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Cone‑beam CT image quality 
improvement using Cycle‑Deblur 
consistent adversarial networks 
(Cycle‑Deblur GAN) for chest CT 
imaging in breast cancer patients
Hui‑Ju Tien1,2,7, Hsin‑Chih Yang1,3,7, Pei‑Wei Shueng2,4 & Jyh‑Cheng Chen1,5,6*

Cone-beam computed tomography (CBCT) integrated with a linear accelerator is widely used to 
increase the accuracy of radiotherapy and plays an important role in image-guided radiotherapy 
(IGRT). For comparison with fan-beam computed tomography (FBCT), the image quality of CBCT is 
indistinct due to X-ray scattering, noise, and artefacts. We proposed a deep learning model, “Cycle-
Deblur GAN”, combined with CycleGAN and Deblur-GAN models to improve the image quality of 
chest CBCT images. The 8706 CBCT and FBCT image pairs were used for training, and 1150 image pairs 
were used for testing in deep learning. The generated CBCT images from the Cycle-Deblur GAN model 
demonstrated closer CT values to FBCT in the lung, breast, mediastinum, and sternum compared to 
the CycleGAN and RED-CNN models. The quantitative evaluations of MAE, PSNR, and SSIM for CBCT 
generated from the Cycle-Deblur GAN model demonstrated better results than the CycleGAN and 
RED-CNN models. The Cycle-Deblur GAN model improved image quality and CT-value accuracy and 
preserved structural details for chest CBCT images.

The techniques of radiotherapy have developed rapidly from three-dimensional radiotherapy to volumetric 
modulated radiotherapy in recent decades1–3. The dose distribution conformed to tumours accompanied by 
rapid dose falloff to critical organs. Image-guided radiotherapy (IGRT) was used to increase treatment accuracy 
during the radiotherapy course4–9. Cone-beam computed tomography (CBCT) integrated into modern linear 
accelerators is the most widely used volume imaging system in radiotherapy10,11. For the body scan of the X-ray 
Volumetric Imager (XVI system, Elekta company, Stockholm, Sweden), the average dose was in the range of 
0.1–3.5 cGy12,13. The artefacts of CBCT, including extinction artefacts, beam hardening artefacts, partial vol-
ume effects, exponential edge-gradient effects (EEGEs), aliasing artefacts, ring artefacts, and motion artefacts, 
influenced the image quality. In addition, noise and scatter are well known to produce additional artefacts14. 
However, the CT values in CBCT images may fluctuate because of scattering contamination, depending on the 
shape, positioning, size, and inner tissue structure15,16. The original CT values of CBCT could not be used for 
dose calculation unless some correction methods were applied16–18. For the multiple purposes of image qual-
ity improvement and CT value correction, we adopted the deep learning method to resolve these problems. In 
recent years, some deep learning methods have been designed to improve image quality in medical imaging. 
Convolutional neural networks (CNNs) and generative adversarial networks (GANs) are two main kinds of deep 
learning methods used to improve image quality. Hu et al. proposed a residual encoder-decoder convolutional 
neural network (RED-CNN)19, which was designed to remove noise from low-dose CT. The ground truth data, 
normal-dose CT, came from the National Biomedical Imaging Archive (NBIA), and the input, low-dose CT, was 
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produced by adding noise into the sinograms simulated from the normal-dose images. The output result of the 
CT images preserved structural details and reduced image noise.

The generative adversarial network (GAN), defined by Goodfellow et al.20, contains two networks: generator 
and discriminator networks. The generator produced generated images from a convolutional neural network 
and scored by the discriminator compared to the ground truth images. After the training stage, the generator 
can generate images closer to the ground truth images. The adversarial loss function of the generator and the 
discriminator plays an important role in GAN.

GANs are known for their image quality improvement, but the vanilla version has numerous problems, such 
as non-convergence, model collapse and diminished gradient in the training step, because of Jensen–Shannon 
divergence between the model distribution and data distribution. To solve these problems, Arjovsky et al.21 
provided the Wasserstein distance in GANs’ loss function.

