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Artificial intelligence matches 
subjective severity assessment 
of pneumonia for prediction 
of patient outcome and need 
for mechanical ventilation: a cohort 
study
Shadi Ebrahimian1*, Fatemeh Homayounieh1, Marcio A. B. C. Rockenbach2, 
Preetham Putha3, Tarun Raj3, Ittai Dayan1,2, Bernardo C. Bizzo1,2, Varun Buch2, Dufan Wu1,4, 
Kyungsang Kim1,4, Quanzheng Li1,4, Subba R. Digumarthy1 & Mannudeep K. Kalra1

To compare the performance of artificial intelligence (AI) and Radiographic Assessment of Lung 
Edema (RALE) scores from frontal chest radiographs (CXRs) for predicting patient outcomes and the 
need for mechanical ventilation in COVID-19 pneumonia. Our IRB-approved study included 1367 
serial CXRs from 405 adult patients (mean age 65 ± 16 years) from two sites in the US (Site A) and 
South Korea (Site B). We recorded information pertaining to patient demographics (age, gender), 
smoking history, comorbid conditions (such as cancer, cardiovascular and other diseases), vital signs 
(temperature, oxygen saturation), and available laboratory data (such as WBC count and CRP). Two 
thoracic radiologists performed the qualitative assessment of all CXRs based on the RALE score for 
assessing the severity of lung involvement. All CXRs were processed with a commercial AI algorithm to 
obtain the percentage of the lung affected with findings related to COVID-19 (AI score). Independent 
t- and chi-square tests were used in addition to multiple logistic regression with Area Under the Curve 
(AUC) as output for predicting disease outcome and the need for mechanical ventilation. The RALE 
and AI scores had a strong positive correlation in CXRs from each site (r2 = 0.79–0.86; p < 0.0001). 
Patients who died or received mechanical ventilation had significantly higher RALE and AI scores than 
those with recovery or without the need for mechanical ventilation (p < 0.001). Patients with a more 
substantial difference in baseline and maximum RALE scores and AI scores had a higher prevalence of 
death and mechanical ventilation (p < 0.001). The addition of patients’ age, gender, WBC count, and 
peripheral oxygen saturation increased the outcome prediction from 0.87 to 0.94 (95% CI 0.90–0.97) 
for RALE scores and from 0.82 to 0.91 (95% CI 0.87–0.95) for the AI scores. AI algorithm is as robust a 
predictor of adverse patient outcome (death or need for mechanical ventilation) as subjective RALE 
scores in patients with COVID-19 pneumonia.
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WBC	� White blood cell
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AUC​	� Area under the curve
RT-PCR	� Reverse transcription-polymerase chain reaction
ICU	� Intensive care unit
HIPAA	� Health Insurance Portability and Accountability Act
BMI	� Body Mass Index
ROI	� Region of Interest
DICOM	� Digital imaging and communications in medicine
CI	� Confidence interval
OR	� Odds ratio

Up to 80% of patients with single-strand ribonucleic acid (RNA), beta-coronavirus infection, also known as Coro-
navirus Disease of 2019 (COVID-19) are asymptomatic. In others, the disease can present with mild symptoms 
requiring no specific or supportive treatment to severe, life-threatening symptoms leading to acute respiratory 
distress syndrome, multiorgan failure, and/or thromboembolic complications1. Patients with severe disease often 
require hospitalization, mechanical ventilation, intensive care unit admission, and despite the best supportive 
care, some succumb to the disease. The reference diagnostic standard for COVID-19 pneumonia is the real-
time reverse transcription-PCR (RT-PCR) assay using nasopharyngeal or oropharyngeal swab2. Imaging tests, 
including chest radiographs (CXRs), are not considered as diagnostic or screening tools because of low sensitivity 
(69% for CXR) in detecting pulmonary involvement, especially in the early stages of the disease when CXRs are 
often normal in patients with COVID-19 pneumonia3,4. CXRs can help assess severity, outcome, progression, 
and complications of the disease5.

