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Abstract

Inflammasomes are large cytosolic multiprotein complexes assembled in response to infection and 

cellular stress, and are crucial for the activation of inflammatory caspases and the subsequent 

processing and release of pro-inflammatory mediators. While caspase-1 is activated within the 

canonical inflammasome, the related caspase-4 (also known as caspase-11 in mice) and caspase-5 

are activated within the non-canonical inflammasome upon sensing of cytosolic 

lipopolysaccharide (LPS) from Gram-negative bacteria. However, the consequences of canonical 

and non-canonical inflammasome activation are similar. Caspase-1 promotes the processing and 

release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and the release of danger 

signals, as well as a lytic form of cell death called pyroptosis, whereas caspase-4, caspase-5 and 

caspase-11 directly promote pyroptosis through cleavage of the pore-forming protein gasdermin D 

(GSDMD), and trigger a secondary activation of the canonical NLRP3 inflammasome for cytokine 

release. Since the presence of the non-canonical inflammasome activator LPS leads to 

endotoxemia and sepsis, non-canonical inflammasome activation and regulation has important 

clinical ramifications. Here we discuss the mechanism of non-canonical inflammasome activation, 

mechanisms regulating its activity and its contribution to health and disease.
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1. Introduction

Innate immunity relies on a coordinated response upon detection of conserved microbial- or 

pathogen-associated molecular patterns (MAMPs and PAMPs) and host-derived danger 
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associated molecular patterns (DAMPs) by multiple pattern recognition receptors (PRRs). 

Transmembrane PRRs belonging to the Toll-like receptor (TLR) family respond to a diverse 

repertoire of DAMPs and PAMPs within the extracellular environment and endosomes. For 

instance, TLR4 specifically senses the major outer cell wall component of Gram-negative 

bacteria Lipopolysaccharide (LPS) (Hoshino et al., 1999; Poltorak et al., 1998). TLR 

receptor engagement leads to the activation of MyD88 or TRIF-dependent cytosolic 

signaling pathways, culminating in the activation of nuclear factor-kappa B (NF-κB), 

mitogen-activated protein kinases (MAPKs) and interferon regulatory factors (IRFs), and 

subsequently the transcription of inflammatory cytokines, interferons, and antimicrobial 

factors (Kawai and Akira, 2010). In addition to membrane bound PRRs, there are 

intracellular PRRs which may assemble signaling platforms referred to as inflammasomes. 

Canonical inflammasomes are assembled by the nucleotide-binding oligomerization domain 

(NOD) leucine-rich repeat (LRR)-containing protein receptors (NLRs), including NLRP1, 

NLRP3, NLRC4, NLRP6, NLRP7, NLRP9b, the absent in melanoma 2 (AIM2)-like 

receptor (ALR) AIM2, as well as Pyrin (Broz and Dixit, 2016; Dorfleutner et al., 2015; 

Martinon et al., 2002). Several other related proteins have also been implicated as 

inflammasome sensors, but yet with limited evidence, including NLRP2, NLRC5, NLRP12, 

and Interferon-γ inducible protein 16 (IFI16), which all have other, more established cellular 

functions (Davis et al., 2011; Kerur et al., 2011; Matsuoka et al., 2019; Minkiewicz et al., 

2013; Vladimer et al., 2012). Ligand recognition and inflammasome sensor activation results 

in sensor oligomerization and recruitment of the essential adaptor protein apoptosis-

associated speck-like protein containing a caspase recruitment domain (ASC), which 

nucleates ASC polymerization and consequently, proximity-induced clustering and 

activation of caspase-1. Active caspase-1 then proteolytically matures pro-IL-1β and pro-

IL-18 into their biologically active, secreted forms (Cerretti et al., 1992; Dinarello, 1998; 

Thornberry et al., 1992). Maximal IL-1β and IL-18 secretion occurs after inflammasome-

mediated pore formation or lytic cell death known as pyroptosis, which is also influenced by 

membrane repair mechanisms (Evavold et al., 2018; Fink and Cookson, 2006; Ruhl et al., 

2018). To prevent improper canonical NLRP3 inflammasome activation, a two-step 

activation mechanism is employed. First, “priming”, for example by TLRs, to arm the 

system, which involves activation of NF-κB to upregulate inflammasome components and 

cytokine targets and posttranslational modifications of inflammasome components and 

second, “activation”, which then promotes inflammasome assembly (Khare et al., 2010; 

Swanson et al., 2019). Unlike other canonical inflammasomes, NLRP3 appears to not 

directly recognize a specific PAMP or DAMP, but is rather activated by molecular events 

associated with microbial infection and cellular stress, including potassium efflux, calcium 

signaling, lysosomal rupture and mitochondrial defects, including reactive oxygen species 

(ROS) production and the release of oxidized mitochondrial DNA. NLRP3 and several other 

canonical inflammasomes are regulated by a family of small endogenous inhibitors 

belonging to the PYRIN domain-only proteins (POPs) and caspase recruitment and 

activation domain (CARD)-only proteins (COPs) (Chu et al., 2015; Dorfleutner et al., 2015; 

Indramohan et al., 2018; Swanson et al., 2019). The NLRP3 inflammasome has also been 

implicated in cellular responses to LPS (Mariathasan et al., 2006). However, more recently 

LPS has been found to trigger the activation of a distinct type of inflammasome, known as 

the “non-canonical” inflammasome (Hagar et al., 2013; Kayagaki et al., 2011; Kayagaki et 
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al., 2013; Matikainen et al., 2020; Rathinam et al., 2019; Shi et al., 2014; Yi, 2017). Rather 

than activating caspase-1, the non-canonical inflammasome results in the activation of the 

related caspase-4 and caspase-5 in humans and caspase-11 in mice (Fig. 1). However, the 

functional consequences are reminiscent to canonical inflammasome responses, featuring 

pyroptosis, as well as IL-1β and IL-18 release through secondary activation of the canonical 

NLRP3 inflammasome, referred to as non-canonical NLRP3 inflammasome activation 

(Kayagaki et al., 2015; Matikainen et al., 2020; Rathinam et al., 2019; Yi, 2017, 2020). 

Unlike canonical inflammasomes where ligand sensing, assembly, and effector functions are 

carried out by multiple protein components, the non-canonical caspases function as both 

sensor and effector molecules for LPS. However, recent evidence also implicates the 

guanylate-binding protein (GBP) 1 as an LPS sensor upstream of the non-canonical 

inflammasome, which triggers GBP hetero-oligomerization and recruitment of caspase-4 

(Fisch et al., 2020; Kutsch et al., 2020; Santos et al., 2020; Wandel et al., 2020). Although 

pyroptosis has largely been considered a form of cell death restricted to innate immune cells, 

this pathway is also active in epithelial cells, hepatocytes, keratinocytes, endothelial cells 

and other non-immune cells (Cheng et al., 2017; Knodler et al., 2014; Liu et al., 2020; Shi et 

al., 2014).

