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Abstract

Radiology reports contain a radiologist’s interpretations of images, and these images frequently 

describe spatial relations. Important radiographic findings are mostly described in reference to an 

anatomical location through spatial prepositions. Such spatial relationships are also linked to 

various differential diagnoses and often described through uncertainty phrases. Structured 

representation of this clinically significant spatial information has the potential to be used in a 

variety of downstream clinical informatics applications. Our focus is to extract these spatial 

representations from the reports. For this, we first define a representation framework based on the 

Spatial Role Labeling (SpRL) scheme, which we refer to as Rad-SpRL. In Rad-SpRL, common 

radiological entities tied to spatial relations are encoded through four spatial roles: TRAJECTOR, 

LANDMARK, DIAGNOSIS, and HEDGE, all identified in relation to a spatial preposition (or SPATIAL 

INDICATOR). We annotated a total of 2,000 chest X-ray reports following Rad-SpRL. We then 

propose a deep learning-based natural language processing (NLP) method involving word and 

character-level encodings to first extract the SPATIAL INDICATORs followed by identifying the 

corresponding spatial roles. Specifically, we use a bidirectional long short-term memory (Bi-

LSTM) conditional random field (CRF) neural network as the baseline model. Additionally, we 

incorporate contextualized word representations from pre-trained language models (BERT and 

XLNet) for extracting the spatial information. We evaluate both gold and predicted SPATIAL 

INDICATORs to extract the four types of spatial roles. The results are promising, with the highest 

average F1 measure for SPATIAL INDICATOR extraction being 91.29 (XLNet); the highest average 

overall F1 measure considering all the four spatial roles being 92.9 using gold INDICATORs (XLNet); 

and 85.6 using predicted INDICATORs (BERT pre-trained on MIMIC notes).

The corpus is available in Mendeley at http://dx.doi.org/10.17632/yhb26hfz8n.1 and https://

github.com/krobertslab/datasets/blob/master/Rad-SpRL.xml.
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1. Introduction

There has been a growing interest in automatically extracting useful information from 

unstructured reports in the medical domain. One of the most explored free text clinical 

report types for information extraction using NLP has been radiology reports, which contain 

a wealth of clinically significant patient information. Automatic recognition of important 

information such as actionable findings and their corresponding location and diagnoses 

facilitates the time-consuming process of manual review of the reports containing 

radiologists’ descriptions of imaging results. However, extracting such spatial information 

associated with radiographic findings has been less researched and forms the focus of our 

work.

Besides radiology-specific knowledge and experience, interpreting spatial relations from 

radiological images requires good spatial ability skills on the part of radiologists as it often 

involves mental visualization of complex 3D anatomical structures to describe the locations 

of radiographic findings. A few studies [1,2] have highlighted the possible requirement of 

these skills in prospective radiologists to perceive and understand the spatial relationships 

between different objects in radiology practice. These spatial interpretations from images are 

summarized in the corresponding free text reports. Thus, radiology reports have a high 

prevalence of spatial relations in the way radiologists describe radiographic findings and 

their association with anatomical structures. These spatial relations provide sufficient 

contextual information related to the findings. Moreover, some of these spatially-grounded 

findings demand immediate action by the physician ordering the imaging examination. 

Therefore, it is important to understand the spatial meanings from the unstructured reports 

and generate structured representations of the spatial relations for various downstream 

clinical applications. Such applications include easy visualization of the important 

actionable findings, predictive modeling, cohort retrieval, automated tracking of findings, 

and automatic generation of more complete annotations for associated images containing 

spatial and diagnosis-related information of findings.

However, spatial language understanding in the radiology domain has remained less 

explored, and often the language used for representing spatial relations is complex. We 

therefore aim to automatically extract important spatial information from radiology reports 

in this work.

In the general domain, earlier studies [3,4] have formulated and evaluated the spatial role 

labeling (SpRL) task for extracting spatial information from text by mapping language to a 

formal spatial representation. In the SpRL annotation scheme, an object of interest 
(TRAJECTOR) is associated with a grounding location (LANDMARK) through a preposition or 
spatial trigger (SPATIAL INDICATOR). For example, in the sentence, “The book is on the table”, 

the spatial preposition ‘on’ indicates the existence of a spatial relationship between the 

object ‘book’ (TRAJECTOR) and its location ‘table’ (LANDMARK).
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In the medical domain, a limited number of studies have utilized the SpRL scheme. 

Kordjamshidi et al. [5] extracted relations between bacteria names and their locations from 

scientific text. Roberts et al.[6] utilized SpRL in the extraction of spatial relations between 

symptoms/disorders and anatomical structures from consumer-related texts. In this paper, we 

also construct similar spatial roles for radiology texts based on SpRL. For instance, in a 

radiology report sentence, “Mild streaky opacities are present in the left lung base”, the 

location of a clinical finding ‘opacities’ (TRAJECTOR) has been described with respect to the 

anatomy ‘left lung base’ (LANDMARK) using the spatial preposition ‘on’ (SPATIAL INDICATOR).

Moreover, radiologists oftentimes document potential diagnoses related to the clinical 

findings which are spatially grounded. Consider the following example:

Stable peripheral right lower lobe opacities seen between the anterior 7th and 8th 
right ribs which may represent pleural reaction or small pulmonary nodules.

Here, presence of a finding – ‘stable peripheral right lower lobe opacities’ at a specific 

location –’anterior 7th and 8th right ribs’ may elicit the radiologist to document two possible 

diagnoses – ‘pleural reaction’ and ‘small pulmonary nodules’. As the actual occurrence of a 

disorder is highly dependent on various patient factors such as other physical examinations, 

laboratory tests, and symptoms, the radiologists usually describe diagnoses with uncertainty 

phrases or hedges. For instance, in the example above, the hedge term ‘may represent’ is 

used to relate a finding and its corresponding body location with the most probable 

diagnoses.