Prior studies suggest that the Radiographic Assessment of Lung Edema (RALE) score enable assessment 
of the extent of pulmonary involvement in COVID-19 pneumonia and prediction of patient outcome such as 
hospitalization and intensive care unit (ICU) admission6. Artificial intelligence (AI)-based algorithms have also 
been reported as an accurate method for detecting the severity of lung involvement and distinguishing between 
moderate and severe pneumonia on CXRs7. AI algorithms were also sensitive for differentiating bacterial and 
other viral pneumonias from COVID-19 pneumonia8. Most AI studies focus on the diagnosis of COVID-19 
pneumonia on baseline CXRs, with only a few studies on the role of AI for predicting disease progression and 
patient outcomes on the baseline and/or serial CXRs. We processed multicenter CXRs with a commercially avail-
able AI algorithm (qXR v2.1 c2, Qure.ai Technologies, Mumbai, India), which was specifically trained with data 
from patients with RT-PCR assay positive COVID-19. The algorithm provides a pixel level border and percentage 
of projected lung area affected with COVID-19 related findings. The purpose of our study was to compare the 
performance of AI and RALE scores from CXRs for predicting patient outcomes and the need for mechanical 
ventilation in COVID-19 pneumonia.

Methods
We performed an Institutional Review Board (IRB) approved (Partners Human Research Committee, Protocol 
#: 2016P000767/PHS), HIPAA compliant study with a waiver of informed consent. All methods were carried 
out in accordance with relevant guidelines and regulations.

Patients.  Our study included 405 adult patients from the United States (Site A: n = 226 patients at Massachu-
setts General Hospital, Boston MA) and South Korea (Site B: n = 179 patients from affiliated hospitals in Daegu, 
South Korea including Kyungpook National University, Yeungnam University College of Medicine, Keimyung 
University School of Medicine and Catholic University of Daegu School of Medicine). All participating hospitals 
were tertiary care hospitals.

The inclusion criteria for the study were RT-PCR positive COVID-19 pneumonia, availability of CXRs, and 
patient outcome data such as death or recovery from COVID-19 infection and mechanical ventilation. All CXRs 
from the onset of symptoms or RT-PCR testing were included in the study. Patients with artifacts and low quality 
CXRs (incompletely imaged lungs) were excluded. A total of 1367 CXRs were included in the study with 644 
CXRs from Site A (1–11 CXRs/patient) and 723 CXRs from Site B (1–20 CXRs/patient).

We reviewed patients’ electronic medical records to obtain information pertaining to their demographics 
(age, gender, body mass index -BMI), smoking history, comorbid conditions (such as cardiovascular diseases, 
blood disorders, kidney diseases, liver diseases, respiratory diseases, metabolic syndromes, and neurodegenera-
tive disorders from Site A only), vital signs (body temperature and peripheral oxygen saturation at the time of 
admission) and laboratory data (including white blood cell count, platelet count, and C-reactive protein- CRP 
from Site B only).

Qualitative assessment.  Two thoracic radiologists (SRD—16  years of experience; MKK—13  years of 
experience) performed the qualitative assessment of all de-identified frontal CXRs included in the study. They 
used the previously described RALE score for assessing the radiographic extent and the severity of lung involve-
ment from COVID-19 pneumonia9. For the RALE score, each lung was divided into two quadrants (upper and 
lower quadrants) by a vertical line through the vertebral column and a horizontal line at the level of the origin 
of the upper lobe bronchus from the left main bronchus. Within each quadrant, opacities were separately scored 
for density (scores 1, 2 and 3 for hazy, intermediate and dense consolidation, respectively) and extent (scores 0, 
1, 2, 3, and 4 for none, < 25%, 25–50%, 50–75%, and > 75% of quadrant involved, respectively) (Fig. 1). RALE 
score represented the sum of the products of density and extent scores of each lobe (minimum score 0; maxi-
mum score 48). As a surrogate of approximate lung volume, we recorded the number of right anterior rib, which 
crossed the anterior aspect of the right hemidiaphragm.
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Figure 1.   Frontal CXRs of patients with RT-PCR positive COVID-19 pneumonia. A A 65-year-old male from Site A with 
baseline (A1: RALE score 12, AI score 101) and follow-up CXRs (A2: RALE score 32, AI score 175) received mechanical 
ventilation and died after 30 days of hospitalization. B An 84-year-old male from Site B with baseline (B1: RALE score 10, AI 
score 59) and follow-up CXRs (B2: RALE score of 29, AI score 127) received mechanical ventilation and expired after 17 days of 
hospitalization. C A 58-year-old male from Site A had full recovery following hospitalization (baseline CXR, C1: RALE score 24, 
AI score 156; follow-up CXR, C2: RALE score 9, AI score 133). The patient required mechanical ventilation. D A 57-year-old 
male from Site B had full recovery following hospitalization. The radiographic opacities on baseline CXR (D1: RALE score 11, 
AI score 98) resolved on follow-up CXR (D2: RALE score 0, AI score 0). The patient did not require mechanical ventilation.
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AI algorithm.  DICOM images of all frontal CXRs were imported into a commercial AI algorithm (qure.ai, 
Mumbai, India) and processed by two study coauthors (SE and FH with 1-year post-doctoral research experi-
ence in thoracic imaging). The algorithm provides the percentage of projected area with COVID-19 related 
findings which we deemed as the AI score. The processing time per CXR was < 5 s.