2. The non-canonical inflammasome

2.1. Discovery of LPS as activator of the non-canonical inflammasome

LPS is a prototypic PAMP and a potent mediator of sepsis and septic shock, which remain a 

major cause of mortality and therefore, identifying the cellular response triggered by LPS 

has been the focus of intense investigations. LPS is comprised of three main parts: the most 

conserved lipid A moiety, a core oligosaccharide chain, and a variable polysaccharide chain 

known as O-antigen (Raetz and Whitfield, 2002). Specifically, the lipid A moiety of LPS is 

responsible for the immunostimulatory activity of LPS, which is recognized by the 

TLR4/MD2 complex in conjunction with its co-receptor CD14 following interaction with 

the LPS-binding protein (LBP) (Gegner et al., 1995; Zanoni et al., 2011). Excessive 

signaling by TLR4 plays a major role in LPS-induced shock or sepsis, and accordingly, 

Tlr4−/− mice are highly resistant to endotoxic shock upon injection of a high dose of LPS 

(Hoshino et al., 1999; Poltorak et al., 1998). However, mice deficient in caspase-1 

(Casp1−/−) also show a comparable resistance to LPS-induced shock, as do mice deficient in 

other inflammasome components, such as ASC and NLRP3 (Li et al., 1995; Mariathasan et 

al., 2004; Mariathasan et al., 2006; Yamamoto et al., 2004). Furthermore, deletion of 

caspase-11 (Casp11−/−) phenocopies this LPS resistance of caspase-1 and other canonical 

inflammasome component deficiencies (Wang et al., 1998). Hence, LPS mediated sepsis is 

also linked to inflammasome activation. Investigating the response of murine macrophages 

to LPS and cholera toxin B (CTB), as well as other bacterial inflammasome activators, led to 

the discovery of this non-canonical inflammasome pathway, which relies on caspase-11 and 

is independent of classical TLR4 signaling (Aachoui et al., 2013; Kayagaki et al., 2011; 

Kayagaki et al., 2013; Shi et al., 2014). The ability of CTB to activate caspase-11 in LPS 

primed bone marrow macrophages was eventually determined to be due to the intracellular 

delivery of LPS by CTB. The originally used Casp1−/− mice were generated from 129S6 

strain ES cells, which carry a five-base pair deletion in Casp11 and therefore encode a 
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nonfunctional protein, and were unknowingly double knock out for Casp1 and Casp11 
(Casp1/11−/−) (Kayagaki et al., 2011). Unfortunately, the close proximity of Casp1 and 

Casp11 loci prevents segregation by recombination. However, transgenic expression of 

caspase-11 in those original Casp1/11−/− mice (Casp1/11−/−/Casp11TG) reverse their 

phenotype and render these mice susceptible to LPS-induced shock, which demonstrates that 

caspase-11 rather than caspase-1 is the critical component in this pathway (Kayagaki et al., 

2011). Furthermore, loss of caspase-11 alone (Casp11−/−) in BMDMs does not affect IL-1β 
secretion when stimulated with canonical NLRP3, AIM2 and NLRC4-dependent 

inflammasome activators, but impairs IL-1β secretion in response to infection with Gram-

negative bacteria Escherichia coli, Citrobacter rodentium and Vibrio cholerae, which elicits 

an LPS/caspase-11-driven response (Kayagaki et al., 2011). Ultimately, this distinct 

response of caspase-1 and caspase-11 was verified in Casp1−/− mice generated on the 

C57BL/6 strain, which encodes a functional caspase-11 (Kayagaki et al., 2015; Man et al., 

2017). Caspase-11 deficiency but not canonical inflammasome component deficiency, 

protects mice against lethality in response to a high LPS dose (Kayagaki et al., 2011). 

Interestingly, Nlrp3 or Asc deficiency is able to ameliorate lethality in response to lower 

doses of LPS, implying that the canonical inflammasome may play a role in the 

amplification of the shock response (Mariathasan et al., 2004; Mariathasan et al., 2006).

After the discovery of caspase-11 in mice (Wang et al., 1996; Wang et al., 1998), efforts 

were made to identify human caspase-11. However, two homologous proteins, caspase-4 and 

caspase-5, were identified instead, which share approximately 55% protein identity to 

murine caspase-11 and cluster on chromosome 4 with caspase-1 and the caspase-1-

regulatory COPs (Dorfleutner et al., 2015; Man and Kanneganti, 2016; Stehlik and 

Dorfleutner, 2007; Van Opdenbosch and Lamkanfi, 2019). Both caspases appear to 

redundantly mediate activation of the non-canonical inflammasome. However, caspase-4 

exhibits a higher resemblance in size and sequence to caspase-11, which may also suggest a 

closer functional role. In human macrophages pyroptosis and NLRP3 inflammasome-

mediated cytokine release in response to cytosolic LPS and invasive Gram-negative bacteria 

is impaired upon deletion of either caspase-4 or caspase-5, reminiscent to caspase-11 

deletion (Casson et al., 2015; Kajiwara et al., 2014; Knodler et al., 2014; Lagrange et al., 

2018; Platnich et al., 2018; Schmid-Burgk et al., 2015; Shi et al., 2014; Sollberger et al., 

2012; Vigano et al., 2015). However, a recent study found that heme induced pyroptosis in 

human macrophages is predominantly mediated by caspase-4, but heme induced release of 

IL-1β is mediated by caspase-4 and caspase-5, as well as non-canonical activation of 

caspase-1. Hence, non-canonical inflammasome caspases can exhibit unique and non-

redundant functions under certain circumstances (Bolívar et al., 2020).

2.2. Intracellular sensing of LPS and Gram-negative bacteria

A paradigm shift in innate immunity happened when murine caspase-11, the human ortholog 

caspase-4 and the related caspase-5 were identified as direct receptors for intracellular LPS 

(Shi et al., 2014). Similar to caspase-1 they are initiator caspases and are comprised of an N-

terminal CARD, which is responsible for its oligomerization, and the p10 and the p20 

caspase domains (Man and Kanneganti, 2016). Since canonical inflammasomes require an 

adaptor to link sensors to caspase-1 activation, investigators anticipated a CARD-containing 
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protein may similarly serve as an LPS upstream sensor and activator of caspase-11. 

However, activation of caspase-11 was not observed after co-expression of 18 different 

CARD-containing proteins, suggesting that such a protein may not be necessary (Shi et al., 

2014). However, a caspase bimolecular fluorescence complementation (BiFC) assay 

revealed the possibility of upstream sensors in caspase-4 and caspase-5 oligomerization, 

including NLRP1, NLRP3 and NLRC4 and NLRP1, respectively (Sanders et al., 2015). 

NLRP1 has also been earlier implicated in caspase-5 activation (Martinon et al., 2002). 