Because of 1-Lipschitz, WGAN suffers from the weight clipping problem that the weight may constrain on 
the boundary of the clipping constraint number. Therefore, Gulrajani et al.22 provides an alternative method for 
enforcing the Lipschitz constraint, called WGAN-GP.

The conditional GAN (cGAN)23 is similar to an extension of the vanilla GAN. cGAN adds y between the 
generator and discriminator as additional information, such as word vectors, images or masks, to constrain the 
generator to generate the desired image. With the additional information y, the generator may be as similar to 
the traditional supervised network that we set input data as an image, not just noise.

The U-net24,25 architecture is developed for fast and precise object segmentation in a 2D image. With the 
shortcut in the U-net structure, previous layer characteristics can be transferred to the following layers, and 
backpropagation can avoid weight decay. That is, because of the shortcut, the key in U-net, we can use parameters 
to create better images. Kida et al.26 took U-net as their model to improve image quality for CBCT. They took 
low-dose CBCT images as input data and planning computed tomography (pCT) as a ground truth for modelling.

Deblur-GAN27 made a blurred image into a clear image. It also designed a blur algorithm to create blurred 
images as input data. Zhu et al.28 recently designed CycleGAN as a more amazing image style transfer. It is 
unprecedented for the CycleGAN structure that two generators generate different domain images that can serve 
as inputs to another generator, and two generators can compose each other. In our objective, we can imagine that 
the model can make CBCT with the FBCT style. Kida et al.29 used CycleGAN to synthesize improved CBCT as 
planning CT to improve the image quality of CBCT for pelvic images with soft tissue and bony structures. The 
purpose of our study was to improve the image quality of CBCT in truncated chest CT images. Our proposed 
method combines Deblur-GAN and CycleGAN to achieve more precise image transfer in chest CBCT images.

Methods
Data pre‑processing.  Fifteen breast cancer patients were enrolled in this study. Before radiotherapy, each 
patient underwent planning CT, that is, the FBCT acquired by a Big Bore CT scanner (Discovery CT590 RT, GE 
company, Boston, USA), for treatment planning. The acquisition parameters of the GE CT scanner were detector 
rows of 16, helical scan pitch of 0.938:1, slice thickness of 2.5 mm, and FOV of 50 cm. The adaptive statistical 
iterative reconstruction (ASiR) algorithm of 30% (SS30) was selected to reconstruct FBCT images. The SS30 
denotes the selected ASiR mode as slice statistical reconstruction mode with 30% of the 100% ASiR, which was 
reconstructed with the original image30. The reconstructed FBCT images were used for this study. During every 
treatment fraction, CBCT was performed for image registration. There are 185 CBCT image datasets, in light of 
9856 CBCT images acquired by X-ray Volumetric Imager10,11 (XVI system, version R5.0, Elekta company, Stock-
holm, Sweden) using an optimization of Feldkamp backprojection reconstruction algorithm for training and 
testing. The acquisition parameters of XVI VolumeView were voltage of the X-ray tube of 120 kVp, current of 
40 mA, acquisition time of 120 s, frame rate of 5.5 frames per second, and voxel size of 1 mm × 1 mm × 1 mm for 
chest CBCT images. An M20 protocol was selected for XVI acquisition, “M” was the FOV of 42.5 cm × 42.5 cm 
at the kV detector panel, and “20” was 27.67 cm in length at the isocenter of the field projections. FBCT, which 
was performed once during CT simulation, was used as the ground truth for each CBCT set for this study. 
Among the images from the fifteen patients, those from three patients (1150 images) were kept for testing, and 
those from the remaining 12 patients (8706 images) were used to train the network. Pre-processing to build an 
image pair of CBCT and FBCT was as follows. The CBCT images for each patient were three-dimensionally 
pre-aligned to each of the FBCT images by rigid registration by PMOD software (Version 3.7, PMOD Technolo-
gies, Zurich, Switzerland). To avoid any adverse impact from non-anatomical structures on a CBCT to FBCT 
registration and as a model training procedure, binary masks were created to separate the body region from 
non-anatomical regions. These masks were created by finding the maximum convex hull with a threshold CT 
value of − 1000. CycleGAN does not need paired data, and we could use unpaired images, which may provide 
various characteristics for model training28. To accelerate the model training time, we still used paired data for 
modelling. We also clipped all image sizes from 512 × 512 down to 264 × 336 to minimize the anatomical region 
to accelerate the calculation time. We normalized the CT values of CBCT and FBCT images from a range of − 
950 to 500 into a range of 0–1. Hence, the pixels with CT values of less than − 950 were assigned to 0, and those 
with CT values of higher than 500 were assigned to 1. The scale range for modelling is 0–1.