The AI algorithm is a deep learning-based model trained with two sets of data. With the first set of 2.5 million 
CXRs, the algorithm was trained and validated for detection and distribution of pulmonary opacities along with 
presence of other radiographic findings such as hilar enlargement, pleural effusions, cavities, nodules, and calcifi-
cations. The second set of 600 CXRs (300 CXRs from RT-PCR assay positive COVID-19 positive patients and 300 
CXRs without COVID-19 pneumonia) were used to train the algorithm to output COVID-19 prediction scores. 
None of the two datasets belonged to any of the participating institutions or countries included in our study.

The abnormality detection AI algorithm in our study is composed of two parts. First, the abnormality-specific 
region of interest (ROI) generator comprises multiple segmentation networks using U-Net architecture10. It cre-
ates a mask for different anatomies such as lungs, diaphragm, and mediastinum and then generates a set of ROIs 
with a specific abnormality. Second, a hybrid convolutional neural network generates outputs of a low-resolution 
probability map and a prediction score of findings. The predictions from each of the multiple ROIs are pooled 
with the Log-Sum-Exp function (a convex approximation of the maximum function) to obtain the overall 
prediction score and pixel map11–13. The hybrid network was trained end-to-end using both Natural Language 
Processing-inferred labels from radiology reports and pixel-level annotations from radiologists where available.

Upon completion of processing, the AI algorithm outputs a secondary capture DICOM with the follow-
ing components: pixel-level border (the affected lung regions with COVID-19 related findings), percentage of 
projected area with COVID-19 related findings, the risk of the CXR being from COVID-19 positive patient 
(COVID-19 risk as high, medium, low and none) and a COVID-19 score for each lung, separately. The total AI 
score was estimated by adding scores for each lung.

Code availability.  The Qure.ai algorithm used in our study is commercially available for clinical use in 
Europe (CE approved). At the time of writing of this manuscript the AI algorithm was not approved for clinical 
use in the US. Users can try the algorithm on the vendor website (https​://scan.qure.ai/ accessed on 11.18.2020).

Statistical analyses.  The RALE and AI scores from the baseline and serial CXRs were recorded in Micro-
soft EXCEL (Microsoft Inc., Redmond, Washington, USA). For patients with multiple CXRs, we estimated the 
maximum RALE and AI scores. Independent t- and chi-square tests were used to analyze the quantitative and 
qualitative variables, respectively. We obtained odd’s ratio (OR) to predict patient outcomes from different clini-
cal and laboratory variables. We used a linear correlation test to estimate the direction and magnitude of the 
association between the RALE and AI scores. We estimated the percentage agreement between the trends of 
AI and RALE scores over serial CXRs. Multiple logistic regression was performed with Area Under the Curve 
(AUC) as output for predicting disease outcome and the need for mechanical ventilation (SPSS version 24, IBM, 
Chicago, IL). A p-value of less than 0.05 was deemed to suggest a significant statistical difference.

Results
Clinical and laboratory information.  The mean age (and standard deviations) of patients from sites A 
and B were 65 ± 16 years (age range 23–96 years) and 63 ± 17 years (age range 20–97 years), respectively.

Among the 405 patients from both sites, 147 patients died (Site A: 98/226, Site B: 49/179) and 258 patients 
recovered (Site A: 128/226, Site B: 130/179) from COVID-19 pneumonia. Of these, 124 patients (Site A: 92/226, 
Site B: 32/179) required mechanical ventilation during hospitalization. At both sites, patients who died were 
significantly older than those who recovered from their infection (p < 0.001). Age was associated with a higher risk 
of mortality (AUC up to 0.78), but not the need for mechanical ventilation (AUC up to 0.56). The demographic 
data for the patients from both sites are summarized in Tables 1, 2, 3 and 4.    