In this paper, we propose a framework as a preliminary step to understand textual spatial 

semantics in chest X-ray reports. We define a basic spatial representation framework that 

extends SpRL for radiology (Rad-SpRL) involving interactions among common radiology 

entities. As most of the actionable clinical findings in all types of radiology reports are 

spatially located and represent a probable diagnosis, Rad-SpRL can potentially be extended 

to other report types. Consider the following sentence from a head CT report:

A well circumscribed hypodense 1 cm lesion is seen in the right cerebellar 
hemisphere consistent with prior stroke.

Here, the spatial preposition ‘in’ describes that the finding ‘lesion’ is located inside the 

anatomical structure ‘right cerebellar hemisphere’ which is also consistent with the 

diagnosis ‘stroke’. To evaluate this representation, we manually annotated a corpus of 2000 

radiology reports (a subset of publicly available Open-i® chest X-ray reports [7]) using Rad-

SpRL and applied deep learning models to identify the spatial roles.

Owing to the promising results of applying deep learning models in entity and relation 

extraction, we have adopted two classes of neural network models to investigate the 

automatic extraction of these relations. The first method is based on a bidirectional long 

short-term memory (Bi-LSTM) recurrent neural network with a conditional random field 

(CRF) layer as our baseline model to identify detailed spatial relationships, including 

diagnosis and hedging terms from the reports. The main intention behind using Bi-LSTM is 

that LSTM units work well for taking in long-distance dependencies in a sentence, and the 

bi-directional sequential architecture adds more benefits by considering both the right and 
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left context of a word. This has been shown to achieve state-of-the-art results on the 2012–

2013 SemEval datasets for SpRL [8]. We additionally incorporated character embeddings to 

better handle out-of-vocabulary, rare, and misspelled words.

The second method is based on transformer-based language models. Recent deep learning 

works have leveraged pre-trained language models and demonstrated improved performance 

in a variety of NLP tasks [9–11]. Some studies [10,12,13] have particularly focused on pre-

training the language models on a clinical domain corpus – including clinical notes and 

biomedical literature – with the aim to generate enhanced contextual word representations to 

be used for fine-tuning various downstream clinical NLP models. Motivated by this, we 

utilize contextualized embedding models based on transformers by applying BERT- and 

XLNet-based models for extracting spatial relations.

Understanding spatial relations relies on the syntactic structure of a sentence as 

demonstrated in previous works where various syntactic features and rules based on lexico-

syntactic patterns and syntactic parse trees were employed [14–17]. BERT [18], based on a 

deep bi-directional transformer architecture, encodes rich linguistic information in a 

hierarchical manner with syntactic features in the middle layers. Thus BERT captures 

structural or syntactic information about language [19,20]. The deeper architecture along 

with multi-headed self-attention helps in achieving better long-range dependencies while 

learning the contextualized representation of words. Moreover, a recent study [9] achieved 

the state-of-the-art results by applying BERT in the more general task of semantic role 

labeling, the class of NLP problems to which Rad-SpRL belongs. More recently, the XLNet 

model based on autoregressive pre-training outperformed BERT on multiple NLP tasks 

including reading comprehension and document ranking [21]. XLNet is also a transformer-

based model, though larger than BERT in the total number of parameters. Inspired by all 

these, we fine-tune both the BERT and XLNet models on our annotated Rad-SpRL corpus.

Our work recognizes granular information about the interpreted diagnoses by identifying 

them in context to the same spatial preposition (e.g., in, of, within, around) connecting a 

clinical finding to an anatomical location. Thus, we extract detailed information about a 

finding, the body location where the finding is detected, possible diagnoses associated with 

the finding, and also any hedging term used by radiologists in interpreting these diagnoses. 

Additionally, the finding and the location terms contain their respective descriptors (e.g., the 

descriptor ‘mild streaky’ associated with the finding ‘opacities’).

The organization of the rest of the paper is as follows. Section 2 highlights the previous 

relevant studies on spatial representation frameworks, chest radiology, spatial relation 

extraction, and the Open-i dataset [7]. Section 3 describes our new corpus of 2000 chest X-

ray reports annotated according to Rad-SpRL and the annotation process that produced this 

corpus. Section 4 includes a description of our automatic methods, including Bi-LSTM-CRF 

as well as BERT- and XLNet-based methods for extracting spatial information, plus the 

implementation and evaluation details. Results are summarized in Section 5, while Section 6 

discusses the results and limitations of this work. Section 7 concludes the paper and provides 

directions for future work.
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2. Related work

2.1. Spatial representation frameworks for text

Different representation frameworks have been proposed to encode spatial knowledge in 

textual data for various use cases. Among the early works, Hayward et al. investigated the 

structural similarities between visual and linguistic representations of space [22]. Mani et al. 

proposed SpatialML to represent geographical location information including geo-

coordinates and orientation and annotated ACE English documents as per SpatialML [23]. 