However, the hypothesis that caspase-11 itself might act as an LPS receptor arose from the 

observation that caspase-11 purified from E.coli, but not insect cells, was oligomerized 

under non-denaturing conditions, suggesting that bacterial components may induce 

caspase-11 oligomerization, which is an essential hallmark for its activation (Chang et al., 

2003; Salvesen and Dixit, 1999; Shi et al., 2014). Indeed, LPS is responsible for this 

oligomerization, as insect cells incubated with LPS produced oligomeric caspase-11. Several 

positively charged motifs in the CARD of caspase-4, caspase-5 and caspase-11 are required 

for LPS binding (Shi et al., 2014). However, a subsequent cell-based analysis proposed a 

modified mode of interaction, as not only positively charged residues in the CARD of 

caspase-11 are critical for LPS binding but also positively charged amino acids in the 

caspase domain between amino acid 220 to 294 (Chu et al., 2018). Binding of caspase-11 to 

LPS not only triggers its oligomerization but also induces catalytic activity (Shi et al., 2014). 

Thus, unlike canonical inflammasome activation that requires a multiprotein scaffold for 

activation, non-canonical inflammasomes directly serve as receptors for intracellular LPS 

(Hagar et al., 2013; Kayagaki et al., 2013). However, recently several members of the GBP 

protein family have been implicated in the formation of a caspase-4 signaling platform 

(Fisch et al., 2020; Kutsch et al., 2020; Santos et al., 2020; Wandel et al., 2020).

2.3. The role of GBPs and LPS entry to the cytosol in non-canonical inflammasome 
activation

IFN inducible GTPases, including GBPs and immunity related GTPases (IRGs), have 

several important functions in the immune defense against pathogens. They can directly 

attach to bacteria and cause bacteriolysis, they can disrupt the outer membrane of pathogen-

containing vacuoles so that pathogens are freely accessible for cytosolic PRR recognition, 

including the non-canonical inflammasome, and most recently they have been described to 

function as LPS receptors that recruit the non-canonical inflammasome caspases to cytosolic 

bacteria (Meunier et al., 2014; Pilla et al., 2014; Santos et al., 2018). Accordingly, deletion 

of all GBPs on chromosome 3 (Gbpchr3−/−) results in attenuated activation of caspase-11 

(Balakrishnan et al., 2018; Meunier et al., 2014; Pilla et al., 2014; Tang et al., 2018). GBPs 

also recruit IRGB10 to the membranes of cytosolic bacteria in macrophages resulting in 

permeabilization and liberation of bacterial products, including LPS (Balakrishnan et al., 

2018; Man et al., 2016). However, more recent studies in IFN-γ activated epithelial cells 

demonstrate that liberation of Salmonella Typhimurium from vacuolar membranes does not 

depend on GBP1, but that GBP1 instead acts as a cytosolic LPS receptor indispensable for 

non-canonical inflammasome activation (Kutsch et al., 2020; Santos et al., 2020; Wandel et 

al., 2020). After targeting the Gram-negative bacterial surface, GBP1 quickly recruits GBP2, 

GBP3 and GBP4 to create a stabilized GBPs oligomeric structure, which then sequesters 

caspase-4 to the bacterial surface, thus facilitating the activation of caspase-4 by LPS 
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(Santos et al., 2020; Wandel et al., 2020). However, two studies found opposing results for 

the function of GBP2 and GBP3 in caspase-4 recruitment and activation (Santos et al., 2020; 

Wandel et al., 2020). While Santos et al. showed GBP1/3/4, but not GBP2, are adequate for 

caspase-4 recruitment and activation, Wandel et al. demonstrated that GBP1/2/4, but not 

GBP3, are essential for caspase-4 recruitment, while all four are required for caspase-4 

activation. Comparable results were obtained using a Shigella flexneri mutant deficient in 

the virulence factor OspC3, which inhibits caspase-4 (Wandel et al., 2020). Further analysis 

revealed that GBP1 associates with LPS by electrostatic attraction of the negatively charged 

phosphate groups on lipid A and the inner core of LPS to the positively charged surface 

patch (KKK61-63) in the GTPase domain of GBP1, and is also dependent on its GTPase 

activity. Mutation of this patch impairs GBP1 recruitment to S. Typhimurium surfaces and 

GBP1 oligomerization (Santos et al., 2020). Other mutations within the GTPase domain, 

such as mutation of the Mg2+ binding site (GBP1S52N), GTP binding site (GBP1K51A) and 

GTP hydrolysis site (GBP1R48A) as well as a prenylation deficient mutant (GBP1C589S) also 

fail to target GBP1 to the bacterial surface and to recruit caspase-4 (Wandel et al., 2020). In 

agreement, LPS deficient in the O-antigen can still facilitate GBP1 coating and caspase-4 

binding (Wandel et al., 2020). Caspase-4 subsequently binds to oligomerized GBP1 (Santos 

et al., 2020; Wandel et al., 2020). Furthermore, while LPS strongly binds GBP1, some LPS 

binding is also observed with GBP3, suggesting that GBP3 may also act as an LPS sensor 

(Santos et al., 2020). In vivo, infection with S. Typhimurium or S. flexneri ΔospC3, resulted 

in higher bacterial burden and lethality in Gbp1−/− mice (Wandel et al., 2020). Interestingly, 

the function of human GBP1 in cell-intrinsic immunity is microbe-specific, as GBP1 

contributes to the disruption of both vacuolar and parasite plasma membranes of 

Toxoplasma gondii, and escape out of vacuoles in human macrophages, leading to AIM2 

inflammasome activation and atypical apoptosis (Fisch et al., 2020). However, in contrast to 

S. Typhimurium infection, this response does not recruit caspase-4 and raises the possibility 

that GBP1 may recognize other MAMPs beyond LPS (Fisch et al., 2020).

Activation of caspase-4 leads to GSDMD cleavage, IL-18 maturation and release, and 

subsequent pyroptosis. Similarly, the GTPase domain of GBP1 is essential for IL-18 

processing and release during infection (Wandel et al., 2020). However, purified but not 

membrane integrated LPS elicits caspase-4-dependent responses, which may be due to 

inaccessibility of the embedded lipid A moiety (Shi et al., 2014; Wandel et al., 2020). GBPs 

do not only concentrate caspase-4 at sufficiently high concentration on bacterial surfaces, 

but also make lipid A more accessible by potentially destabilizing the O-antigen barrier on 

bacterial surfaces (Kutsch et al., 2020). Nevertheless, bacterial host cell invasion is not a 

prerequisite for non-canonical inflammasome activation, as outer membrane vesicles 

(OMVs) generated by Gram-negative bacteria can also facilitate the entry of LPS to the 

cytosol. OMVs are membrane-bound structures released during bacterial growth and/or 

stress and contain an abundance of LPS (Ryu et al., 2017). They are internalized by 

endocytosis, and OMV-bound LPS is subsequently released into the cytosol from early 

endocytic compartments via GBPs and IRGB10 and activate non-canonical inflammasomes 

in human and mouse macrophages (Bitto et al., 2018; Cecil et al., 2017; Chen et al., 2018; 

Chu et al., 2018; Finethy et al., 2017; Santos et al., 2018; Vanaja et al., 2016; Wacker et al., 

2017). In bone marrow-derived macrophages, GBP1, GBP2, and GBP5 are recruited to 
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internalized OMVs and bind to LPS (Kim et al., 2016; Santos et al., 2018). Under conditions 

in which no pathogenic bacteria are present, such as injection of free LPS into mice, 

activation of the non-canonical inflammasome can also occur, however, the mechanism 

through which LPS gains access to the cytosol is not fully understood.