Patients with smoking history, as well as the presence of neurodegenerative disorders and cancer, were 
more common in patients who died from COVID-19 pneumonia as compared to patients who survived 
(p = 0.001–0.045). Patients who needed mechanical ventilation had higher rates of liver disorders than those 
who did not require mechanical ventilation (p = 0.019).

History of cancer (OR 2.9, 95% confidence interval (CI) 1.5–5.6) and neurodegenerative diseases (OR 4.1, 
95% CI 1.4–11.8) were independent predictors of mortality from COVID-19 pneumonia.

Total WBC count (AUC 0.76, 95% CI 0.64–0.89) and peripheral oxygen saturation < 93% (OR 5.7, 95% CI 
2.4–13.8) were strong predictors of death-related to COVID-19 pneumonia. Both the total WBC counts (AUC 
0.75, 95% CI 0.62–0.87) and oxygen saturation < 93% (OR 4.5, 95% CI 1.8–11.2) were independent predictors 
of mechanical ventilation. Other clinical and laboratory data, including the CRP or platelet counts, were not 
associated with a higher rate of mortality or mechanical ventilation (p = 0.103–0.729) (Tables 1, 2, 3 and 4).

RALE and AI scores.  The RALE and AI scores had a strong positive correlation in the entire datasets 
(r2 = 0.83, p < 0.0001) as well as at the level of each participating site (Site A: r2 = 0.79, p < 0.0001; Site B: r2 = 0.86, 
p < 0.0001). There was a strong percentage agreement between the changes over serial CXRs for RALE and AI 
scores from both sites (Site A: 75.3%; Site B: 77.1%).

Both the baseline and maximum RALE and AI scores in patients who died or received mechanical ventilation 
were significantly higher than the corresponding scores than those with recovery or without need for mechanical 
ventilation (p < 0.001–0.013) (Tables 1, 2, 3 and 4). Among patients with serial CXRs (n = 323/405), those who 
died and received mechanical ventilation had significantly greater RALE and AI score changes (p < 0.001–0.013) 
(Tables 1, 2, 3 and 4).

https://scan.qure.ai/
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Figures 2 (Site A) and 3 (Site B) summarize the site-specific performance of RALE and AI scores. Table 5 
summarizes the best sensitivity and specificities for RALE and AI scores for prediction of death and mechanical 
ventilation.

There was no difference in prediction of COVID-19 mortality from baseline CXR’s RALE score (AUC 0.87) 
and the maximum difference between RALE scores across serial CXRs (AUC up to 0.86) (p > 0.05). However, 

Table 1.   Summary of assessed variables for prediction of death versus recovery from COVID-19 pneumonia 
in patients from Site A. Maximum RALE scores were stronger predictors than AI scores for final patient 
outcome. SD standard deviation, Y/N present or absent, ds disease, max maximum, AUC​ area under the curve, 
CI confidence interval, OR odd’s ratio, % percentage. Numbers in square parenthesis represent odd’s ratios 
(R2-14).

Outcome

p value
AUC (95% CI)
[OR]

Death Recovery

(n = 98) (n = 128)

Age (mean ± SD, years) 73 ± 12 60 ± 17  < 0.001 0.70 (0.61–0.78)

Male/Female 56/42 [57%/43%] 79/49 [62%/38%] 0.549 [0.84]

Smoking (Y/N) 15/83 [15%/85%] 9/119 [7%/93%] 0.045 [2.4]

Cancer (Y/N) 30/68 [31%/69%] 17/111 [13%/87%] 0.001 [2.9]

Cardiovascular ds (Y/N) 59/39 [60%/40%] 61/67 [48%/52%] 0.061 [1.7]

Blood ds (Y/N) 11/87 [11%/89%] 9/119 [7%/93%] 0.271 [1.7]

Kidney ds (Y/N) 15/83 [15%/85%] 10/118 [8%/92%] 0.075 [2.1]

Liver ds (Y/N) 4/94 [4%/96%] 8/120 [6%/94%] 0.471 [0.6]

