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Key points

� Hypothesis tests are used to assess whether a
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difference between two samples represents a real

difference between the populations from which

the samples were taken.

� A null hypothesis of ‘no difference’ is taken as a
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� Explain why hypothesis testing is used.

� Use a table to determine which hypothesis test

should be used for a particular situation.

� Interpret a p-value.

starting point, and we calculate the probability

that both sets of data came from the same pop-

ulation. This probability is expressed as a p-value.

� When the null hypothesis is false, p-values tend

to be small. When the null hypothesis is true, any

p-value is equally likely.
A hypothesis test is a procedure used in statistics to assess

whether a particular viewpoint is likely to be true. They followa

strict protocol, and they generate a ‘p-value’, on the basis of

which a decision is made about the truth of the hypothesis

under investigation. All of the routine statistical ‘tests’ used in

researchdt-tests, c2 tests, ManneWhitney tests, etc.dare all

hypothesis tests, and in spite of their differences they are all

used inessentially thesameway.Butwhydoweuse thematall?

Comparing the heights of two individuals is easy: we can

measure their height in a standardised way and compare

them. When we want to compare the heights of two small

well-defined groups (for example two groups of children), we

need to use a summary statistic that we can calculate for each

group. Such summaries (means, medians, etc.) form the basis

of descriptive statistics, and are well described elsewhere.1

However, a problem arises when we try to compare very

large groups or populations: it may be impractical or even

impossible to take a measurement from everyone in the

population, and by the time you do so, the population itself

will have changed. A similar problem arises when we try to

describe the effects of drugsdfor example by how much on

average does a particular vasopressor increase MAP?

To solve this problem, we use random samples to estimate

values for populations. By convention, the values we calculate
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from samples are referred to as statistics and denoted by Latin

letters (x for sample mean; SD for sample standard deviation)

while the unknown population values are called parameters,

and denoted by Greek letters (m for population mean, s for

population standard deviation).

Inferential statistics describes the methods we use to

estimate population parameters from random samples; how

we can quantify the level of inaccuracy in a sample statistic;

and how we can go on to use these estimates to compare

populations.
Sampling error

There aremany reasons why a samplemay give an inaccurate

picture of the population it represents: it may be biased, itmay

not be big enough, and it may not be truly random. However,

even if we have been careful to avoid these pitfalls, there is an

inherent difference between the sample and the population at

large. To illustrate this, let us imagine that the actual average

height of males in London is 174 cm. If I were to sample 100

male Londoners and take a mean of their heights, I would be

very unlikely to get exactly 174 cm. Furthermore, if somebody

else were to perform the same exercise, it would be unlikely

that they would get the same answer as I did. The sample

mean is different each time it is taken, and the way it differs
rved.
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from the actual mean of the population is described by the

standard error of the mean (standard error, or SEM). The

standard error is larger if there is a lot of variation in the

population, and becomes smaller as the sample size in-

creases. It is calculated thus:

SEM ¼ SD
ffiffiffi

n
p

where SD is the sample standard deviation, and n is the
sample size.

As errors are normally distributed, we can use this to es-

timate a 95% confidence interval on our sample mean as

follows:

95% CI¼ x±ð1:96�SEMÞ
We can interpret this as meaning ‘We are 95% confident

that the actual mean is within this range.’

Some confusion arises at this point between the SD and the

standard error. The SD is ameasure of variation in the sample.

The range x±ð1:96�SDÞ will normally contain 95% of all your

data. It can be used to illustrate the spread of the data and

shows what values are likely. In contrast, standard error tells

you about the precision of the mean and is used to calculate

confidence intervals.

One straightforward way to compare two samples is to use

confidence intervals. If we calculate the mean height of two

groups and find that the 95% confidence intervals do not over-

lap, this can be taken as evidence of a difference between the

two means. This method of statistical inference is reasonably

intuitive and can be used in many situations.2 Many journals,

however, prefer to report inferential statistics using p-values.
Inference testing using a null hypothesis

In 1925, the British statistician R.A. Fisher described a tech-

nique for comparing groups using a null hypothesis, a method

which has dominated statistical comparison ever since. The

technique itself is rather straightforward, but often gets lost in

the mechanics of how it is done. To illustrate, imagine we

want to compare the HR of two different groups of people. We

take a random sample from each group, which we call our

data. Then:

(i) Assume that both samples came from the same group.

This is our ‘null hypothesis’.

(ii) Calculate the probability that an experiment would give

us these data, assuming that the null hypothesis is true.

We express this probability as a p-value, a number be-

tween 0 and 1, where 0 is ‘impossible’ and 1 is ‘certain’.

(iii) If the probability of the data is low, we reject the null

hypothesis and conclude that there must be a difference

between the two groups.