This representation encodes the spatially-related entities through contextual information 

such as direction and distance as well as the actual physical connection between the related 

entities (using the Region Connection Calculus). However, this representation is specific to 

the geographical aspects of the spatial language. At the same time, Kordjamshidi et al. 

proposed Spatial Role Labeling (SpRL) that involves extracting spatial arguments of the 

spatial relations in a sentence [3]. This framework is an improvement over representations 

such as SpatialML and STM spatio-temporal markup [24] as this is more generalizable in 

terms of spatial language expressiveness and handles a greater number of spatial concepts 

(both static and dynamic). This has also been utilized on biomedical [5] and consumer health 

data [6] (described in Section 1). Later, Fasola and Mataric devised methods to represent 

dynamic spatial relations for facilitating interactive instruction of robots [25]. For text-to-

scene generation, Chang et al. proposed a representation that converts an input text 

describing a scene to output a 3D scene by transforming the text to a set of constraints 

consisting of the objects and the spatial relations between them as well as by learning priors 

on how the objects occur in 3D scenes [26]. Kergosien et al. designed a framework to extract 

relevant spatial information from web textual data (newspaper articles) to annotate satellite 

images with additional meaningful information for use cases such as image annotation and 

land use planning [27]. Collell et al. used both visual and linguistic features to generate 

distributed spatial representations by feeding them into a neural network model that learns to 

predict 2D spatial arrangements of objects provided their instances and the relationship 

between them [28]. More recently, Ulinski et al. designed the SpatialNet framework to 

encode spatial language based on frame semantic principles and additionally proposed ways 

to incorporate external knowledge sources for disambiguating the spatial expressions [29]. 

All these highlight some important works relevant to spatial information representation in 

text.

2.2. Types of chest radiology entities extracted

Numerous studies have focused on extracting specific information such as clinical findings 

or imaging observations, differential diagnoses, and anatomical locations from chest-related 

reports. In Table 1, we compare the specific information types or the radiology entities 

extracted in the previous studies from chest radiology reports using NLP. We primarily pay 

attention to the clinically-important entities which are common across various types of 

radiology reports. We also do not take into account the cases where uncertainty and negation 

information were used to detect the presence or absence of a particular finding or a disease 

[30]. For example, Hedge is not considered as extracted in Table 1 when the uncertainty 

levels are classified into negative, uncertain or positive for each finding term extracted [31]. 

Further, in Table 1, we have not considered studies dealing with specific body locations 
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(e.g., mammography reports containing breast imaging information, and head CT reports) as 

the entities of interest are usually very domain-specific such as ‘Clock face’, ‘Depth’, ‘BI-

RADS category’ etc. in the case of mammography reports. We also do not take into account 

the works which focused on detecting a specific disease such as pneumothorax [32] or 

pulmonary lesion [33] from chest radiographs. Note that these works did not attempt to 

extract all the information types collectively, neither did they focus on identifying any 

association or relation among these entities. Our work aims to relate the isolated entities 

(e.g., findings, locations, probable diagnoses) from spatial context. We specifically extract 

findings whose associated anatomical locations are described through spatial expressions as 

well as identify the probable diagnoses associated with these spatially-located findings.

2.3. Relation extraction from radiology reports, including spatial relations

Friedman et al. [39] proposed a formal model (MedLEE) based on grammar rules to map 

clinical information in radiology reports, including central findings and their contextual 

information like body location, degree, and certainty modifiers into a structured format 

utilizing controlled vocabulary and synonym knowledge base. They also worked toward 

providing an interface for using MedLEE for different applications [40]. In another work, 

Friedman et al. [41] adapted MedLEE to generate the most specific Unified Medical 

Language System (UMLS) code based on a finding and its associated modifier information. 

Later, Sevenster et al. [42] built a reasoning engine to correlate clinical findings and body 

locations in radiology reports utilizing MedLEE. However, the major limitation of this work 

is the system’s poor recall. Yim et al. [43] worked on extracting relations containing tumor-

specific information from radiology reports of hepatocellular carcinoma patients. A recent 

work by Steinkamp et al. [44] extracted facts representing clinical assertions and recognized 

contextual information such as location, image citation, and description of change over time 

related to a target entity (e.g., finding) identified for that fact. However, this system does not 

necessarily capture the related entities from a spatial perspective and does not identify all the 

fine-grained spatial information. Another work by Beatrice et al. [45] identified relations 

between observation entities with their location (deep/cortical) and recency (old/recent) 

modifiers from brain imaging reports. However, the location information includes two broad 

categories and is relevant to two specific observations (stroke and microbleed). In Table 2, 

we present the two works relevant to spatial information extraction from radiology reports. 

The main limitations of Rink et al. [16] are the usage of appendicitis-specific lexicons and 

the requirement of manual effort in crafting rules based on syntactic dependency patterns to 

identify the spatially-grounded inflammation description. Besides being domain-specific, 

another limitation of Roberts et al. [15] is that the study extracts only the location entities 

associated with an actionable finding and this required relying on heavy feature engineering.

2.4. Studies using Open-i X-ray report annotations

Open-i is a biomedical image search engine.1 One of its datasets is a public chest X-ray 

dataset containing 3955 de-identified radiology reports from the Indiana Network for Patient 

Care released by the National Library of Medicine [7]. (Hereafter referred to simply as the 

Open-i dataset.) We have presented an example of the manual annotation of a sample report 

1https://Open-i.nlm.nih.gov/.
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in the Open-i dataset in Fig. 1 (the annotations are inspired by MeSH terms). Although most 

of the Open-i annotations embody the relationship between finding and location, there are, 

however, a few missing relations. For example, note that in Fig. 1 the Open-i manual 

annotations contain the normalized finding Pulmonary Emphysema corresponding to the 

phrase ‘emphysematous changes’ in the report, but do not annotate the associated location 

‘right upper lobe’. The Open-i dataset has been used previously in many studies, presented 

in Table 3. However, most of the these studies focused on the extraction of only the disease/

finding [30,46–49]. Two studies worked on automatically annotating both disease and 

disease descriptions (e.g., location, severity) [50,51] similar to the human annotations in 

Demner-Fushman et al. [7]. However, all these works ignored distinguishing diagnosis terms 

from findings (except for Peng et al. [47]), and annotating correlations between them. We 

describe annotation-specific limitations of each of these works in Table 3.