Image modelling.  An overview of the model architecture is illustrated in Fig.  1. For generator G, we 
adopted the architecture for our generative networks from Kupyn et al.27. They proposed Deblur-GAN, which 
showed impressive results for generating synthetic clear images from blurred images. The generator architecture 
is shown in Fig. 2. The inception block31 adapted by GoogLeNet can extract different kinds of features by differ-
ent sizes of convolutions. In our study, the features from the large and small ranges can provide specific results 
and make the boundary clearer. The generative network contained one convolution block with stride two, two 
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inception blocks with stride two, nine residual blocks and two transposed convolution blocks. Each residual 
block consisted of a convolution layer, an instance normalization layer, and Swish activation32,33. The inception 
block, a collection of convolution layers of different sizes, such as the 1 × 1 convolution layer, 5 × 5 convolution 
layer, 9 × 9 convolution layer and 13 × 13 convolution layer, could capture detailed and brief characters without 
changing the image size. To concatenate different convolution layers in the inception block with different priori-
ties, as shown in Fig. 3, we multiply different weights by 1, 5, 9 and 13.

For discriminator D, shown in Fig. 4, inspired by Ledig et al.34, we followed architectural guidelines and 
dropped the last full connection from the last layer to the convolution layer with the input patch image, which 
aims to classify whether overlapping image patches were real or generated. Such a patch-level discriminator 
architecture had fewer parameters than a full-image discriminator and could work on arbitrarily sized images 
in a fully convolutional method.

Loss functions.  Our goal in this study is to define a deep neural network that finds a suitable mapping func-
tion that minimizes the loss functions. Let x ∈ X and X was CBCT that was an input image. Let y ∈ Y  and Y be 
FBCT, which was the ground truth image. In general, we can define the mapping function as Eq. (1)

Figure 1.   Architecture of Cycle-Deblur GAN.

Figure 2.   Generator architecture. n denotes the number of convolutional kernels, and s denotes stride. The 
default stride is 1, i.e., n64s2 denotes the convolution layer of 64 channels with stride 2.
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where ŷ  is the synthesis FBCT image and Gθ is the generative model that transforms x to y . To obtain decent ŷ  , 
the loss function for Gθ to generate a synthesis image from the input is shown in Eq. (2)

where (xi , yi) are paired CBCT and FBCT images. Inspired by Kida et al.29, our model has two generative models 
GCF : X → Y  and GFC : Y → X by input image pairs (xi , yi) . The two different generative models are trained 
to synthesize different targets such that GCF generates synthesis FBCT by input CBCT; otherwise, GFC outputs 
synthesis CBCT by giving FBCT. Moreover, there are two adversarial discriminators DF and DC , which aim to 
distinguish whether the output of the generative model is real or synthesis. For example, given FBCT input y , 

(1)ŷ = Gθ (x)

(2)θ̂ = argmin
θ

∑

i

L
(
Gθ (xi), yi

)

Figure 3.   InceptionBlock architecture. It uses different kernel sizes of convolutional layers and deals with 
detailed and brief features.

Figure 4.   Discriminator architecture.
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GFC intends to generate synthesis CBCT x̂  , which will be as similar as real CBCT x to foolish discriminator DC . 
In contrast, DF will judge the reconstructed ŷ  from generative model GCF by feeding synthesis CBCT x̂  and real 
x . That is, a cyclic method in which the discriminators are not only discriminator synthesized CBCT (or FBCT) 
but also reconstructed CBCT. The key idea is that generators and discriminators are trained on each other to 
enhance their accuracy. Therefore, our objective function is a minimax problem, as shown in Eq. (3):

Additionally, our novel networks include five types of loss functions: adversarial loss (adv); cycle-consistency 
loss (cycle); generated loss (generated); identity loss (identity); and Sobel filter loss (Sobel)35.