Formally, we can define a p-value as ‘the probability of

finding the observed result or amore extreme result, if the null

hypothesis were true.’ Standard practice is to set a cut-off at p

<0.05 (this cut-off is termed the alpha value). If the null hy-

pothesis were true, a result such as this would only occur 5%

of the time or less; this in turn would indicate that the null

hypothesis itself is unlikely. Fisher described the process as

follows: ‘Set a low standard of significance at the 5 per cent

point, and ignore entirely all results which fail to reach this

level. A scientific fact should be regarded as experimentally
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established only if a properly designed experiment rarely fails

to give this level of significance.’3 This probably remains the

most succinct description of the procedure.

A question which often arises at this point is ‘Why do we

use a null hypothesis?’ The simple answer is that it is easy: we

can readily describe what wewould expect of our data under a

null hypothesis, we know how data would behave, andwe can

readily work out the probability of getting the result that we

did. It therefore makes a very simple starting point for our

probability assessment. All probabilities require a set of

starting conditions, inmuch the sameway thatmeasuring the

distance to London needs a starting point. The null hypothesis

can be thought of as an easy place to put the start of your ruler.

If a null hypothesis is rejected, an alternatehypothesismust

be adopted in its place. Thenull and alternatehypothesesmust

bemutually exclusive, butmust also between themdescribe all

situations. If a null hypothesis is ‘no difference exists’ then the

alternate should be simply ‘a difference exists’.
Hypothesis testing in practice

The components of a hypothesis test can be readily described

using the acronym GOST: identify the Groups you wish to

compare; define the Outcome to be measured; collect and

Summarise the data; then evaluate the likelihood of the null

hypothesis, using a Test statistic.

When considering groups, think first about how many. Is

there just one group being compared against an audit stan-

dard, or are you comparing one group with another? Some

studies may wish to compare more than two groups. Another

situation may involve a single group measured at different

points in time, for example before or after a particular treat-

ment. In this situation each participant is compared with

themselves, and this is often referred to as a ‘paired’ or a

‘repeated measures’ design. It is possible to combine these

types of groupsdfor example a researcher may measure

arterial BP on a number of different occasions in five different

groups of patients. Such studies can be difficult, both to

analyse and interpret.

In other studies we may want to see how a continuous

variable (such as age or height) affects the outcomes. These

techniques involve regression analysis, and are beyond the

scope of this article.

The outcome measures are the data being collected. This

may be a continuous measure, such as temperature or BMI, or

it may be a categorical measure, such as ASA status or surgical

specialty. Often, inexperienced researchers will strive to

collect lots of outcome measures in an attempt to find some-

thing that differs between the groups of interest; if this is done,

a ‘primary outcome measure’ should be identified before the

research begins. In addition, the results of any hypothesis

tests will need to be corrected for multiple measures.

The summary and the test statistic will be defined by the

type of data that have been collected. The test statistic is

calculated then transformed into a p-value using tables or

software. It is worth looking at two common tests in a little

more detail: the c2 test, and the t-test.
Categorical data: the c2 test

The c2 test of independence is a test for comparing categorical

outcomes in two or more groups. For example, a number of

trials have compared surgical site infections in patients who

have been given different concentrations of oxygen
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perioperatively. In the PROXI trial,4 685 patients received ox-

ygen 80%, and 701 patients received oxygen 30%. In the 80%

group there were 131 infections, while in the 30% group there

were 141 infections. In this study, the groups were oxygen 80%

and oxygen 30%, and the outcome measure was the presence

of a surgical site infection.

The summary is a table (Table 1), and the hypothesis test

compares this table (the ‘observed’ table) with the table that

would be expected if the proportion of infections in each

group was the same (the ‘expected’ table). The test statistic is

c2, from which a p-value is calculated. In this instance the

p-value is 0.64, whichmeans that results like this would occur

64% of the time if the null hypothesis were true. We thus have

no evidence to reject the null hypothesis; the observed dif-

ference probably results from sampling variation rather than

from an inherent difference between the two groups.
Continuous data: the t-test

The t-test is a statistical method for comparing means, and is

one of the most widely used hypothesis tests. Imagine a study

where we try to see if there is a difference in the onset time of a

new neuromuscular blocking agent compared with sux-

amethonium. We could enlist 100 volunteers, give them a gen-

eral anaesthetic, and randomise 50 of them to receive the new

drug and 50 of them to receive suxamethonium. We then time

how long it takes (in seconds) to have ideal intubation condi-

tions, as measured by a quantitative nerve stimulator. Our data

are therefore a list of times. In this case, the groups are ‘new

drug’ and suxamethonium, and the outcome is time, measured

in seconds. This can be summarised by using means; the hy-

pothesis test will compare themeans of the two groups, using a

p-value calculated from a ‘t statistic’. Hopefully it is becoming

obvious at this point that the test statistic is usually identifiedby

a letter, and this letter is often cited in the name of the test.