3. Proposed spatial relation annotation framework

3.1. Dataset for spatial relation annotation

A subset of 2000 reports from a total of 2470 non-normal reports as judged by two human 

annotators in Demner-Fushman et al. [7] was used to create our spatial relation corpus. This 

newly annotated chest X-ray corpus contains spatial relations between findings and body 

locations as well as the correlated probable diagnoses and the hedging terms used in 

qualifying the diagnoses. We have presented a simple comparison between the Open-i 

manual annotations and our spatial annotations of a sample report in Fig. 1. Note that we 

have not annotated other findings appearing in the report such as Opacity and Pulmonary 
Fibrosis as their corresponding body locations are not described through any spatial 

preposition.

3.2. Rad-SpRL

Our spatial representation framework (Rad-SpRL) consists of 4 spatial roles (TRAJECTOR, 

LANDMARK, HEDGE, and DIAGNOSIS) with respect to a SPATIAL INDICATOR. The spatial roles and 

the SPATIAL INDICATOR are defined as follows:

1. SPATIAL INDICATOR: term (usually a preposition, e.g., in, within, at, near) that 

triggers a spatial relation

2. TRAJECTOR: object (finding, anatomical location) whose spatial position is being 

described

3. LANDMARK: location of the TRAJECTOR (may also be chained as a TRAJECTOR to 

another LANDMARK)

4. HEDGE: phrase indicating uncertainty (e.g., could be, may represent), generally in 

reference to the DIAGNOSIS and very rarely in the TRAJECTOR

5. DIAGNOSIS: disease/clinical condition the radiologist associated with the finding

In most of the cases where a sentence contains spatial information, a finding (TRAJECTOR) is 

usually detected at a particular body location (LANDMARK) where the TRAJECTOR term appears 

to the left of the SPATIAL INDICATOR and the LANDMARK to its right. However, there are instances 
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where a spatial preposition describes the body location (LANDMARK) with its associated 

abnormality (TRAJECTOR) and the TRAJECTOR term appears to the right of the SPATIAL INDICATOR 

and LANDMARK to the left (refer to example in Fig. 2(d)). We have presented a few specific 

examples to highlight how various spatial roles and SPATIAL INDICATORS are identified in 

sentences following the above definitions of Rad-SpRL in Fig. 2. Please note that we have 

considered disease/condition terms as DIAGNOSIS only when they are documented in 

conjunction with any spatially-located finding, or in other words are entirely probable 

diagnoses inferred from the finding. Also note that there is some ambiguity between a 

finding and a diagnosis, such that the same phrase may appear as a DIAGNOSIS in one relation 

while being a TRAJECTOR in another. Our purpose here is not to formally distinguish between 

a finding and a diagnosis, but rather to identify the spatial relationships in radiology reports 

where the TRAJECTOR is generally a finding (or artifact in the image) and the DIAGNOSIS is 

generally a well-understood disease term.

3.3. Annotation process

Two annotators (S.E.S., a medical librarian, and L.R., an MD) annotated the spatial roles for 

each identified SPATIAL INDICATOR in each of the 2000 reports independently. They also were 

the annotators that manually coded the findings/diagnoses available as part of the Open-i 

dataset [7]. The spatial relation annotations were conducted in two rounds and reconciled 

after each. The first round consisted of annotating the first 500 reports and the second round 

consisted of annotating the remaining 1500. Fig. 3 shows a sample annotated report from the 

corpus.

3.3.1. Annotation agreement—The inter-annotator agreement statistics for both 

SPATIAL INDICATOR and spatial roles are shown in Table 4. The Kappa (κ) agreement between 

the two annotators has been calculated for SPATIAL INDICATOR (as this is a binary classification 

task) whereas we report the overall F1 agreement for annotating the spatial role labels (as 

this is a role identification task). The Kappa agreement is high for SPATIAL INDICATORs in both 

annotation rounds. The F1 agreements for the 4 spatial roles are fairly low in the first round 

with much improvement in the second round. This is mainly because it is relatively easy and 

unambiguous to locate a spatial preposition in a sentence compared to identifying the spatial 

roles. All conflicts were reconciled with an NLP expert (K.R.) following each round of 

annotation. The moderate agreement rate for TRAJECTOR and DIAGNOSIS roles was likely due to 

ambiguity in distinguishing the two roles in a sentence, especially when the language pattern 

is different from the usual. Consider the examples below:

1. Probably scarring in the left apex, although difficult to exclude a cavitary lesion.

2. There are irregular opacities in the left lung apex, that could represent a cavitary 
lesion in the left lung apex.

In the first example, ‘scarring’ was annotated as a TRAJECTOR after reconciliation as its spatial 

location (‘left apex’) is described directly, although there is a higher chance of annotating it 

as a DIAGNOSIS since most of the probable diagnoses terms are usually preceded by a HEDGE 

term (‘Probably’ in this case). Similarly, ‘cavitary lesion’ is indirectly connected to the same 

body location (‘left apex’) and has been interpreted as an additional finding. So, ‘cavitary 
lesion’ was also annotated as a TRAJECTOR and not as a DIAGNOSIS. In the second example, 
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‘cavitary lesion’ was annotated as a DIAGNOSIS in context to the first ‘in’ in the sentence, 

whereas the same term ‘cavitary lesion’ was annotated as a TRAJECTOR when its role was 

identified in context to the second ‘in’. As previously noted, this difference where the same 

term can be both a TRAJECTOR and DIAGNOSIS in different sentences is a consequence of 

focusing on explicitly representing the spatial language as described as well as the natural 

ambiguity between a finding and diagnosis in radiology. As a result, some downstream 

processing or interpretation is still required, which we leave to future work.