Metabolic ds (Y/N) 56/42 [57%/43%] 67/61 [52%/48%] 0.473 [1.2]

Neurodegenerative ds (Y/N) 14/84 [14%/86%] 5/123 [4%/96%] 0.005 [4.1]

Lung ds (Y/N) 28/70 [29%/71%] 24/104 [19%/81%] 0.082 [1.7]

Baseline RALE 8.9 ± 8.9 3.7 ± 5.2  < 0.001 0.71 (0.64–0.78)

Max RALE 18.9 ± 8.6 7.9 ± 7.7  < 0.001 0.83 (0.77–0.90)

Baseline AI score 68.2 ± 48.4 43.2 ± 45.9  < 0.001 0.66 (0.58–0.73)

Max AI score 121.0 ± 34.6 83.8 ± 53.9  < 0.001 0.71 (0.62–0.80)

RALE score change 10.6 ± 8.7 3.5 ± 5.1  < 0.001 0.75 (0.68–0.83)

AI score change 54.9 ± 47.1 31.8 ± 38.0 0.001 0.65 (0.56–0.74)

Table 2.   Summary of assessed variables for predicting need for mechanical ventilation in COVID-19 patients 
from Site A. Maximum RALE and AI scores were the strongest predictors. SD standard deviation, Y/N present 
or absent, ds disease, max maximum, AUC​ area under the curve, CI confidence interval, OR odd’s ratio, % 
percentage. Numbers in square parenthesis represent odd’s ratios (R2-14).

Mechanical ventilation

p value
AUC (95% CI)
[OR]

Yes No

(n = 92) (n = 134)

Age (mean ± SD, years) 65 ± 15 66 ± 18 0.955 0.52 (0.45–0.60)

Male/Female 60/32 [65%/35%] 75/59 [56%/44%] 0.155 [1.5]

Smoking (Y/N) 12/80 [13%/87%] 12/122 [9%/91%] 0.332 [1.5]

Cancer (Y/N) 21/71 [23%/77%] 26/108 [19%/81%] 0.543 [1.2]

Cardiovascular ds (Y/N) 45/47 [49%/51%] 75/59 [56%/44%] 0.278 [0.7]

Blood ds (Y/N) 8/84 [9%/91%] 12/122 [9%/91%] 0.904 [1.1]

Kidney ds (Y/N) 10/82 [11%/89%] 15/119 [11%/89%] 0.931 [0.9]

Liver ds (Y/N) 1/91 [1%/99%] 11/123 [8%/92%] 0.019 [1.5]

Metabolic ds (Y/N) 45/47 [49%/51%] 78/56 [58%/42%] 0.190 [0.7]

Neurodegenerative ds (Y/N) 4/88 [4%/96%] 15/119 [11%/89%] 0.067 [0.3]

Lung ds (Y/N) 21/71 [23%/77%] 31/103 [23%/77%] 0.944 [0.9]

Baseline RALE 8.6 ± 9.1 4.1 ± 5.5  < 0.001 0.66 (0.59–0.74)

Max RALE 17.2 ± 9.1 10.9 ± 9.6  < 0.001 0.70 (0.62–0.78)

Baseline AI score 69.6 ± 48.9 43.4 ± 45.7  < 0.001 0.66 (0.58–0.73)

Max AI score 122.9 ± 38.0 86.9 ± 49.6  < 0.001 0.70 (0.62–0.78)

RALE score change 9.1 ± 8.2 5.8 ± 7.7 0.013 0.63 (0.54–0.72)

AI score change 57.3 ± 45.4 32.4 ± 40.7 0.001 0.67 (0.58–0.76)
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AI scores from the baseline CXR (AUC 0.82) were better predictors of patient outcome than the changes in AI 
scores over serial CXRs (AUC up to 0.72) (p < 0.05).

In site A, a combination of baseline RALE and AI score with patients’ age and smoking history increased 
the outcome prediction from 0.71 to 0.80 (95% CI 0.75–0.86) for RALE score and from 0.66 to 0.78 (95% CI 
0.73–0.84) for AI score. In site B, a combination of either baseline RALE or AI scores with patients’ age, gender, 
WBC count, and peripheral oxygen saturation increased the outcome prediction from 0.87 to 0.94 (95% CI 
0.90–0.97) for RALE scores and from 0.82 to 0.91 (95% CI 0.87–0.95) for the AI scores. The addition of age, 
BMI, WBC count, and peripheral oxygen saturation to the RALE score and AI score increased the accuracy for 
predicting the need for mechanical ventilation to 0.89 (95% CI 0.82–0.96) for RALE score and 0.90 (0.85–0.95) 
for AI score.