The t-test comes in a number of guises, depending on

the comparison being made. A single sample can be

compared with a standard (Is the BMI of school leavers in

this town different from the national average?); two sam-

ples can be compared with each other, as in the example

above; or the same study subjects can be measured at two

different times. The latter case is referred to as a paired t-

test, because each participant provides a pair of measur-

ementsdsuch as in a pre- or postintervention study.

A large number of methods for testing hypotheses exist;

the commonest ones and their uses are described in Table 2.

In each case, the test can be described by detailing the groups

being compared (Table 2, columns) the outcome measures

(rows), the summary, and the test statistic. The decision to use

a particular test or method should be made during the plan-

ning stages of a trial or experiment. At this stage, an estimate
Table 1 Summary of the results of the PROXI trial. Figures are

numbers of patients.

Group

Oxygen 80% Oxygen 30%

Outcome Infection 131 141
No infection 554 560

Total 685 701
needs to be made of how many test subjects will be needed.

Such calculations are described in detail elsewhere.5
Controversies surrounding hypothesis
testing

Although hypothesis tests have been the basis of modern

science since the middle of the 20th century, they have been

plagued by misconceptions from the outset; this has led to

what has been described as a crisis in science in the last few

years: some journals have gone so far as to ban p-values

outright.6 This is not because of any flaw in the concept of a p-

value, but because of a lack of understanding of what they

mean.

Possibly the most pervasive misunderstanding is the belief

that the p-value is the chance that the null hypothesis is true,

or that the p-value represents the frequency with which you

will be wrong if you reject the null hypothesis (i.e. claim to

have found a difference). This interpretation has frequently

made it into the literature, and is a very easy trap to fall into

when discussing hypothesis tests. To avoid this, it is impor-

tant to remember that the p-value is telling us something

about our sample, not about the null hypothesis. Put in simple

terms, we would like to know the probability that the null

hypothesis is true, given our data. The p-value tells us the

probability of getting these data if the null hypothesis were

true, which is not the same thing. This fallacy is referred to as

‘flipping the conditional’; the probability of an outcome under

certain conditions is not the same as the probability of those

conditions given that the outcome has happened.

A useful example is to imagine a magic trick in which you

select a card from a normal deck of 52 cards, and the performer

reveals your chosen card in a surprising manner. If the

performer were relying purely on chance, this would only

happen on average once in every 52 attempts. On the basis of

this, we conclude that it is unlikely that the magician is simply

relying on chance. Although simple, we have just performed an

entire hypothesis test. We have declared a null hypothesis (the

performer was relying on chance); we have even calculated a p-

value (1 in 52, z0.02); and on the basis of this low p-value we

have rejected ournull hypothesis.Wewould, however, bewrong

to suggest that there is a probability of 0.02 that the performer is

relyingon chancedthat isnotwhat our figure of 0.02 is tellingus.

To explore this further we can create two populations, and

watch what happens when we use simulation to take

repeated samples to compare these populations. Computers

allow us to do this repeatedly, and to see what p-values are

generated (see Supplementary online material).7 Fig 1 illus-

trates the results of 100,000 simulated t-tests, generated in

two set of circumstances. In Fig 1A, we have a situation in

which there is a difference between the two populations. The

p-values cluster below the 0.05 cut-off, although there is a

small proportion with p >0.05. Interestingly, the proportion of

comparisons where p <0.05 is 0.8 or 80%, which is the power of

the study (the sample size was specifically calculated to give a

power of 80%).

Figure 1B depicts the situation where repeated samples are

taken from the same parent population (i.e. the null hypoth-

esis is true). Somewhat surprisingly, all p-values occur with

equal frequency, with p<0.05 occurring exactly 5% of the time.

Thus, when the null hypothesis is true, a type I error will occur

with a frequency equal to the alpha significance cut-off.
BJA Education - Volume 19, Number 7, 2019 229



Table 2 The principle types of hypothesis test. Tests comparing more than two samples can indicate that one group differs from the

others, but will not identify which. Subsequent ‘post hoc’ testing is required if a difference is found.