3.3.2. Annotation statistics—A total of 1962 spatial relations are annotated in our 

corpus of 2000 reports. Most of the TRAJECTOR terms were findings. However, 176 out of 

2293 terms annotated as TRAJECTORS were anatomical locations (example shown in Fig. 2(c–

2)). 118 SPATIAL INDICATORs had more than one probable DIAGNOSIS, out of which 98 were 

associated with 2 DIAGNOSIS terms, 17 were associated with 3 DIAGNOSIS terms, and 3 had 4 

associated DIAGNOSIS terms. There are 1052 reports containing at least one sentence 

triggering a spatial relation. In those reports, there are 1742 sentences each containing at 

least one SPATIAL INDICATOR (1522 sentences containing exactly one SPATIAL INDICATOR and 

remaining 220 containing more than one SPATIAL INDICATOR). We have highlighted some brief 

descriptive statistics of our corpus based on the reconciled version of the annotations in 

Table 5.

4. Methods for spatial relation extraction

We apply Bi-LSTM CRF as the baseline model and additionally utilize two pre-trained 

transformer language models (BERT and XLNet) for extracting the SPATIAL INDICATORs in a 

sentence and consequently to extract the associated spatial roles for each SPATIAL INDICATOR. 

For spatial role extraction, we evaluate both the gold and the predicted SPATIAL INDICATORs in a 

sentence.

4.1. Baseline model

We formulate the spatial role extraction as a sequence labeling task. We utilize a Bi-LSTM 

CRF framework similar to the proposed architecture in Lample et al. [55] both for SPATIAL 

INDICATOR extraction and spatial role labeling. The CRF in the decoding layer takes into 

account the sequential information in the sentence while predicting the sequence labels 

related to any spatial role (TRAJECTOR, LANDMARK, DIAGNOSIS, and HEDGE). We utilize a Bi-

LSTM that incorporates a character embedding xice (where each character is denoted ci,j) for 

each word wi in a sentence. Here, irepresents the word position and jstands for the position 

of the character in the word wi. For every word, this character embedding is then 

concatenated with the respective pre-trained word embedding xiwe. For extracting the spatial 

role labels, additionally a SPATIAL INDICATOR embedding xiind is concatenated to the word and 

character embeddings to distinguish the indicators from non-indicator words. The final 

concatenated representation [xiwe; xice; xiind] is fed into the final Bi-LSTM network with one 

hidden layer. The overall architecture is presented in Fig. 4.
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4.2. BERT and XLNet-based models

First, we fine-tune BERT for extracting the SPATIAL INDICATORs in a sentence and second, we 

apply the fine-tuned model for labeling the four spatial roles provided the SPATIAL INDICATOR 

in a sentence. In this work, we represent a sentence obtained after WordPiece tokenization as 

[[CLS] sentence [SEP]] for constructing a single input sequence following the original 

BERT paper [18], where [CLS] is a symbol added at the beginning of each input sentence 

and [SEP] is a separator token for separating sentences. The input sequences are then fed 

into the BERT model to generate contextual representations. For spatial role labeling, we 

mask the SPATIAL INDICATOR term with an identifier ‘$spin$’ to better encode the positional 

information of the specific SPATIAL INDICATOR in a sentence for which the spatial roles are 

annotated. The contextual BERT representation corresponding to each word in the sequence 

[[CLS] sentence [SEP]] is then concatenated with a SPATIAL INDICATOR embedding similar to 

the baseline Bi-LSTM CRF model. The concatenated representation is fed into a simple 

linear classification layer for predicting the final labels for each token. The model 

architecture is illustrated in Fig. 5.

To fine-tune BERT for spatial role labeling for the Rad-SpRL corpus, we initialize the model 

with the publicly available pre-trained checkpoints of the BERT large model (BERTLARGE). 

We also initialize the model parameters obtained by pre-training BERT on medical corpus 

(MIMIC-III clinical notes). We have adopted these pre-trained parameters from a previous 

work [10] where clinical domain embedding models were pre-trained on MIMIC-III clinical 

notes, referred to as BERTLARGE (MIMIC), after initiating from the BERTLARGE released 

checkpoint. Owing to the best performance of BERTLARGE (MIMIC) on clinical concept 

extraction for four benchmark datasets [10], we initiate our model with the pre-trained 

parameters of BERTLARGE (MIMIC) to fine-tune on our spatial role labeling task.

For XLNet, the model input is similar to BERT and we feed [sentence [SEP] [CLS]] into the 

model. We have utilized a similar simple architecture as BERT for fine-tuning XLNet on 

Rad-SpRL. However, we have initialized the model with the released pre-trained model 

parameters (XLNetLARGE) for fine-tuning as experimenting with the MIMIC pre-trained 

parameters has yet to result in further performance improvement.

4.3. Pre-processing

4.3.1. SPATIAL INDICATOR extraction—We preprocess the Rad-SpRL dataset to generate 

input sequence for the models. We follow Beginning (B), Inside (I), and Outside (O) tagging 

scheme to label the words in a sentence. The input to the models consists of the sequence of 

words and the corresponding BIO tags. The following example shows how a sentence 

containing two SPATIAL INDICATORs is tagged.

Stable O scarring O near B−INDICATOR tℎe O rigℎt O lung O apex O
along B−INDICATOR tℎe O lateral O aspect O

4.3.2. Spatial role labeling—For each SPATIAL INDICATOR in a sentence, we create an 

instance or sample of the sentence. For each instance, we tag all the spatial roles (TRAJECTOR/
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LANDMARK/DIAGNOSIS/HEDGE) as well as the SPATIAL INDICATOR. Creating separate sentence 

instance for each SPATIAL INDICATOR helps in dealing with cases where the same word can be 

both a TRAJECTOR and a LANDMARK in context of two different SPATIAL INDICATORs in the 

sentence (example shown in (c-1) and (c-2) in Fig. 2). Also, annotating only the roles 

associated with a single SPATIAL INDICATOR provides the model unambiguous information 

about the position of the specific indicator term to which these roles are associated. We 

again follow the BIO tagging scheme. The input to the final model consists of words and the 

corresponding B, I, O labels for a set of sentences. However, in the case of applying BERT 

and XLNet, the input sentence is tokenized by WordPiece and SentencePiece tokenizers 

before feeding into the BERT and XLNet encoders, respectively. The following example 

shows the tagged words for the sentence – “Minimal degenerative changes of the thoracic 
spine”.