For the discriminators, we adopt WGAN-gp as our objective functions as Eqs. (4) and (5):

where E[•] is the expectation operator, the first two terms are the negative Wasserstein distance, which deter-
mines how much better the real term is than the synthesized term, and the last term is the gradient penalty, in 
which � is a regularization parameter, � = εy + (1− ε)GCF(x) and � = εx + (1− ε)GFC(y).

Therefore, the overall loss function for the discriminator is shown in Eq. (6):

The adversarial loss for generators is as Eq. (7):

Because of adversarial training, discriminators and generators will handle each best. That is, for the loss of 
discriminators, they encourage real images to score high and synthesized images as low like LWGAN−gp(GFC ,DC) . 
However, for the generator loss, they intend to let their synthesized images to score much higher, such as 
−Ey

[
DC

(
GFC

(
y
))]

 . Thus, they hold different loss function tasks and alternatively train each other.
The loss function of cycle consistency is shown in Eq. (8):

The loss maps x → GCF(x) → GFC(GCF(x)) ≈ x and y → GFC

(
y
)
→ GCF

(
GFC

(
y
))

≈ y , which are refer-
enced to forward cycle consistency loss and backward cycle consistency, respectively.

To make generators able to generate synthesis images, we define the generated loss, which can be expressed 
as Eq. (9):

The term can maintain the mapping of ŷ ≈ y and x̂ ≈ x , and it is our final objective. Identity loss is shown 
in Eq. (10):

The idea for identity loss is that the generative model will transform to the input image style regardless of the 
input., i.e., given synthesis FBCT to generative model GCF , the model should still output the image with FBCT 
style, even if the input is not a real CBCT. A similar method for GFC is given synthesis CBCT with the same style 
output as synthesis CBCT. We use a regularization term to keep the training from overfitting.

Sobel filter loss35 is shown in Eq. (11):

where δ1 and δ2 are Sobel gradient operators. The Sobel operator filters the gradient of image colour intensity by 
δ1 and δ2 and keeps the edges blurred.

The total objective function for generators can be defined as Eq. (12):

The hyper-parameters �adv , �cycle , �generated , �itentity , �sobel are changed during the training time, 
and �gan always has a weight of 1. In the first 10 epochs, the loss function is similar to a vanilla GAN, 
which means that all of the hyper-parameters are 0 except Lgan . In the next 10 epochs, we assigned 
�cycle = 5, �itentity = 5, �generated = 1, �sobel = 0 as the cycle-consistent period to be the main target. After 20 
epochs, we adopt �cycle = 10, �identity = 10, �generated = 10, �sobel = 10−4 as our main loss function parameters 
and because if the Sobel gradient loss is too high, the total loss may be misleading; thus, we adopt �sobel = 10−4 
as the optimal weight. Our goal is not only for the model to learn style transfer between CBCT and FBCT by 
cycle consistency but also to make the model fit another style by obtaining direct loss, such as �generated = 10 
and �sobel = 10−4 . The networks are trained with a learning rate of 10−4 , with the Adam optimizer36 and with 

(3)min
G,F DF ,DC

maxLgan(GCF ,DF)+ Lgan(GFC ,DC)

(4)min
GCF DF

maxLWGAN−gp(GCF ,DF) = Ex[DF(GCF(x))]−Ey

[
DF

(
y
)]

+�E�

[
(�∇DF(�)�2 − 1)2

]

(5)min
GFC DC

maxLWGAN−gp(GFC ,DC) = Ey

[
DC

(
GFC

(
y
))]

−Ex[DC(x)]+�E�

[
(�∇DC(�)�2 − 1)2

]

(6)LD = LWGAN−gp(GCF ,DF)+ LWGAN−gp(GFC ,DC)