Table 3.   Summary of assessed variables for prediction of death versus recovery from COVID-19 pneumonia 
in patients from Site B. Maximum RALE and AI scores were the strongest predictors of final patient outcome. 
SD standard deviation, BMI body mass index, SpO2 peripheral oxygen saturation, CRP c-reactive protein, max 
maximum, AUC​ area under the curve, CI confidence interval, OR odd’s ratio, % percentage. Numbers in square 
parenthesis represent odd’s ratios (R2-14).

Outcomes

p value
AUC (95% CI)
[OR]

Death Recovery

(n = 49) (n = 130)

Age (mean ± SD, years) 75 ± 9 59 ± 17  < 0.001 0.78 (0.69–0.86)

Male/Female 31/18 [63%/37%] 57/73 [44%/56%] 0.020 [2.2]

BMI 24.4 ± 4.1 23.8 ± 2.7 0.423 0.55 (0.41–0.70)

SpO2 94.1 ± 8.2 97.0 ± 3.1 0.018 0.48 (0.32–0.64)

Temperature (Celsius) 36.9 ± 0.7 36.9 ± 0.7 0.788 0.49 (0.35–0.62)

Total WBC count 8911.1 ± 4349.1 5853.7 ± 2094.1  < 0.001 0.76 (0.64–0.89)

Platelet count 205.1 ± 97.8 229.2 ± 87.7 0.120 0.37 (0.24–0.50)

CRP 25.2 ± 31.8 16.9 ± 28.2 0.103 0.68 (0.59–0.77)

Baseline RALE 15.6 ± 8.4 4.1 ± 6.2  < 0.001 0.87 (0.81–0.93)

Max RALE 29.8 ± 10.1 6.3 ± 7.9  < 0.001 0.95 (0.91–0.99)

Baseline AI score 100.6 ± 39.8 40.7 ± 47.8  < 0.001 0.82 (0.76–0.89)

Max AI score 149.2 ± 25.3 61.4 ± 55.6  < 0.001 0.91 (0.86–0.96)

RALE score change 13.9 ± 10.2 2.3 ± 4.2  < 0.001 0.86 (0.79–0.93)

AI score change 45.6 ± 37.1 20.6 ± 26.8  < 0.001 0.72 (0.63–0.81)

Table 4.   Summary of assessed variables for predicting need for mechanical ventilation in patients from 
Site B. Maximum RALE and AI scores were the strongest predictors of need for mechanical ventilation. SD 
standard deviation, BMI body mass index, SpO2 peripheral oxygen saturation, CRP c-reactive protein, max 
maximum, AUC​ area under the curve, CI confidence interval, OR odd’s ratio, % percentage. Numbers in square 
parenthesis represent odd’s ratios (R2-14).

Mechanical ventilation

p value
AUC (95% CI)
[OR]

Yes No

(n = 32) (n = 147)

Age (mean ± SD, years) 66.7 ± 10.3 62.1 ± 17.9 0.056 0.56 (0.48–0.65)

Male/Female 20/12 [62%/38%] 68/79 [46%/54%] 0.096 [1.9]

BMI 25.7 ± 3.5 23.5 ± 2.7  < 0.001 0.64 (0.51–0.77)

SpO2 93.0 ± 9.5 96.9 ± 3.3 0.031 0.41 (0.25–0.56)

Temperature (Celsius) 37.1 ± 0.7 36.9 ± 0.7 0.195 0.55 (0.42–0.68)

Total WBC count 9135.6 ± 4266.1 6160.5 ± 2632.2 0.001 0.75 (0.62–0.87)

Platelet count 217.7 ± 83.6 223.9 ± 92.7 0.729 0.53 (0.39–0.67)

CRP 23.0 ± 25.8 18.3 ± 30.1 0.429 0.71 (0.61–0.80)

Baseline RALE 15.2 ± 9.1 5.5 ± 7.4  < 0.001 0.81 (0.73–0.88)

Max RALE 27.7 ± 9.9 9.0 ± 11.5  < 0.001 0.88 (0.83–0.93)