Besides vacuole disruption by cellular GBPs, some Gram-negative bacteria have their own 

escape mechanism, which consequently enables their cytosolic detection by the non-

canonical inflammasome. Hence, no efficient immune response can be mounted in the 

absence of caspase-11 in mice, and Casp11−/− mice are more susceptible to infection with 

cytosol-invasive Gram-negative bacteria, including Burkholderia thailandensis, Burkholderia 
pseudomallei, Klebsiella pneumoniae, S. Typhimurium, Legionella pneumophila, S. flexneri 
and Acinetobacter baumannii (Aachoui et al., 2015; Aachoui et al., 2013; Broz et al., 2012; 

Knodler et al., 2014; Wang et al., 2017). Experimentally, some Gram-negative bacteria can 

be forced to enter the cytosol by mutating/deleting their phagosome stabilizing factors. For 

instance, S. Typhimurium mutants lacking the phagosome stabilizing factor SifA or the 

Salmonella pathogenicity island 2 (SPI2), as well as L. pneumophila lacking the vacuole 

stabilizing SdhA are primarily cytosolic (Aachoui et al., 2013). LPS internalization can also 

occur by endocytosis through direct binding to CD14 (Gegner et al., 1995; Zanoni et al., 

2011). An additional route of LPS internalization is the direct binding of LPS to high-

mobility group box 1 (HMGB1), which triggers receptor mediated endocytosis of LPS 

through the receptor for glycation end products (RAGE) (Andersson et al., 2000; Andersson 

et al., 2018; Xu et al., 2014; Youn et al., 2008). Leakage of LPS into the cytosol by this 

mechanism activates the non-canonical inflammasome in humans and mice and contributes 

to LPS-induced lethality in mice (Deng et al., 2018; Wang et al., 1999; Wang et al., 2004; 

Xu et al., 2014). HMGB1 combined with LPS, but not LPS alone, induces significant 

caspase-11 and caspase-4 dependent pyroptosis in both murine peritoneal macrophages and 

human THP-1 monocytes, suggesting a direct role for HMGB1 in the delivery of LPS to the 

cytosol (Deng et al., 2018). Pull-down experiments have confirmed that the HMGB1 A and 

B box motif bind to the LPS polysaccharide and lipid A regions, respectively (Youn et al., 

2011). Delivery of the HMGB1/LPS complex to the cytosol is mediated by RAGE, as its 

genetic deficiency or blockage protects mice from LPS-induced septic shock (Deng et al., 

2018).

Recently, the small protein secretoglobin (SCGB) 3A2 has been identified as a chaperone for 

delivery of LPS to the cytosol in macrophages, as co-treatment of LPS with SCGB3A2 

synergistically induces activation of caspase-11 and caspase-11-mediated pyroptosis 

(Yokoyama et al., 2018). Initial evidence came from observed differences between different 

recombinant SCG3A2 preparations and its growth inhibitory potency in LLC cells, which 

was subsequently determined to be associated with LPS contamination. Using biotinylated 

LPS the authors confirmed direct binding of LPS to recombinant SCG3A2 by streptavidin 

affinity purification. Subsequent LPS/SCGB3A2 entry into the cytosol occurs independently 

of TLR4, but is inhibited by Dynamin and the GTPase inhibitor Dynasore, suggesting that 

clathrin-mediated endocytosis is involved in SCGB3A2-mediated delivery of LPS into the 

cytosol (Yokoyama et al., 2018). of Protein microarray analysis subsequently identified 

syndecan-1 as the SCG3A2/LPS receptor (Yokoyama et al., 2018).
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2.4. Alternative activation of the non-canonical inflammasome

In addition to LPS, some evidence also supports certain other lipids as caspase-11 activators. 

Arachidonic acid-derived oxidized phospholipids, including oxPAPC, elicit a caspase-11 

mediated pro-inflammatory response specifically in dendritic cells (DCs). However, while 

cytosolic LPS triggers caspase-11 mediated IL-1β release as well as pyroptosis, oxPAPC 

only induces IL-1β release, putting cells in a hyperactivated state without undergoing cell 

death (Zanoni et al., 2016). These differences might be due to the different binding sites 

within caspase-11 that are targeted by LPS compared to oxPAPC and to their differences in 

promoting caspase-11 enzyme activity. While LPS binds to the CARD of caspase-11 and 

induces the enzymatic activity of caspase-11, oxPAPC binds to, and blocks the catalytic 

domain. Consequently, and contrary to LPS-mediated IL-1β release, the catalytic activity of 

caspase-11 is dispensable for oxPAPC mediated IL-1β release. Hence, LPS and oxPAPC 

utilize two distinct mechanisms for caspase-11 mediated IL-1β release (Zanoni et al., 2016). 

On the cell surface LPS bind to CD14 and induces endocytosis (Zanoni et al., 2011). 

Comparable to LPS, oxPAPC also binds to CD14 and is also able to induce CD14 

internalization for delivering oxPAPC into cells. Interestingly, oxPAPC is only able to 

induce inflammasome activation and IL-1β release in DCs, but not in macrophages. 

However, oxPAPC is a mixture of lipids and stimulation with pure PGPC or POVPC, two 

minor components within the oxPAPC mixture, induce the release of IL-1β from both 

macrophages and DCs (Zanoni et al., 2017). POVPC has previously been implicated in the 

activation of the canonical NLRP3 inflammasome in macrophages, inducing ASC 

oligomerization, caspase-1 activation and IL-1β secretion (Yeon et al., 2017). In 

macrophages, PGPC and POVPC induce GSDMD-dependent IL-1β release and DNA 

intercalating dye uptake, indicating pore formation, but not LDH release, which is a 

hallmark of pyroptosis. Hence, caspase-11 and caspase-1 can have a trigger-dependent 

pyroptotic or non-pyroptotic function, but GSDMD is responsible for IL-1β release in both 

scenarios (Evavold et al., 2018).

The glycolipid lipophosphoglycan (LPG) present on the surface of Leishmania parasites 

activates canonical and non-canonical inflammasomes in macrophages (de Carvalho et al., 

2019). Cytosolic delivery of Leishmania, but not LPG deficient Leishmania into 

macrophages, causes the activation of caspase-11 and subsequent activation of NLRP3 and 

caspase-1. Infection of Nlrp3−/− and Casp11−/− macrophages and Casp11−/− and Nlrp3−/− 

mice with Leishmania results in increased parasite loads and reduced host resistance, 

supporting a role for both canonical and non-canonical inflammasome activation during 

Leishmania infection (de Carvalho et al., 2019). However, in contrast to LPS and oxPAPC, 

LPG does not bind to caspase-11 and caspase-4, and fails to activate the non-canonical 

inflammasome in vitro (de Carvalho et al., 2019), suggesting the requirement of additional 

factors.