(7)Ladv = −Ex[DF(GCF(x))]− Ey

[
DC

(
GFC

(
y
))]

(8)Lcycle = Ex[�x − GFC(GCF(x))�2]+ Ey

[
�y − GCF

(
GFC

(
y
))
�
2

]

(9)Lgenerated = Ex,y

[
�y − GCF(x)�1

]
+ Ex,y

[
�x − GFC

(
y
)
�
1

]

(10)Lidentity = Ex[�GCF(x)− GCF(GCF(x))�2]+ Ey

[
�GFC

(
y
)
− GFC

(
GFC

(
y
))
�
2

]

(11)
Lsobel = Ex,y

[
δ1�y − GCF(x)�1

]
+Ex,y

[
δ2�y − GCF(x)�1

]
+Ex,y

[
δ1�x − GFC

(
y
)
�
1

]
+Ex,y

[
δ2�x − GFC

(
y
)
�
1

]
,

(12)LG = �advLadv + �cycleLcycle + �generatedLgenerated + �identityLidentity + �sobelLsobel
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a batch size of 8. Since GAN has difficulty finding the best minimal loss, we decay the learning rate by a cosine 
annealing scheduler while keeping the same learning rate in the first 20 epochs.

CT images used for training contain a large range of black backgrounds around the body. The black border 
will cause the model to be less sensitive to edge pixels. To improve the model stability and prevent overfitting, data 
augmentation is applied during the training time. Every image pair (CBCT and FBCT), loaded from a dataset, will 
be synchronously randomly cropped into 128 × 128 sizes. Second, the image pairs are synchronously randomly 
rotated angles between − 20° and 20° and horizontally and vertically flipped. Then, the image pairs are generated.

We used a personal computer with a single GPU (Nvidia Titan XP) and a CPU (Intel Xeon E5-2620 v4 @ 
2.10 GHz) with 64 GB memory, running Ubuntu 18.04 LTS. We implemented our method with Python 3.6.7 
and PyTorch 1.0.0. The training time for 200 epochs needs approximately 3 days.

Quantitative evaluation.  The CT value is a linear transformation of the original linear attenuation coef-
ficient measurement into one in which the radiodensity of distilled water at standard pressure and temperature 
(STP) is defined as the zero CT value, while the radiodensity of air at STP is defined as − 1024 HU. The CT values 
of the different regions for CBCT, RED-CNN model images, CycleGAN model images, and CycleDeblur GAN 
images were compared to FBCT. We chose three kinds of soft tissue, breast, muscle, and mediastinum; two kinds 
of bony structures, sternum and spine; and lung tissue to compare CT values. To evaluate the performance of the 
proposed method, Cycle–Deblur GAN, we chose existing metrics such as the peak-signal-to-noise-ratio (PSNR), 
which is measured to capture the reduction in noise, and the structural similarity index measure (SSIM)37, which 
is one of the human visual system-based metrics and to evaluate different attributes such as luminance, contrast, 
and structure comprehensively. The mean absolute error (MAE) is one of the quantitative evaluations and is also 
used in our objective (loss) function. The PSNR is calculated from the mean square error (MSE), which is com-
monly used to measure distortion. There were seven regions of interest (ROIs) shown in Fig. 5, which were used 
to compare the CT value, MSE, PSNR, and SSIM. We define MSE, PSNR, and SSIM as Eqs. (13)–(21): 

(13)MAE =
1

N

∑∣∣y − GCF(x)
∣∣

(14)MSE =
1

N

∑(
y − GCF(x)

)2

Figure 5.   (a) FBCT, (b) CBCT, and the modeling results of (c) Cycle-Deblur GAN, (d) CycleGAN, and (e) 
RED-CNN were performed by XVI software and PMOD software. (W = 1450, L = − 225 for all CT images).
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Blind image observer study.  The FBCT, CBCT, generated CBCT images from the Cycle-Deblur GAN 
model, CycleGAN model and RED-CNN model were scored by thirteen medical imaging professionals, includ-
ing seven radiation oncologists and six medical physicists, using a five-grade scoring method. FBCT was defined 
as five out of five as the ground truth. The CBCT and generated CBCT images from the Cycle-Deblur GAN 
model, Cycle-GAN model and RED-CNN model were scored by comparison to FBCT.

