ki67 80% 80% 80%

P53 Negative 10% Negative
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ScRNA‑seq data analysis.  Sequencing adapters and low-quality reads were first trimmed and removed 
using Trimmomatic19. Reads with a Phred score below 20 and trimmed sequence lengths less than 18 bp were 
discarded. The remaining high-quality reads were mapped to the human genome using the HiSat2 tool20 by 
using the human genome UCSC hg19 as a reference (ftp://genom​e-ftp.cse.ucsc.edu/golde​nPath​/hg19/chrom​
osome​s/) with a total of 22,335 genes. FeatureCounts software21 was used for the expression calculation of each 
gene, and raw count values of genes in each sample were obtained. A gene that was considered to be expressed 
in a sample had one more count in the sample. Read counts were normalized to TPM (transcript per million) 
values and then log2 transformed by using the “newSCESet” function of “scater” (https​://githu​b.com/davis​mcc/
scate​r) package by R (https​://www.r-proje​ct.org/).

Analyses, including principal component analysis (PCA), Pearson correlation, Student’s t-test and hierarchical 
clustering analysis (HCA), were performed using functions in R as follows: ‘prcomp’, ‘cor’, ‘t.test’ and ‘cluster’ in 
the ‘stats’ package and Heatmap in the ‘ComplexHeatmap’ package. The “ggplot” was used for the visualization 
of PCA.

Differentially expressed genes (DEGs) were calculated with fold-change and p-value between "treatment" 
and control groups. We set the fold change by a twofold cut-off, and FDR-adjusted p < 0.05 was regarded as the 
criterion for DEGs. This was carried out by using the “stat” package. Gene Ontology (GO) analysis results were 
obtained based on the Metascape (http://metas​cape.org)22.

Single-cell trajectory analysis. We used TSCAN, diffusion map, and monocle2 to perform pseudotime trajec-
tory analysis for the evolution of gastric cancer cells. Cells were chosen based on Seurat cluster identification 
results.

Immunofluorescence.  GC tumour tissues were embedded in paraffin and sliced by Servicebio (Shanghai, 
China). The antibodies were purchased from Abcam (Abcam, Cambridge, UK), including Anti-ERBB2 and 
Anti-Oligodendrocyte Specific Protein (CLDN11).

Results
Sequencing data processing and QC.  After filtration with a per-gene average read > 1 across all samples, 
94 out of 171 samples passed quality control (Table 1). A total of 7601 genes passed filtration and were adopted 
in further analysis. Each cell was sequenced with 20,000 ~ 200,000 uniquely mapped reads, which is sufficient 
to detect distinct subpopulation expression profiles17,23–25. Correlations between individual tumour cells from 
different samples showed a broad range of Pearson coefficients (r = − 0.1 ~ 0.98), implying prominent transcrip-
tomic heterogeneity. However, despite the heterogeneity across the cells, most of the samples were clustered 
according to their tissue of origin (Figure S1).

Clustering of the primary tumour and metastatic tumour.  T-SNE was plotted to present the distri-
bution of the single cells from the primary tumour and metastatic tumour in lower dimensions. Primary and 
metastatic tumour subgroups were partly merged (Fig. 2). Unsupervised T-SNE showed the separation of the 

Figure 1.   (a) Overview of the study design and sampling protocol. (b) Analysis pipeline in the current single-
cell RNA-seq study.

ftp://genome-ftp.cse.ucsc.edu/goldenPath/hg19/chromosomes/
ftp://genome-ftp.cse.ucsc.edu/goldenPath/hg19/chromosomes/
https://github.com/davismcc/scater
https://github.com/davismcc/scater
https://www.r-project.org/
http://metascape.org
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primary tumour and metastatic tumour cell groups. In terms of tumour tissues, removal of nontumourous cells 
resulted in distinct patient-specific cancer heterogeneity. ScRNA-seq revealed specific carcinoma subpopula-
tions and their characteristics from each patient. However, diverse microenvironmental populations were shared 
by the different patients, and nonmalignant cells did not show clustering of any specific subgroups.