Secreted aspartyl proteinases Sap2 and Sap6 from yeast have previously been implicated in 

the activation of the canonical NLRP3 inflammasome, and recently in the activation of 

caspase-11 (Gabrielli et al., 2015; Pietrella et al., 2013). However, this response was 

mediated by regulating expression of caspase-11 by type I IFN production, rather than 

caspase-11 activation. Similarly, the addictive drug, methamphetamine, has been reported to 
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activate caspase-11 to drive neuronal cell death, but also affects caspase-11 expression rather 

than activation (Huang et al., 2015).

Furthermore, some evidence also supports non-lipid molecules in the activation of the non-

canonical inflammasome. As already mentioned above, heme has been identified as a 

DAMP activating caspase-4-dependent IL-1b release and pyroptosis as well as caspase-5-

dependent release of IL-1β in human macrophages, but whether heme directly binds to these 

caspases is still unknown (Bolívar et al., 2020). The relevance of this response is emphasized 

by the observation that heme-induced IL-1β release is elevated in macrophages from sickle 

cell disease patients (Bolívar et al., 2020).

2.5. Consequences of non-canonical inflammasome activation

Caspase-1, but not caspase-11, is able to directly proteolytically mature pro-IL-1β and pro-

IL-18, (Ramirez et al., 2018). Nevertheless, caspase-4 and caspase-5 have been implicated in 

the processing and release of IL-1b and IL-18, since silencing of caspase-4 and caspase-5, 

but not caspase-1, impaired cytokine release in response to S. Typhimurium and E. coli 
infection (Knodler et al., 2014). However, to our knowledge, compelling evidence for a 

direct cleavage of these cytokines by either caspase-4 or caspase-5 is still lacking. In vitro 
peptide analysis recently determined that in contrast to most caspases, including caspase-1, 

where the substrate specificity is determined by the P1-P4 tetrapeptide, the non-canonical 

caspase specificity is influenced by the prime-side amino acids P1’-P4’ and strongly prefer 

GSDMD over pro-IL-1β and pro-IL-18 (Bibo-Verdugo et al., 2020). However, while 

caspase-4 can cleave GSDMD and pro-IL-18 similar to caspase-1, it cannot cleave pro-

IL-1p. On the other hand, caspase-5 also cleaves GSDMD but has only very weak activity 

for pro-IL-18 and pro-IL-1β (Bibo-Verdugo et al., 2020). The major function of non-

canonical inflammasomes is the induction of pyroptosis (Fig. 2). Comparable to caspase-1, 

caspase-4, caspase-5 and caspase-11 also cleave GSDMD into an N-terminal (GSDMD-N) 

and C-terminal (GSDMD-C) fragment after aspartic acid residue 276 (Asp276). GSDMD-N 

is then sufficient to promote cell lysis as well as canonical inflammasome activation (He et 

al., 2015; Kayagaki et al., 2015; Shi et al., 2015). Site-specific auto-processing of caspase-4 

and caspase-11 is required and sufficient for the cleavage of GSDMD and induction of 

pyroptosis (Wang et al., 2020). GSDMD-N is separated by a linker from GSDMD-C, and 

proteolytic cleavage releases the autoinhibitory GSDMD-C, which remains cytosolic (Wang 

et al., 2020). On the other hand, GSDMD-N inserts into the lipid bilayer through interaction 

with inner membrane glycerophospholipids, such as phosphatidylinositol phosphates, 

phosphatidic acid and phosphatidylserine, thus generating approximately 20 nm pores, 

which results in cell swelling and lysis (Aglietti et al., 2016; Chen et al., 2016; Ding et al., 

2016; Liu et al., 2016; Russo et al., 2016; Sborgi et al., 2016). The importance of GSDMD-

N is supported by the observation that expression of GSDMD-N alone is sufficient to induce 

pyroptosis (Aglietti et al., 2016; Chen et al., 2016; Ding et al., 2016; Kayagaki et al., 2015; 

Liu et al., 2016; Sborgi et al., 2016; Shi et al., 2015; Wang et al., 2020). Pyroptotic pores 

also function as channels for the release of cytosolic contents, including danger signals and 

IL-1β (Evavold et al., 2018; Heilig et al., 2018; Kayagaki et al., 2015; Shi et al., 2015). 

GSDMD-N also interacts with Cardiolipin, which is present in the inner leaflet of the 

mitochondrial membrane and in bacterial membranes. Indeed, cell free studies demonstrated 
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that GSDMD-N can kill Gram-positive and Gram-negative bacteria (Liu et al., 2016). 

Furthermore, comparable to caspase-3 generated GSDME-N, also inflammasome-generated 

GSDMD-N permeabilizes mitochondria, thereby linking inflammasomes to apoptosome 

activation through inducing cytochrome-c release and caspase-3 activation (Rogers et al., 

2019). Further proof for acting within the same pathway comes from the observation that 

Gsdmd−/− mice were as protected as Casp11−/− mice during LPS-induced shock (Hagar et 

al., 2013; Kayagaki et al., 2015; Kayagaki et al., 2011; Kayagaki et al., 2013; Wang et al., 

1998). Further, caspase-11 cleavage and activation, as well as GSDMD cleavage, are crucial 

for LPS-induced shock, since mice harboring a caspase-11 mutation inactivating its 

enzymatic activity (caspase-11Cys254) , a mutation preventing caspase-11 auto-processing at 

the inter-subunit linker (caspase-11Asp285) or a mutation preventing GSDMD processing 

(GsdmdD276) are all protected from LPS-induced lethality and phenocopy Casp11−/− and 

Gsdmd−/− mice (Lee et al., 2018).