Type of data Number of groups

1 (comparison with
a standard)

1 (before and after) 2 More than 2 Measured over a
continuous range

Categorical Binomial test McNemar’s test c2 test, or Fisher’s
exact (2�2 tables),
or comparison of
proportions

c2 test Logistic regression

Continuous
(normal)

One-sample t-test Paired t-test Independent
samples t-test

Analysis of variance
(ANOVA)

Regression analysis,
correlation

Continuous (non-
parametric)

Sign test (for
median)

Sign test, or
Wilcoxon matched-
pairs test

ManneWhitney U
test

KruskaleWallis test Spearman’s rank
correlation

Hypothesis tests
Figure 1 highlights the underlying problem: when pre-

sented with a p-value <0.05, is it possible with no further in-

formation, to determine whether you are looking at

something from Fig 1A or Fig 1B?

Finally, it cannot be stressed enough that although hy-

pothesis testing identifies whether or not a difference is likely,
Figure 1 The p-values generated when 100,000 t-tests are used to compare

two samples taken from defined populations. (A) The populations have a

difference and the p-values are mostly significant. (B) The samples were

taken from the same population (i.e. the null hypothesis is true) and the p-

values are distributed uniformly.
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it is up to us as clinicians to decide whether or not a statisti-

cally significant difference is also significant clinically.
Hypothesis testing: what next?

Asmentioned above, some have suggestedmoving away from

p-values, but it is not entirely clear what we should use

instead. Some sources have advocated focussing more on ef-

fect size; however, without a measure of significance we have

merely returned to our original problem: how dowe know that

our difference is not just a result of sampling variation?

One solution is to use Bayesian statistics. Up until very

recently, these techniques have been considered both too

difficult and not sufficiently rigorous. However, recent ad-

vances in computing have led to the development of Bayesian

equivalents of a number of standard hypothesis tests.8 These

generate a ‘Bayes Factor’ (BF), which tells us how more (or

less) likely the alternative hypothesis is after our experiment.

A BF of 1.0 indicates that the likelihood of the alternate hy-

pothesis has not changed. A BF of 10 indicates that the alter-

nate hypothesis is 10 times more likely than we originally

thought. A number of classifications for BF exist; greater than

10 can be considered ‘strong evidence’, while BF greater than

100 can be classed as ‘decisive’.

Figures such as the BF can be quoted in conjunction with

the traditional p-value, but it remains to be seen whether they

will become mainstream.
Declaration of interest

The author declares that they have no conflict of interest.
MCQs

The associated MCQs (to support CME/CPD activity) will be

accessible atwww.bjaed.org/cme/home by subscribers to BJA

Education.
Supplementary material

Supplementary data to this article can be found online at

https://doi.org/10.1016/j.bjae.2019.03.006.

http://www.bjaed.org/cme/home
https://doi.org/10.1016/j.bjae.2019.03.006


Hypothesis tests
References

1. McCluskey A, Lalkhen AG. Statistics II: central tendency

and spread of data. CEACCP 2007; 7: 127e30

2. Altman DG, Machin D, Bryant TN, Gardner MJ. Statistics

with confidence. 2nd Edn. London: BMJ Books; 2000

3. Fisher RA. The arrangement of field experiments. J Min

Agric Gr Br 1926; 33: 503e13

4. Meyhoff CS, Wetterslev J, Jorgensen LN et al. Effect of high

perioperative oxygen fraction on surgical site infection and

pulmonary complications after abdominal surgery: the

PROXI randomized clinical trial. JAMA 2009; 302: 1543e50
5. Columb MO, Atkinson MS. Statistical analysis: sample size

and power estimations. BJA Educ 2016; 16: 159e61

6. Trafimow D, Marks M. Editorial. Basic Appl Soc Psych 2015;

37: 1e2

7. Colquhoun D. An investigation of the false discovery rate

and the misinterpretation of p-values. R Soc Open Sci 2014;

1: 140216

8. Ly A, Verhagen J, Wagenmakers E. Harold Jeffreys’s

default Bayes factor hypothesis tests: explanation,

extension, and application in psychology. J Math Psychol

2016; 72: 19e32
BJA Education - Volume 19, Number 7, 2019 231

http://refhub.elsevier.com/S2058-5349(19)30053-8/sref1
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref1
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref1
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref2
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref2
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref3
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref3
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref3
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref4
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref4
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref4
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref4
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref4
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref5
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref5
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref5
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref6
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref6
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref6
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref7
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref7
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref7
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref8
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref8
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref8
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref8
http://refhub.elsevier.com/S2058-5349(19)30053-8/sref8

	Hypothesis tests
	Learning objectives
	Sampling error
	Key points
	Inference testing using a null hypothesis
	Hypothesis testing in practice
	Categorical data: the χ2 test
	Continuous data: the t-test
	Controversies surrounding hypothesis testing
	Hypothesis testing: what next?
	Declaration of interest
	MCQs
	Supplementary material
	References