Intratumoural heterogeneity analysis.  In terms of the intratumoural heterogeneity, the correlation 
analysis of single cells revealed heterogeneity within tumours across three patients (Fig. 3). Using bulk stemness, 
immune, stromal, and tumour scoring assessments, we found significant tumour and stromal scoring differences 
between primary tumour and metastatic tumour single cells, indicating compositional and functional changes in 
tumours. Population-wide comparison between TT and LN single cells revealed that NOTCH2, NOTCH2NL, 
KIF5B, and ERBB4 are highly expressed in primary cancer, while CDK12, ERBB2, and CLDN11 are overex-
pressed in metastatic cancer. The decomposition of four main principal components (PCs) in the datasets is 
shown in Fig. 4.

ScRNA‑seq analysis and trajectory analysis of cell clusters.  Seurat marker analysis revealed four 
main clusters in the overall single cells. Twelve significant principal components were extracted to identify four 
main clusters in the tumour tissues. The heatmap indicates markers highly expressed in each cluster. Functional 
annotations of each cluster are shown based on Seurat-calculated markers (Fig. 5).

The pseudotime trajectory of GC clusters revealed a distinct pattern of postulated evolution state from Clus-
ter0 > 2 > 1. The major genes (TOP1000) driving evolution were mainly involved in SRP-dependent cotransla-
tional protein targeting to the membrane, response to the metal ion, and ribosome assembly. The kernel genes 
in evolution regulation include SERPINB13, NFKBIA, B2M, and RPL24. Transcription factors including FOS, 
FOSB, JUN, JUNB, and ZNF256 drive the regulatory networks (Fig. 6).

Stem cell markers were applied to validate the multiple GC origin hypotheses. Based on canonical markers, 
we identified hepatocytes and macrophage cells using TSNE. Using TSCAN, we postulated a gastric-derived cell 
evolutionary trajectory. SLICER, TSCAN, and diffusion map pseudotime tools show the evolutionary trajectory 
of four tumour cell clusters (Figure S2).

Discussion
Tumour heterogeneity in gastric tumorigenesis and progression has recently attracted researchers’ attention. 
Based on some significant findings and theories of heterogeneity, target and immune therapies are in progress. 
However, there remains largely unknown heterogeneity in gastric cancer. By using single-cell isolation aided 
scRNA-seq, we could clearly identify the signatures of the primary tumour and metastatic tumour and reveal 
the role of heterogeneity, which causes metastasis in gastric cancer. Gastric carcinoma is common in lymph 
node metastasis, but the mechanism remains unknown. In our study, we revealed a subgroup of cells bridging 
the metastatic group and primary group, implying the transition state of cancer during the metastatic process 

Figure 2.   (a) T-SNE was plotted to present the distribution of the single cells from three patients in all primary 
tumour tissues. (b) Unsupervised T-SNE showing the separation of carcinoma cell groups. (c) In terms of 
gastric cancer tumour tissues, removal of noncarcinoma cells reveals intrinsic patient-specific tumour cell 
heterogeneity. (d) More randomly dispersed dots are shown in the metastatic tumour cells.
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by analysis of three patients’ transcriptomic data of single cells from primary gastric tumours and lymph node 
metastasis tumours.

Cancer heterogeneity has been shown to be a great challenge in cancer diagnosis and treatment26. Recently, 
scRNA-seq has been able to analyse abnormal cell-to-cell interactions, chemotherapy resistance, and immu-
nosuppressive microenvironments from primary tissues or CTCs. For example, Chun et al. separated tumour 
cells and immune cells from primary breast cancer cells27. Patel et al. revealed unanticipated heterogeneity in 
primary glioblastoma, showing diverse regulatory signalling and therapy programmes28. Kim et al.’s scRNA-seq 
results combined both intratumoural SNV KRASG12D and expression heterogeneity of lung adenocarcinoma cells, 
deciphering subpopulations in anticancer drug responses29. In terms of the intratumoural cancer cell component. 
Our clustering data showed significant intratumoural heterogeneity.