2.6. Regulation of the non-canonical inflammasome

Inducible expression of non-canonical inflammasome components is a prerequisite for non-

canonical inflammasome activation. While mouse caspase-1 is constitutively expressed, 

human caspase-1 is inducible by IFN-γ in monocytes. Caspase-4 has been reported to be 

constitutively expressed in monocytes, but recently shown by genome wide screen to require 

IRF2 or IFN-γ-induced IRF1 for inducible expression (Benaoudia et al., 2019; Lin et al., 

2000). Caspase-5 expression is induced by type I and type II IFNs and LPS in monocytes 

(Lin et al., 2000). However, cell type-specific differences in inducible expression of human 

inflammatory caspases have been reported (Christgen et al., 2020). Similar to caspase-5, also 

caspase-11 expression is undetectable in resting macrophages, but LPS, IFNα/β and IFN-γ 
elevate expression. LPS-induced caspase-11 expression via TLR4-TRIF signaling is 

dependent on NF-κB and IFNs/STAT1 signaling (Rathinam et al., 2012; Schauvliege et al., 

2002). Furthermore, the complement component-related carboxypeptidase B1 (Cbp1) 

transcriptionally regulates caspase-11 via enhancement of TLR4-TRIF-IFNAR signaling 

(Napier et al., 2016). Importantly, Tlr4−/− mice are rendered susceptible to LPS induced 

septic shock by priming with a TLR3 agonist, such as poly(I:C), suggesting that TLR3 

priming can bypass the lack of TLR4 to increase caspase-11 expression (Hagar et al., 2013; 

Kayagaki et al., 2013). Crucially, GBPs are strongly up-regulated by type I IFNs and IFN-γ 
(Kim et al., 2012; Li et al., 2009). However, exceptions to the requirement for type I IFN 

have been reported in the case of L. pneumophila and Yersinia pseudotuberculosis, where 

the priming signal can be bypassed for rapid non-canonical inflammasome activation, 

indicating that some basal expression of caspase-11 is sufficient for this response (Casson et 

al., 2013). In addition to transcriptional priming and the above discussed upstream acting 

GBPs, further regulation of the non-canonical inflammasome has been discovered. This high 

level of regulation is not surprising, considering the crucial role of the non-canonical 

inflammasome in cell death and eliminating bacterial infections. Inhibition can occur by 

cellular as well as bacterial factors that either directly interact with caspase-4, caspase-5 and 

caspase-11, or utilize a yet unknown mechanism (Fig. 3). As described above, oxPAPC 

activates non-canonical inflammasome-mediated IL-1β secretion, which requires canonical 

NLRP3 inflammasome activation, CD14 and TLR4. However, multiple pro- and anti-

inflammatory activities have been reported for oxPAPC in a context-dependent and 
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concentration-dependent manner (Miller and Shyy, 2017). For instance, it inhibits several 

key steps in LPS-mediated TLR4 activation by competing with LPS for LBP, CD14 and 

MD-2 binding (Erridge, 2009).

Physiological concentrations present in serum are generally considered to be anti-

inflammatory (Oskolkova et al., 2010), and accordingly, oxPAPC prevents TLR4 activation 

and LPS-induced shock in vivo by preventing and inhibiting DC activation by LPS (Bluml et 

al., 2005; Bochkov et al., 2002). Considering that oxPAPC is able to interfere with LPS 

binding and signaling of TLR4, and that the lipid A moiety of LPS similarly interacts with 

TLR4 and caspase-11, it is not surprising that intracellular oxPAPC, as well as its sub-

components PGPC and POVPC, also inhibit intracellular LPS-mediated activation of the 

non-canonical inflammasome (Chu et al., 2018). The study by Chu et al. utilizes primed 

macrophages, which are transfected with LPS for intracellular delivery of LPS in the 

presence or absence of oxPAPC and pyroptosis is determined by LDH release, GSDMD 

cleavage and HMGB1 release. Notably, TLR2 or TLR3 ligands rather than LPS were used 

for priming to avoid interference from TLR4. To further rule out any effects of oxPAPC on 

TLR4, the inhibitory effect of oxPAPC on intracellular LPS mediated pyroptosis was also 

observed in Tlr4−/− cells. Under these conditions, oxPAPC protects from LPS-induced 

pyroptosis only in macrophages and not in DCs. As expected, the subsequent canonical 

inflammasome activation and IL-1β release is also inhibited by oxPAPC in human and 

mouse macrophages. The molecular mechanism is based on competitive binding of LPS and 

oxPAPC to caspase-11 and caspase-4. While LPS has been shown to interact with the CARD 

of caspase-11 (Shi et al., 2014) and DC activating oxPAPC to the caspase domain (Zanoni et 

al., 2016), Chu et al. find that positively charged residues in the CARD and the catalytic 

domain contribute to LPS binding (Chu et al., 2018). While oxPAPC binding also involves 

positively charged residues in the CARD and the catalytic domain, oxPAPC and LPS 

compete for partially overlapping binding sites (Chu et al., 2018). Consequently, LPS and 

oxPAPC seemingly are unable to simultaneously bind to caspase-11 or caspase-4, similar to 

what has now also been shown for Lysophosphatidylcholine and ethyl pyruvate (Li et al., 

2018b; Qiu et al., 2020). Significantly, in a caspase-11 dependent in vivo model of LPS-

induced shock, oxPAPC was able to rescue mice in a TLR4-independent manner, 

comparable to Casp11−/− mice (Chu et al., 2018). Contrary to the anti-inflammatory 

function of oxPAPC described by Chu et al., Zanoni et al. described a pro-inflammatory 

function of oxPAPC and further investigations are needed. While Zanoni et al. initially 

reported that oxPAPC induces IL-1β release from DC but fails to induce IL-1β release from 

macrophages, they later found that PGPC and POVPC induce IL-1β release from 

macrophages. In vivo, LPS primed and LPS, oxPAPC and PGPC challenged mice exhibit an 

increase in IL-1β, IL-6 and TNFa over LPS primed mice without challenge, but while LPS 

challenged mice do not survive past 30h, oxPAPC and PGPC challenged mice do not display 

any lethality (Zanoni et al., 2016; Zanoni et al., 2017). Conflicting results about pro- and 

anti-inflammatory functions of oxPAPC have also been reported for TLR4 activation and are 

believed to be connected to concentration and cell type specific effects. A similar 

explanation is possible for caspase-11 activation in addition to experimental differences 

particularly in the precise oxPAPC composition and the extra- or intra-cellular delivery of 

LPS. However, further support for an anti-inflammatory activity of oxPAPC comes from the 
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observation that also Lysophosphatidylcholine, a major component of oxidized low-density 

lipoproteins with a structural similarity to oxPAPC, directly binds to caspase-11 and 

significantly impedes the interaction between LPS and caspase-11 and consequently blocks 

caspase-11-mediated pyroptosis (Li et al., 2018b).

Glutathione peroxidase 4 (GPX4) is an antioxidant enzyme which catalyzes the reduction of 

lipid peroxides and protects the cells against oxidative stress. In the absence of GPX4, lipid 

peroxides accumulate and promote ferroptotic cell death. GPX4 expression is elevated in 

septic mice and patients and negatively regulates pyroptosis mediated by both canonical- and 

non-canonical inflammasomes in response to cytosolic LPS and E. coli infection by a 

phospholipase C gamma 1 (PLCG1) and Ca+-dependent mechanism (Kang et al., 2018). 

Mice with myeloid-specific Gpx4 deletion are more susceptible to polymicrobial sepsis and 

this phenotype can be rescued by deletion or inhibition of caspase-11 or GSDMD (Kang et 

al., 2018). While details on the molecular mechanism are currently elusive, altered 

caspase-11 expression has been ruled out (Kang et al., 2018).