Ethical statement.  We confirmed that all methods were carried out in accordance with relevant guidelines 
and regulations, and informed consent for patients was waived by the Research Ethics Review Committee of 
Far Eastern Memorial Hospital (FEMH). Images were provided by FEMH and approved by the Research Ethics 
Review Committee of FEMH (107144-E).

Results
The generated CBCT images from RED-CNN, CycleGAN, and our proposed Cycle-Deblur GAN with seven 
ROIs are shown in Fig. 5. The generated CBCT images from Cycle-Deblur GAN performed better visualization 
than those from CycleGAN and RED-CNN. The CT images of the lung, soft tissue, and bone in seven specific 
ROIs are shown in Figs. 5, 6, 7 and 8. For the lung ROIs, Cycle-Deblur GAN demonstrated more lung detail 
preservation than other methods. The ROIs were analysed by the CT value, MAE, PSNR, and SSIM. In Table 1, 
the CT values of seven ROIs in Cycle-Deblur GAN, CycleGAN, and RED-CNN are shown as the mean values 
with standard deviations.

The CT values of the ROI in the right lung for FBCT, CBCT, generated CBCT from Cycle-Deblur GAN, 
CycleGAN, and RED-CNN were − 775 ± 123, − 862 ± 77, − 778 ± 166, − 807 ± 121, and − 780 ± 33, respectively. 
The CT values of the ROI in breast tissue for FBCT, CBCT, generated CBCT from Cycle-Deblur GAN, CycleGAN, 
and RED-CNN were − 80 ± 20, − 336 ± 36, − 81 ± 6, 26 ± 30, and − 42 ± 10, respectively. The CT values of the ROI 
in the sternum for FBCT, CBCT, generated CBCT from RED-CNN, CycleGAN, and Cycle-Deblur GAN were 
245 ± 151, 66 ± 101, 230 ± 103, 411 ± 52, and 237 ± 30, respectively. In Table 2, it can be seen that the MAE of our 
proposed Cycle-Deblur GAN had the smallest value compared to CycleGAN and RED-CNN for different ROIs.

In Table 3, the PSNRs for the CBCT, Cycle-Deblur GAN, CycleGAN, and RED-CNN models in the right lung 
were 21.86, 25.05, 25.38, and 22.88, respectively. The PSNRs of the Cycle-Deblur GAN and CycleGAN models in 
the lung showed comparable results. The PSNRs for the CBCT, Cycle-Deblur GAN, CycleGAN, and RED-CNN 
models for breast tissue were 15.01, 36.49, 22.49, and 29.75, respectively. The PSNRs for the CBCT, Cycle-Deblur 
GAN, CycleGAN, and RED-CNN models for the sternum were 17.74, 25.39, 17.45, and 20.71, respectively. The 
Cycle-Deblur GAN was shown to have a better PSNR in the breast, mediastinum, muscle, sternum, and spine 
than the other models.

In Table 4, the SSIM results of CBCT, Cycle-Deblur GAN, CycleGAN, and RED-CNN for the left lung were 
0.9922, 0.9993, 0.9992, and 0.9986, respectively. The SSIM results of CBCT, Cycle-Deblur GAN, CycleGAN, and 
RED-CNN for the sternum were 0.8759, 0.9118, 0.5681, and 0.6849, respectively. The SSIMs of the Cycle-Deblur 

(15)PSNR = 10× log10

(
MAX2

I

MSE

)
, whereMAX = 65, 535for16− bitimage
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(
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)(
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)
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1
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Figure 6.   The right and left lung ROIs for quantitative evaluation are shown in (a,f): FBCT, (b,g): CBCT, 
(c,h): Cycle-Deblur GAN, (d,i): CycleGAN and (e,j): RED-CNN were performed by XVI software and PMOD 
software. (W = 1450, L = − 225 for all CT images).