Minimal B−TRAJECTOR degenerative I−TRAJECTOR cℎanges I−TRAJECTOR
of INDICATOR tℎe O tℎoracic B−LANDMARK spine I−LANDMARK

4.4. Experimental settings and evaluation

We use pre-trained medical domain MIMIC-III word embeddings of 300 dimensions2 in our 

Bi-LSTM experiments. The character and the indicator embeddings are initialized randomly 

and altered during training. The dimensions of character and indicator embeddings are 100 

and 5 respectively. The model is implemented using TensorFlow [56], and the 

hyperparameters are chosen based on the validation set. LSTM hidden size is set at 500, 

dropout rate at 0.5, learning rate at 0.01, and learning rate decay at 0.99. We use the Adam 

optimizer and train the model for a maximum of 20 epochs.

For fine-tuning BERT, both for BERTLARGE and BERTLARGE (MIMIC), we largely followed 

the standard BERT parameters, including setting the maximum sequence length at 128, 

learning rate at 2e-5, and using the cased version of the models. Additionally, we set the 

number of training epochs at 4 based on the performance of the models on the validation set. 

For BERTLARGE (MIMIC), we initialize the model parameters pre-trained on MIMIC after 

320000 steps. For XLNet, the maximum sequence length and learning rates are the same as 

used for BERT, casing is also preserved, and the number of training steps is set at 2500 

based on the validation set performance. In both BERT and XLNet, the dimension of 

indicator embedding is set at 5.

First, we perform 10-fold cross validation (CV) – with data splits at the report level – to 

evaluate the performance of the three models for SPATIAL INDICATOR extraction. The training, 

validation, and test sets are split in the ratio of 80%, 10%, and 10% respectively. There are a 

total of 1742 sentences with at least one SPATIAL INDICATOR and 31779 sentences without any 

INDICATOR in the dataset. To ensure that the performance of the models is not impacted due to 

the imbalance in the number of sentences with and without SPATIAL INDICATORs, we 

additionally run both the Bi-LSTM CRF and the BERTLARGE (MIMIC) models by randomly 

2https://northwestern.app.box.com/s/eprxyxmee37p3d6khqbpn125-tyttq4u6.
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undersampling the negative sentences (i.e., sentences without an INDICATOR) while training. 

We experiment using different number of negative instances such that #negative sentences 

after undersampling = n * #positive sentences in each train and validation sets, where n = 

1,2,3,4,5,6). We found that the performance of both the models (average F1 score of a 10-

fold CV) improves as n is increased from 1 through 3 and starts to decline 4 onwards. 

Therefore, we select the value of n as 3 for conducting all our experiments. However, to 

evaluate the performance of the models on the full original dataset, we include all sentences 

in the reports of the test sets so that we get a more realistic sense of how well the models 

perform.

To better assess the generalizability of the models, we randomize the fold creation 5 times 

and conduct 10-fold cross validation for each fold variation. We then report the average 

Precision, Recall, and F1 measures across 50 (5*10) different instantiations for each model. 

We also include the 95% confidence intervals of the average F1 measures.

Second, we evaluate the performance of the three models in extracting the spatial roles in 

context to a SPATIAL INDICATOR. We use the same fold settings and the same training, 

development, and test splits as in the SPATIAL INDICATOR extraction for spatial role labeling. 

For training and validation, we utilize only the sentences containing a gold SPATIAL INDICATOR 

in the sentence. However, for testing, we experiment providing both the gold and the 

predicted SPATIAL INDICATORs (i.e., the output of the first model). The same trained model 

weights are used in predicting the roles using gold and predicted INDICATORs. We report the 

average Precision, Recall, and F1 measures of each of the 4 spatial roles across 50 

instantiations for each model. We also calculate the overall measures of the three metrics 

considering all the roles collectively. We report the 95% confidence intervals of the average 

overall F1 measures. Exact match is performed for evaluating the performance on the test 

set.

5. Results

The average results of the 10-fold CV across 5 different runs with fold variation are shown 

in Table 6 for SPATIAL INDICATOR extraction on the Rad-SpRL corpus. Note that we test the 

models on all sentences (both with and without INDICATOR). We see that either the recall or 

precision is higher than 90% for Bi-LSTM CRF, BERTLARGE, and XLNet models. 

BERTLARGE (MIMIC) had better balance in precision and recall (both higher than 90%). The 

highest F1 score is obtained by XLNetLARGE, which is 91.29.

For spatial role extraction, we report the average performance metric values of the 10-fold 

CV across 5 different fold variations, both considering the gold and the predicted SPATIAL 

INDICATORs in sentences of the test sets. Note that the test sets for each of the 50 different runs 

of the models are same for both INDICATOR and role extraction. We create a separate instance 

of a sentence for each of the predicted SPATIAL INDICATORs (in case multiple indicators are 

extracted by a model). When extracting the spatial roles using the predicted SPATIAL 

INDICATORs, we take into account all the spatial roles predicted for the false positive SPATIAL 

INDICATORs in calculating the precision loss, and consider the spatial roles predicted for the 
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false negative SPATIAL INDICATORs in assessing the recall loss. This provides a more realistic 

end-to-end evaluation of the models.