GPx8 lacks enzymatic activity, but inhibits caspase-4 and caspase-11 activation by forming a 

disulfide bridge between cysteine 79 in GPx8 and the conserved cysteine 118 in caspase-4 

and caspase-11 (Hsu et al., 2020). Accordingly, GPx8−/− mice are more susceptible to colitis 

and endotoxic shock through impaired regulation of the non-canonical inflammasome (Hsu 

et al., 2020). Upon stimulation with intracellular LPS, GPx8−/− macrophages release 

elevated IL-1β and LDH compared to WT macrophages, and ulcerative colitis patients 

display reduced GPx8 and up-regulated caspase-4 levels (Hsu et al., 2020).

The metabolite ethyl pyruvate, an aliphatic ester derived from pyruvic acid, has anti-

inflammatory activity and protects from LPS-induced shock and polymicrobial sepsis (Qiu 

et al., 2020; Yang et al., 2016). One of its mechanisms involves blocking the non-canonical 

inflammasome, preventing GSDMD cleavage and pyroptosis and consequently, IL-1α and 

IL-1β secretion. Ethyl pyruvate does not interfere with the cytosolic translocation of LPS, 

but interferes with the interaction between LPS and caspase-11. The underlying mechanism 

is still unknown, but at higher concentrations, ethyl pyruvate impairs also expression of pro-

caspase-11 (Qiu et al., 2020). Ethyl pyruvate has been previously shown to also prevent 

canonical NLRP3 inflammasome activation (Li et al., 2018a).

The stress hormone and neurotransmitter L-adrenaline (epinephrine) has been identified in a 

cell-based screen for compounds promoting survival in response to electroporation of LPS in 

a library of FDA-approved drugs (Chen et al., 2019b). L-adrenaline prevents caspase-4 and 

caspase-11 activation, GSDMD and IL-1β cleavage, and the release of LDH and HMGB1 in 

response to cytosolic LPS or infection with E. coli in macrophages (Chen et al., 2019b). In 

response to cytosolic LPS and L-adrenaline, the L-adrenaline receptor Adrenoceptor α 2B 

(ADRA2B) and the adenylyl cyclase 4 (ADCY4), the enzyme responsible for cyclic 

adenosine monophosphate (cAMP) synthesis, are up-regulated, which leads to the 

accumulation of intracellular cAMP and consequently, activation of protein kinase A (PKA). 

PKA in turn prevents caspase-11-driven pyroptosis and IL-1β release by directly binding 

and phosphorylating caspase-11. Limiting cAMP hydrolysis by phosphodiester 8A (PDE8A) 

consequently impairs non-canonical inflammasome activation, providing evidence for a 
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previously unknown metabolic regulation of this pathway by the ADRA2B-ADCY4-

PDE8A-PKA axis (Chen et al., 2019b). Importantly, systemic administration of L-adrenaline 

or 8-Br-cAMP to increase cAMP, or blocking cAMP hydrolysis with the PDE8A inhibitor 

PF-04957325, protects mice from LPS-induced lethality. Comparable protection is observed 

following increased systemic cAMP levels by acute starvation stress. This screen further 

identified the antipsychotic Levosulpiride, the anesthetic Tetracaine, the synthetic 

glucocorticoid Prednisolone and the angiotensin-converting enzyme (ACE) inhibitor 

Quinapril as inhibitors of cytosolic LPS-induced pyroptosis, and Qinapril and Prednisolone, 

but not Levosulpiride were also protective in vivo (Chen et al., 2019b).

Prostaglandin E2 (PGE2) exhibits both pro- and anti-inflammatory activities, inhibits the 

canonical NLRP3 inflammasome, and has recently been identified to prevent caspase-11 

activation during human asthma and mouse allergic airway inflammation (Sokolowska et al., 

2015; Zaslona et al., 2020). Protection is conferred not by blocking non-canonical 

inflammasome activation, but instead PGE2 prevents IFN-b-mediated transcription of 

caspase-4 and caspase-11 (Zaslona et al., 2020). Importantly, caspase-4 and caspase-11 are 

also elevated in alveolar macrophages of asthma patients and in the lungs of mice with 

allergic airway inflammation, respectively (Zaslona et al., 2020). This finding provides a 

potential explanation for why NSAIDs, which block PGE2 production, can worsen asthma.

Beside cell intrinsic regulators, pathogens also employ multiple strategies to avoid 

caspase-11-mediated host defense to facilitate infection. The simplest, most direct approach 

is modification of LPS, such as the tetra-acylated lipid A from Helicobacter pylori, as 

caspase-11 binds to hexa-acylated LPS (Aachoui et al., 2013; Casson et al., 2013). Similarly, 

S. flexneri usually contains hexa-acylated LPS, which is hypoacylated when growing 

intracellularly, resulting in vastly reduced immunostimulation (Paciello et al., 2013). 

However, caspase-4 is also activated by tetra-acylated LPS from Francisella novicida, 
suggesting that the human non-canonical inflammasomes may have a broader reactivity than 

those of mice (Lagrange et al., 2018).

Enteropathogenic E. coli in human- and C. rodentium in mouse epithelial cells induce 

caspase-4 and caspase-11-mediated non-canonical inflammasome activation. However, the 

virulence factor NleF, which translocates into host cell via T3SS, will eventually suppress 

this response by directly binding to, and blocking the catalytic domain of caspase-4 and 

caspase-11, resulting in impaired IL-18-mediated host defense and neutrophil influx to aid 

colonization (Blasche et al., 2013; Pallett et al., 2017).

The S. flexneri T3SS effector protein, OspC3, is another example of a bacterial virulence 

factor targeting the non-canonical inflammasome in epithelial cells to prevent pyroptosis, as 

infection with ΔospC3 S. flexneri decreases host cell viability (Kobayashi et al., 2013; 

Wandel et al., 2020). OspC3 specifically interacts with caspase-4, preventing 

heterodimerization and formation of the catalytic pocket, but does not interact with 

caspase-11 (Kobayashi et al., 2013).
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3. Crosstalk between non-canonical and canonical inflammasome 

activation

Although the non-canonical inflammasome cannot or only weakly directly cleave pro-IL-1β 
and pro-IL-18 (Bibo-Verdugo et al., 2020; Ramirez et al., 2018), non-canonical 

inflammasome activation nevertheless leads to their secretion (Kayagaki et al., 2011). In 

contrast to LPS-induced pyroptosis, which does not require caspase-1, cytokine release is 

dependent on caspase-1 activation by the canonical NLRP3 inflammasome (Fig. 2) 

(Kayagaki et al., 2011; Rathinam et al., 2012; Ruhl and Broz, 2015; Schmid-Burgk et al., 

2015; Yang et al., 2015). Direct binding of caspase-11 to caspase-1 has been initially 

observed, which could contribute to caspase-1 activation (Wang et al., 1998). However, more 

recent studies demonstrated that caspase-11 functions further upstream and requires NLRP3 

and ASC for caspase-11-mediated caspase-1 activation (Kayagaki et al., 2011; Rathinam et 

al., 2012; Ruhl and Broz, 2015; Schmid-Burgk et al., 2015; Yang et al., 2015). LPS-

mediated activation of caspase-4 and caspase-11 results in potassium efflux, which is the 

common NLRP3 inflammasome activating event (Munoz-Planillo et al., 2013; Ruhl and 