Figure 7.   The soft tissue ROIs of the breast, muscle and mediastinum for quantitative evaluation are shown 
in (a,f,k): FBCT, (b,g,l): CBCT, (c,h,m): Cycle-Deblur GAN, (d,i,n): CycleGAN and (e,j,o): RED-CNN were 
performed by XVI software and PMOD software. (W = 1450, L = − 225 for all CT images).
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GAN and CycleGAN models in the lung showed comparable results. The Cycle-Deblur GAN was shown to have 
better SSIM in the breast, mediastinum, muscle, sternum, and spine than the other models.

Figure 8.   The bony structure ROIs of the sternum and spinal process for quantitative evaluation are shown in 
(a,f): FBCT, (b,g): CBCT, (c,h): Cycle-Deblur GAN, (d,i): CycleGAN and (e,j): RED-CNN were performed by 
XVI software and PMOD software. (W = 1450, L = − 225 for all CT images).

Table 1.   The CT value comparison of different ROIs.

FBCT (mean ± SD) CBCT (mean ± SD)
Cycle-Deblur GAN 
(mean ± SD)

CycleGAN 
(mean ± SD)

RED-CNN 
(mean ± SD)

Right lung − 775 ± 123 − 862 ± 77 − 778 ± 166 − 807 ± 121 − 780 ± 33

Left lung − 806 ± 34 − 893 ± 33 − 811 ± 28 − 852 ± 39 − 795 ± 16

Breast − 80 ± 20 − 336 ± 36 − 81 ± 6 26 ± 30 − 42 ± 10

Mediastinum 48 ± 6 − 137 ± 12 40 ± 7 215 ± 12 − 10 ± 45

Muscle 66 ± 9 − 112 ± 23 56 ± 12 238 ± 25 75 ± 25

Sternum 245 ± 151 66 ± 101 230 ± 103 411 ± 52 237 ± 30

Spine 304 ± 19 83 ± 23 308 ± 33 443 ± 27 334 ± 22

Table 2.   MAE comparison of different models at different sites.

MAE Right lung Left lung Breast Mediastinum Muscle Sternum Spine

CBCT 0.06333 0.04346 0.17647 0.12745 0.12325 0.12342 0.15261

Cycle-Deblur GAN 0.03647 0.01242 0.01166 0.00659 0.00894 0.04532 0.01634

CycleGAN 0.03933 0.01427 0.07277 0.11502 0.11804 0.11449 0.09553

RED-CNN 0.04757 0.01841 0.02865 0.04075 0.01510 0.07865 0.02244

Table 3.   PSNR comparison of different models at different sites.

PSNR Right lung Left lung Breast Mediastinum Muscle Sternum Spine

CBCT 21.86 27.01 15.01 17.87 18.11 17.74 16.28

Cycle-Deblur GAN 25.05 36.07 36.49 40.92 39.18 25.39 32.88

CycleGAN 25.38 35.98 22.49 18.76 18.47 17.45 20.24

RED-CNN 22.88 33.85 29.75 25.64 34.29 20.71 31.25
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In the blind image observer study, the median years of experience of radiation oncologists and medical 
physicists were 11 years, with a range from 6 to 33 years, and 8 years, with a range from 6 to 22 years. The results 
are shown in Table 5. The mean scores of the CBCT and generated CBCT images from the Cycle-Deblur GAN 
model, CycleGAN model and RED-CNN model were 2.8, 4.5, 3.3, and 1.3, respectively. The CBCT generated 
from the Cycle-Deblur GAN model scored higher than the other models.

Discussion
Our proposed Cycle-Deblur GAN consists of CycleGAN and Deblur-GAN with increasing shortcut numbers 
and inception blocks to preserve the detailed structure. For the activation layers, since the performance of Swish 
was better than ReLU in test set accuracy when changing the number of layers33, we adopted it as our activation 
function for Cycle-Deblur GAN. Satoshi Kida et al.29 proposed CycleGAN for visual enhancement in pelvic CT 
images. However, CycleGAN could not perform better to improve image quality in PSNR, SSIM, and MAE for 
chest CBCT images, as shown in bone and soft tissues. In the RED-CNN19 model, 14 input images and ground 
truth images were created from the same projections for comparison. However, in our study, CBCT and FBCT 
were acquired from one patient on different days. The image registration was needed before modelling. When 
using the RED-CNN model to train CBCT and FBCT in our study, the misalignment influenced the results of 
the RED-CNN model, which showed blurred results. For the Cycle-Deblur GAN model, the CBCT and FBCT 
images were both treated as the input images to derive a more stable model. Hence, the registration error due 
to the different acquisition dates of FBCT and CBCT for Cycle-Deblur GAN represented less influence, and the 
Cycle-Deblur GAN model could generate higher image quality images.