Baseline AI score 100.9 ± 38.1 47.6 ± 50.9  < 0.001 0.79 (0.71–0.86)

Max AI score 145.7 ± 24.1 70.5 ± 60.6  < 0.001 0.84 (0.79–0.90)

RALE score change 12.5 ± 10.1 3.7 ± 6.6  < 0.001 0.79 (0.70–0.88)

AI score change 44.7 ± 38.7 23.1 ± 28.6  < 0.001 0.68 (0.57–0.78)
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Lung volume measurements.  The lung volumes across the two sites were not significantly different 
(p = 0.162). In CXRs from site A, the right hemidiaphragm position was similar in patients who died or received 
mechanical ventilation (anterior right rib level: 5.1 ± 0.9) compared to those with favorable outcomes (5.0 ± 0.6) 
(p = 0.601).

At site B, the level of right hemidiaphragm was slightly but significantly higher in patients who died (anterior 
right rib level of 5.0 ± 0.7) than in those with recovery (5.5 ± 0.7) (p < 0.001). There was no significant difference 
in the level of right hemidiaphragm in patients who needed mechanical ventilation (5.2 ± 0.7) versus those who 
did not (5.5 ± 0.7) (p = 0.053).

Discussion
We found that both RALE and AI scores derived from CXRs can predict the need for mechanical ventilation 
and death in patients with COVID-19 pneumonia. Strong correlation between RALE and AI scores in our study 
(r2 = 0.79–0.86) is similar to a recent study from Cohen et al. (r2 = 0.81–0.83)14. In a recent study on 697 patients 
with COVID-19 pneumonia with the same Qure.ai algorithm, the AI score was reported as an independent pre-
dictor of patients’ outcome15. Although our results are consistent with recent CXRs studies with both RALE and 
AI algorithm-generated severity assessment14,16, there are some notable differences. As opposed to prior studies 
on baseline CXRs at hospital admission6, we assessed the performance of severity assessment on serial CXRs. 
Maximum RALE or AI scores in follow-up CXRs rather than previously reported scores on baseline CXRs6,16 were 
stronger predictors of assessed outcome variables in our study. Changes in RALE and AI scores over serial CXRs, 
not assessed in prior publications, were predictive of patient outcomes. As opposed to standalone interpreta-
tion and reporting of CXRs findings, we also found that the addition of clinical and laboratory information into 
regression models significantly improves their predictive value. Although lung volumes in patients with adverse 
outcomes tend to be lower than in those with favorable outcome, the difference were not statistically significant. 

Figure 2.   Area under the curve for baseline (A,C) and maximum (B,D) RALE (blue) and AI (green) scores 
in Site A patients with different outcomes (A,B) of COVID-19 infection and need for mechanical ventilation 
(C,D).
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Figure 3.   Area under the curve for baseline (A,C) and maximum (B,D) RALE (blue) and AI (green) scores in 
Site B patients with different outcomes (A,B) of COVID-19 infection and need for mechanical ventilation (C,D).

Table 5.   Site-specific thresholds of RALE and AI scores with the best sensitivities and specificities for different 
outcomes.

Site A Site B

Mechanical ventilation Outcome Mechanical ventilation Outcome

Best sensitivities (RALE)

Threshold RALE score 21 7 29 18

Sensitivity 90% 95% 90% 89%

Specificity 30% 63% 55% 81%

Best sensitivities (AI)

Threshold AI score 135 53 98 143

Sensitivity 90% 96% 97% 90%

Specificity 40% 52% 66% 67%

Best specificities (RALE)

Threshold RALE score 6 23 11 22

Sensitivity 55% 33% 68% 77%

Specificity 89% 91% 91% 98%

Best specificities (AI)

Threshold AT score 54 60 106 106

Sensitivity 52% 55% 67% 73%

Specificity 89% 90% 91% 90%
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Reduced ventilatory capacity in adverse outcome patients with advanced or more severe disease likely explains 
the differences in lung volumes noted in our study.