The results using gold and predicted indicators are presented in Table 7 and Table 8, 

respectively. We note that contextualized word representations help in improving spatial role 

extraction except for BERTLARGE, which performed slightly inferior to the baseline model 

(Bi-LSTM CRF) when the predicted SPATIAL INDICATORs are used (see Table 8). XLNet 

performed the best (highest average overall F1 score of 92.9) in extracting the spatial roles 

when gold INDICATORs are used, however, its performance is comparable to BERTLARGE 

(MIMIC) when predicted INDICATORs are used (85.4 for XLNet and 85.6 for BERT with the 

same confidence interval). For TRAJECTOR, the highest average F1 for the end-to-end 

evaluation is 85.7, whereas for LANDMARK the highest average F1 is 89.3, both obtained by 

BERTLARGE (MIMIC) (Table 8). For all the models, the average F1 measures for DIAGNOSIS 

and HEDGE are comparatively lower than TRAJECTOR and LANDMARK, with the highest values 

being 79.0 and 78.6, respectively. Although the highest overall F1 is achieved by 

BERTLARGE (MIMIC) for the end-to-end evaluation, XLNet performed better in extracting 

the DIAGNOSIS and HEDGE roles.

6. Discussion

In this paper, we extract the four spatial roles with respect to a SPATIAL INDICATOR in a sentence 

following the Rad-SpRL annotation scheme. This includes identifying the probable 

diagnoses with associated hedges in reference to a spatial relation between any finding and 

its associated location. The results in Table 7 and Table 8 demonstrate that the models 

achieve promising results in extracting the spatial roles from the Rad-SpRL corpus. We 

observe that incorporating contextualized word representations by fine-tuning BERT (pre-

trained on MIMIC) and XLNet models on the Rad-SpRL dataset performs better than a Bi-

LSTM CRF network in extracting the SPATIAL INDICATORs as well as the spatial roles. Thus, 

BERTLARGE (MIMIC) and XLNetLARGE are currently the best performing models. However, 

more work is needed to determine which between these two models is more robust in 

extracting spatial information from chest X-ray reports. We also note that the average F1 

measures are high for TRAJECTOR and LANDMARK roles and are comparatively low for 

DIAGNOSIS and HEDGE. The reason behind this can be attributed to the lesser number of 

DIAGNOSIS and HEDGE terms in the dataset (5–6 times less than both TRAJECTOR and LANDMARK 

terms) and greater distance between the SPATIAL INDICATOR and the DIAGNOSIS/HEDGE terms 

compared to the TRAJECTOR/LANDMARK terms.

Taking into account the relatively low F1 measure for DIAGNOSIS and HEDGE, we performed a 

brief analysis of the errors. On average, the best performing BERTLARGE (MIMIC) model in 

the end-to-end evaluation (shown in Table 8) misses around 10% of the gold annotated 

DIAGNOSIS terms, misclassifies 1% of the terms as TRAJECTORs, and misidentifies the beginning 

of around 2.6% of the DIAGNOSIS terms as inside. Some of the DIAGNOSIS terms that are 

misclassified as TRAJECTORs include ‘bronchovascular crowding’, ‘edema’, ‘pulmonary 
fibrosis’, ‘atelectasis’, and ‘scarring’. This is mainly because of the different ways certain 

common radiographic findings are also described as differential diagnoses. For example, in 

the sentence – “Low lung volumes with bibasilar opacities may represent bronchovascular 
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crowding.”, the DIAGNOSIS ‘bronchovascular crowding’ is falsely classified as a TRAJECTOR. 

This might be because there are instances in the dataset where ‘bronchovascular crowding’ 
appears as TRAJECTOR (e.g., in the sentence – “There are low lung volumes with 
bronchovascular crowding as a result.”), as often a DIAGNOSIS term itself appears in a spatial 

relationship. The main reason for the errors associated with incorrect starting boundary of a 

predicted DIAGNOSIS term is that sometimes an extra adjacent term to the left of the actual 

DIAGNOSIS term is predicted by the model. For example, in “Increasing prominence of the 
superior mediastinum may be secondary to enlarging thyroid mass.”, the model outputs 

‘enlarging thyroid mass’ as the predicted DIAGNOSIS instead of the annotated ‘thyroid mass’. 
For HEDGE, one of the major contributing factors of incorrect predictions of gold terms is that 

the BERTLARGE (MIMIC) model misses around 14% of the gold annotated HEDGE terms. 

Most of these missed terms (e.g.,’questionable’, ‘suggestion of’, ‘appears’, ‘alternatively’) 
occur very infrequently in the dataset. Another challenge could be the variety of ways the 

hedging terms are used and positioned in a sentence to suggest any finding or differential 

diagnosis. Future work should attempt to improve the models to better handle complex 

description of sentences.

In this work, we have considered both positive and negative spatial relations as our focus 

was on identifying the spatial relationship itself, not the presence or absence of the condition 

to which the relation refers. We aim to differentiate the negated relations in future. Future 

work should also be directed toward building an end-to-end system based on neural joint 

learning models [57,58] that would extract both SPATIAL INDICATOR and the spatial roles 

together, reducing discongruencies between predicted roles. This work extracts single word 

prepositional spatial expressions. We further aim to consider non-prepositional spatial 

expressions as SPATIAL INDICATORs (e.g., verbs such as ‘demonstrates’, ‘shows’ etc.) that 

indicate the presence of any spatial relation between finding and body location. Additionally, 

we will address expressions containing multiple words (e.g., ‘projects in’, ‘projecting 
through’, ‘projected over’) in our future work, although such expressions occur rarely in this 

dataset to describe the location of findings. We will also investigate the performance of our 

proposed systems for extracting the spatial roles when the SPATIAL INDICATORs are non-

prepositional or multi-word expressions. Besides radiographic findings, we also intend to 

extend the Rad-SpRL framework to extract other important and common spatially-grounded 

radiology entities such as medical devices from the reports. The multi-word spatial 

expressions we described above such as ‘projects over’ and ‘extends below’ are more 

common in describing the location of devices that we aim to extract in the future. The 

following example illustrates a sample sentence where the medical device ‘Right IJ venous 
catheter’ acts as the TRAJECTOR in reference to its associated location ‘proximal SVC’ that 

acts as the LANDMARK:

• Right IJ venous catheter terminates at the proximal SVC.