CT values of the original CBCT images may fluctuate for the same material in the different relative positions 
being scanned in the image volume15. In Table 1, the CT values of the generated CBCT from Cycle-Deblur GAN 
showed better results than those from RED-CNN and CycleGAN in the breast, lung, muscle, mediastinum, and 
sternum. For bone tissue, including the spine and sternum, the CBCT generated from the RED-CNN model 
showed a better result in the quantitative analysis of PSNR and SSIM. However, the visual enhancement of the 
generated CBCT from the RED-CNN model, as shown in Fig. 8, was blurred. The ROI size of the spine, breast, 
and sternum was smaller than others due to contouring the same structure in one ROI. The PSNR and SSIM of 
our proposed method demonstrated better results than other methods and showed more detail preservation, 
especially in lung tissues, as shown in Fig. 6.

Once the Cycle-Deblur GAN was well trained, the generator of the Cycle-Deblur GAN was used for testing. 
In the testing process, we input the CBCT image passing through the generator model and receive the gener-
ated CBCT. The generated CBCT with high image quality benefits the image verification by the oncologist. The 
average time of the generator to produce an improved CBCT image was approximately 0.17 s and depended on 
the hardware used.

Table 4.   SSIM comparison of different models at different sites.

SSIM Right lung Left lung Breast Mediastinum Muscle Sternum Spine

CBCT 0.9811 0.9922 0.9134 0.9345 0.9323 0.8759 0.7566

Cycle-Deblur GAN 0.9923 0.9993 0.9972 0.9988 0.9981 0.9118 0.9469

CycleGAN 0.9926 0.9992 0.9726 0.8953 0.8728 0.5681 0.5172

RED-CNN 0.9870 0.9986 0.9924 0.9722 0.9922 0.6849 0.9476

Table 5.   The results of five-grade scoring method. RO radiation oncologist, MP medical physicist.

CBCT Cycle-Deblur GAN CycleGAN RED-CNN

RO 1 3 5 4 1

RO 2 2 4 3 1

RO 3 2 4 3 1

RO 4 4 5 4 1

RO 5 2 4 3 1

RO 6 2 4 3 1

RO 7 4 5 3 2

MP 1 4 5 4 3

MP 2 2 4 3 1

MP 3 2 4 3 1

MP 4 2 4 3 1

MP 5 4 5 3 2

MP 6 3 5 4 1

Mean 2.8 4.5 3.3 1.3
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Limitations of the study
We proposed the Cycle-Deblur GAN method to model chest CBCT images and obtain better results than the 
CycleGAN and RED-CNN methods in this study. The input data were all chest CT images, and the modelling 
generator used to produce the generated CBCT may be limited to the chest region only. Smoothed images of 
better PSNR with lower noise may be accompanied by lower contrast. Hence, the visualized evaluation of SSIM 
was also evaluated in our study.

Conclusions
The CBCT generated by our proposed Cycle-Deblur GAN model demonstrated higher PSNR and SSIM results in 
soft tissue, lung, and bony structures with improved image quality. The generated CBCT images with accurate CT 
values can be used for adaptive dose calculation in radiotherapy. The overall artefact of CBCT was well removed 
by using this model. This model enhanced the structural details in the lung, soft tissue, and bony structure and 
showed better visualization than the original CBCT. The Cycle-Deblur GAN model improved the image quality of 
CBCT, preserved structural details and provided accurate CT values for dose calculation. The high image quality 
and accurate CT values of CBCT would assist the development of radiomics in our future work.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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