Another new information pertains to the differences in the absolute severity of radiographic findings in 
patients with favorable and unfavorable outcomes at the two participating sites included in our study. The 
maximum and baseline RALE and AI scores at Site A were lower than those on CXRs from Site B in patients 
who died or needed mechanical ventilation. However, both scores from either site in our study were higher than 
those reported from deceased patients in a prior study (mean RALE of 14) from Italy17. Although our study did 
not assess the cause of variations in severity scores, there could be several reasons for this finding. Technical 
differences in CXRs (such as the distribution of digital versus conventional CXRs and portable anteroposterior 
versus upright posteroanterior projection CXRs) can influence the attenuation of radiographic opacities and lead 
to variations in perceived and quantitative severity of pulmonary involvement. Although technical and patient 
factors can lead to differences in lung volumes, this was unlikely a substantial contributor since lung volumes 
estimated from the level of the right hemidiaphragm were similar across the two sites in our study. Differences in 
patient size across different sites can also lead to differences in CXR image quality and affect severity assessment. 
Besides these factors, the differences in severity scores across various sites could also be related to patient death 
or the need for mechanical ventilation from non-pulmonary complications or other underlying comorbidities. 
Differences in supportive treatment strategies at the participating sites could also be responsible for variations 
in radiographic severity scores. These technical and patient-related reasons might also explain the differences 
in performance of both RALE and AI scores at the two participating sites (AUC for prediction of mechanical 
ventilation at Site B was better than at Site A).

Although most imaging and AI literature focus on the use of chest CT for assessing severity, complications18, 
and outcome in patients with COVID-19 infection, the main implication of our study lies in the use of CXRs 
as a powerful tool to assess disease severity and predict patient outcomes. Apart from being substantially lower 
in radiation dose compared to most chest CT protocols, CXRs units are more portable, easy to sterilize, rapid, 
accessible, and available in the emergency rooms and by the bedside. Apart from the pulmonary opacities, 
CXRs help assess lines and tubes which need frequent confirmation for placement in critically ill patients such 
as endotracheal tubes, esophageal tubes, central lines and other life support catheters.

Another implication pertains that compared to the RALE score, AI scores are quantitative, rapid, automated, 
and least disruptive to the workflow of CXRs’ interpretation. Prediction of information pertaining to the need 
for mechanical ventilation and the likelihood of adverse outcomes can help manage the patient and anticipate 
the resources needed for patient care in a high prevalence disease setting. Future prospective studies will be 
required to answer the crucial questions on the impact of such predictive information on patient care and 
resource planning.

There are limitations to our study. First, our study was a retrospective prediction of patients with known 
outcomes. We minimized bias by ensuring that the radiologists participating in RALE score assignment or 
investigators processing the CXRs with the AI algorithm were not aware of the patient outcomes before com-
pleting the data collection and image analyses. Second, we did not perform the statistical power of our study 
and instead included all subjects who met our inclusion criteria. Third, we did not have access to all clinical and 
laboratory data variables from both study sites. Fourth, we did not normalize the data for the effects of variable 
use of management strategies (such as prophylactic anticoagulation and clinical drug trials) on the prediction 
of outcome based on either scoring systems. We did not assess if RALE or AI scores can help predict or evaluate 
treatment response of definitive or supportive treatment in our patients. Since identifying data from the four 
participating sites in South Korea were randomized and deidentified to protect patient privacy, it was not possible 
to compare patient characteristics between the four sites or to find if some patients were transferred between 
different hospitals following their baseline CXRs.

Fifth, we did not have access to information between the onset of patients’ symptoms or RT-PCR assay and 
the baseline CXR. However, despite the lack of such information, both RALE and AI scores had high AUCs for 
predicting mortality and need for mechanical ventilation. Although the AI algorithm was generalizable at both 
participating institutions, we did not assess its broader generalizability in other institutions and/or regions. We 
did not determine the accuracy of localization or severity of pulmonary opacities by the AI algorithm. However, 
a strong correlation with RALE score and similar performance as RALE score provide evidence of its accuracy. 
Moreover, prior studies with the same algorithm have reported the accuracy of the algorithm in non-COVID 
patients19. Finally, we did not compare the performance of our AI algorithm with other algorithms.

In summary, the severity score from the AI algorithm is as robust a predictor of adverse patient outcome 
(death or need for mechanical ventilation) as subjective RALE scores in patients with COVID-19 pneumonia. 
Maximum RALE and AI scores over serial CXRs were more reliable predictors of the patient outcome than 
scores from baseline CXRs. The addition of clinical and laboratory information improves the performance of 
both the RALE and the AI scores.
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