Tissue-specific markers were calculated, and a heatmap was plotted using the top 50 highly expressed features 
based on six redefined clusters using cell markers. Tissue-specific markers were calculated, and a heatmap was 
plotted using the top 100 highly expressed features based on previously defined clusters. NOTCH2, NOTCH2NL, 
KIF5B, and ERBB4 are highly expressed in primary cancer, while ERBB2, CLDN11 and CDK12 are overexpressed 
in metastatic cancer. Previous studies suggested that the expression of Notch signalling pathway-associated pro-
teins, such as Notch2, was significantly elevated in gastric cancer tissues compared to normal tissues30. In addi-
tion, evidence showed that higher KIF5B and ERBB4 promoted cancer cell proliferation31,32. Evidence suggests 
that CDK12, ERBB2, and CLDN11 play an associated metastatic role in cancer33–35. Several studies have shown 
that CLDN11 is related to tumour migration and metastasis35. Although the aetiologies of gastric cancer are partly 
clear and validated by experiments, the proposed “seed”-and- “soil” hypothesis has yet to be well explained36. 
Our findings implied that lymph node metastasis-prone subclones are more likely to share CLDN11, which is 
a member of the tight junction protein family that functions as a component of cell adhesion37. This explained 
cancer cell colonization in the lymph node after migrating from primary tissues. Future studies need to evaluate 
both transcriptomic and genetic alterations and even geographical information across different regions from 
primary metastatic tumours only to identify survival and evolution pressure in the cancer-related microenviron-
ment, which promotes the identification of potential key drivers of gastric cancer.

Figure 3.   Intratumoural heterogeneity analysis. Correlation analysis of single cells revealed heterogeneity 
within tumours across three patients. Robust bulk stemness, immune, stromal, and tumour scoring assessment 
between tumour and paratumour single cells.
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TFs are proteins with special structures and functions that regulate gene expression. We noticed that several 
TF-regulating genes, including FOS and JUN, appeared to be particularly important during tumour evolution. 
JUN and FOS were determined to be critical genes related to GC38. ScRNA-seq reveals an expression pattern 
with high FOS and JUN at leukaemia evolution, which resolves following therapy but reoccurs following relapse 
and death39.

As this is a preliminary study, the limitation of our analysis is the small number of patient cases enrolled in 
this study. Nonetheless, we obtained a more comprehensive picture of gastric cancer lymph node metastasis at 
single-celled resolution, giving a new perspective on the biomarkers (ERBB2, CLDN11 and CDK12) involved 
in metastasis, pathways involved and driver genes (FOS and JUN) during the metastasis process, providing a 
basis for the treatment of GC.

Figure 4.   Tissue-specific markers. (a) Population-wide comparison between TT and LN single cells. Tissue-
specific markers were calculated, and a heatmap was plotted using the top 100 highly expressed features based 
on previously defined clusters. NOTCH2, NOTCH2NL, KIF5B, and ERBB4 are highly expressed in primary 
cancer, while CDK12, ERBB2, and CLDN11 are overexpressed in metastatic cancer. Functional annotation 
revealed microtubule movement, and notch-based signalling was activated in the primary cells, indicating its 
metastatic propensity. (b) Decomposition of six main principal components (PCs) in the datasets. (c) IF of 
ERBB4 and CLDN11 in TT and LN.
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Figure 5.   Seurat marker analysis revealed four main clusters in the overall single cells. Twelve significant 
principal components were extracted to identify four main clusters in the tumour tissues. (a) Four main clusters 
in the tumour tissues using TSNE. (b) Heatmap indicating markers highly expressed in each cluster. (c–f) 
Functional annotations of each cluster are shown based on Seurat-calculated markers.
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Data availability
Raw data of scRNA-seq were deposited in GEO (GSE158631).

Received: 22 April 2020; Accepted: 29 December 2020

Figure 6.   Gastric-derived cell evolutionary trajectory. (a) The pseudotime trajectory of GC clusters revealed 
a distinct pattern of postulated evolution state from Cluster 0 > 2 > 1. (b) The evolutionary trajectory of TT and 
LN cells. (c,d) Evolution trajectory-based functional annotation (Top1000 gene). (e) Regulatory co-network of 
kernel genes in evolution regulation and a transcription factor-driven regulatory network.
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