Apart from diagnoses and hedging terms, we additionally aim to extract other important 

contextual information related to spatial relations across different imaging modalities in our 

later work. Another limitation of this study is that intersentence spatial relations are not 

covered, although the frequency of such cases are rare in the Rad-SpRL corpus. We also aim 

to evaluate the generalizability of our sequence labeling methods in extracting the spatial 
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roles from datasets across institutions. For standardization of the extracted spatial roles, we 

further aim to normalize them utilizing the existing radiology lexicons such as RadLex [59] 

codes. From a method perspective, we plan to apply some alternative deep learning methods 

such as highway networks [60] and tree-based LSTMs [58] to further improve the 

performance of spatial role extraction from the Rad-SpRL corpus.

7. Conclusion

This paper proposes a spatial representation framework in radiology (Rad-SpRL). It 

provides a detailed description of the annotation scheme used for extracting spatial 

information from radiology reports. This consists of annotating four radiology-specific 

spatial roles in a dataset of 2000 chest X-ray reports. The spatial roles are annotated in the 

context of a SPATIAL INDICATOR which denotes the presence of a spatial relation between 

clinical findings and body locations. It additionally identifies probable diagnoses and 

hedging terms associated with the spatially-related finding-location. For this, we first 

employ a Bi-LSTM CRF model as the baseline model to automatically extract the SPATIAL 

INDICATORs and the spatial roles from our annotated Rad-SpRL corpus. We then experiment 

with BERT and XLNet-based models. The models achieve satisfactory performance with the 

highest average F1 measure of 91.29 for extracting SPATIAL INDICATORs and F1 measures of 

85.7, 89.3, 79.0, and 78.6 for identifying TRAJECTOR, LANDMARK, DIAGNOSIS, and HEDGE roles, 

respectively using the predicted INDICATORs. In the future, we aim to evaluate the models on 

much larger datasets, extend the annotation framework to capture more fine-grained spatial 

information, and adopt joint learning models for extracting the SPATIAL INDICATOR and the 

spatial roles jointly.
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Fig. 1. 
Examples of manual annotations: (a) Open-i annotations, (b) Our spatial relation 

annotations.
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Fig. 2. 
Examples of spatial role annotations: (a) Sentence having TRAJECTOR and LANDMARK, (b) 

Sentence having TRAJECTOR, LANDMARK, HEDGE, and DIAGNOSIS, (c-1) and (c-2) show the 

annotations of the same sentence containing 2 SPATIAL INDICATORs where the same entity right 
lung apex acts as a LANDMARK in (c-1) and a TRAJECTOR in (c-2), and (d) Sentence where a 

LANDMARK is described with a TRAJECTOR.
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Fig. 3. 
(a) Example of a de-identified report in our corpus, (b) Spatial role label annotations for the 

sentence represented by blue text in (a), and (c) Spatial role label annotations for the 

sentence represented by green text in (a). RadSpRLRelation indicates the text of the 

respective SPATIAL INDICATORs implying the existence of a spatial relation in both the 

sentences.
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Fig. 4. 
Baseline model architecture. For each word, a character representation is fed into the input 

layer of the Bi-LSTM network. For each word, xwe represents pre-trained word embeddings, 

xce represents character embeddings, and xind represents indicator embeddings. The final 

predictions for the spatial role labels in a sentence are made combining the Bi-LSTM’s final 

score and CRF score.
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Fig. 5. 
BERT-based model.
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Table 4

Annotator agreement.

Number of Reports Kappa (κ) Overall F1

SPATIAL INDICATOR TRAJECTOR LANDMARK DIAGNOSIS HEDGE

First 500 0.88 0.44 0.50 0.25 0.49

Remaining 1500 0.93 0.66 0.71 0.62 0.57

Complete 2000 0.92 0.59 0.64 0.49 0.55
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Table 5

Descriptive statistics of the annotations.

Parameter Frequency

Average length of sentence containing spatial relation 13

SPATIAL INDICATOR 1962

TRAJECTOR 2293

LANDMARK 2167

DIAGNOSIS 455

HEDGE 388

Sentences containing at least 1 SPATIAL INDICATOR 1742

Maximum number of SPATIAL INDICATOR in any sentence 4

Spatial relations containing only TRAJECTOR and LANDMARK 1589

Spatial relations containing only TRAJECTOR, LANDMARK, and DIAGNOSIS 9

Spatial relations containing only TRAJECTOR, LANDMARK, and HEDGE 70

Spatial relations containing all 4 spatial roles 304

Spatial relations containing more than 1 DIAGNOSIS 118

Maximum DIAGNOSIS terms associated with any spatial relation 4
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Table 6

SPATIAL INDICATOR extraction results: Average Precision, Recall, and F1 measures of 10-fold CV across 5 

different fold variations. CI - 95% confidence intervals of the average F1 measures across 50 iterations.

Models Precision Recall F1 (CI)

Bi-LSTM CRF 84.73 92.38 88.33 (± 0.56)

BERTLARGE 94.07 83.54 87.85 (± 2.49)

BERTLARGE (MIMIC) 90.69 91.60 91.08 (± 3.68)

XLNetLARGE 88.62 94.40 91. 29 (± 0.70)
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