Broz, 2015; Schmid-Burgk et al., 2015). Initially, pannexin-1 has been implicated in this 

cross-talk, following proteolytical cleavage by active caspase-11 after Asp378, thereby 

promoting ATP release and activation of the ATP-gated ion channel P2X7, which leads to 

potassium and sodium efflux and feeds into the well-established activation mechanism of the 

canonical NLRP3 inflammasome (Yang et al., 2015). Consequently, Panx1−/−, P2x7−/− and 

Casp11−/− mice are equally protected from LPS-induced shock and the cleavage resistant 

pannexin-1D378A mutant prevents caspase-11-mediated activation of the canonical NLRP3 

inflammasome (Yang et al., 2015). However, a more recent analysis failed to reproduce a 

requirement for pannexin-1 in the cross talk between the non-canonical and the canonical 

NLRP3 inflammasome when using pharmacological and genetic tools, but rather identified 

that it mediates NLRP3 activation during intrinsic and extrinsic apoptosis and that non-

canonical NLRP3 activation proceeds as a consequence of GSDMD pores (Chen et al., 

2020; Chen et al., 2019a; Qu et al., 2011). During L. pneumophila infection, this cross-talk 

is amplified by activation of the canonical AIM2 inflammasome and the resulting caspase-1-

mediated membrane damage promotes potassium efflux and non-canonical NLRP3 

inflammasome activation (Cunha et al., 2017). This membrane damage may reflect GSDMD 

pores, as IL-1β and IL-18 release is impaired in Gsdmd−/− macrophages (Evavold et al., 

2018; He et al., 2015; Kayagaki et al., 2015; Russo et al., 2016; Shi et al., 2015). Hence, 

potassium efflux may be a consequence of ATP release and P2X7 activation or may occur 

directly through GSDMD pores. Another piece of the puzzle comes from the finding that 

caspase-11 also cleaves the transient receptor potential channel 1 (TRPC1), which leads to 

its degradation. TRPC1 inhibits LPS-induced IL-1β release and consequently Trpc1−/− 

enhances LPS-induced IL-1β release without affecting caspase-1 cleavage or pyroptosis. 

Hence, TRPC1 degradation during an inflammatory response may alter the properties of 

TRPC1 containing channels in order to promote unconventional protein secretion (Py et al., 

2014). This finding is in agreement with another report demonstrating that unprocessed 

caspase-1 mediates membrane damage for non-canonical NLRP3 activation (Cunha et al., 

2017). Furthermore, while the precise role of ROS in the activation of the canonical NLRP3 

inflammasome is still controversial, caspase-4 activation by Shiga toxin expressed by enteric 
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pathogens requires activation of ROS downstream of caspase-4 for NLRP3 activation and 

release of IL-1β (Platnich et al., 2018). Yet another layer of crosstalk between the non-

canonical and the canonical NLRP3 inflammasome exists at the level of caspase-1. GBP1, 

which initiates GBP oligomerization to recruit and activate caspase-4, can be cleaved and 

consequently inactivated by caspase-1 (Fisch et al., 2020). Cleaved GBP1 fragments are 

unable to target the S. Typhimurium surface and therefore fail to sequester caspase-4 and 

elicit pyroptosis. Accordingly, the non-cleavable GBP1D192E mutant enhances caspase-4-

mediated pyroptosis in S. Typhimurium infected cells (Fisch et al., 2020).

4. The non-canonical inflammasome in health and disease

The non-canonical inflammasome’s major role is defense against Gram-negative bacteria 

that escape the phagosome and invade the cytosol (Aachoui et al., 2013). In addition, human 

and mouse non-canonical inflammasomes directly target pathogen-containing phagosomes 

by binding to the actin interacting protein 1 (Aip1) or through RhoA, thereby altering cofilin 

phosphorylation and actin polymerization. This results in efficient trafficking, phagosome-

lysosome fusion and bacterial killing, as well as the chemotaxis of macrophages and 

neutrophils (Caution et al., 2015; Caution et al., 2019; Li et al., 2007; Paciello et al., 2013). 

Hence, a major contribution of the non-canonical inflammasome is clearance of invaded 

pathogens and alerting neighboring cells through the release of alarmins, DAMPs and 

canonical NLRP3 inflammasome-dependent cytokines, and if the threat persists, eventually 

removal of infected cells by pyroptosis (Zanoni et al., 2017). Consequently, the non-

canonical inflammasome contributes to sepsis, when the initial immune response fails to 

clear an infection and a sustained inflammatory response develops, which has been well-

established in mice (Chu et al., 2018; Hagar et al., 2017; Hagar et al., 2013; Kayagaki et al., 

2011; Kayagaki et al., 2013; Vanaja et al., 2016; Wang et al., 1998; Yang et al., 2015). This 

also extends to the human non-canonical inflammasome, as caspase-4 transgenic mice are 

more susceptible to LPS-induced shock, even in the absence of caspase-1 and caspase-11, 

and caspase-4 restores protection against B. thailandensis in Casp11−/− mice (Aachoui et al., 

2015; Kajiwara et al., 2014). HMGB1 release by pyroptosis, rather than IL-1β and IL-18 

mediate acute LPS-induced lethality (Lamkanfi et al., 2010; Vande Walle et al., 2011; Wang 

et al., 1999; Willingham et al., 2009).

The non-canonical inflammasome also contributes to lung pathologies, and while most 

studies focus on myeloid cells, LPS can also enter human and mouse endothelial cells and 

activate the non-canonical inflammasome. Hence, conventional and endothelial cell-specific 

Casp11−/− mice are protected from LPS-induced lung injury (Cheng et al., 2017). Moreover, 

Casp11−/− mice are protected from allergic lung inflammation, as evident from decreased 

levels of bronchoalveolar lavage fluid-infiltrating CD4 T cells and eosinophils. As discussed 

above, PGE2-suppresses caspase-11 expression in allergic airways (Zaslona et al., 2020). 

Importantly, alveolar macrophages from asthma patients also show elevated caspase-4 

expression (Zaslona et al., 2020). Caspase-11 also contributes to cigarette smoke-induced 

airway inflammation, as Casp11−/− mice show reduced IL-1β and IL-18 secretion and 

neutrophil infiltration into bronchoalveolar lavage fluid (Eltom et al., 2014). Indeed, 

evidence supports a role of caspase-11 in neutrophil and macrophage migration during K. 
pneumoniae infection and MSU-induced arthritis, at least in part due to defect KC-
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dependent chemotaxis, and defect cofilin phosphorylation (Caution et al., 2019; Wang et al., 

2017). In addition, Casp11−/− neutrophils fail to produce neutrophil extracellular traps 

(NETs) (Caution et al., 2019). Similarly, Casp11−/− mice are also protected from LPS-

induced renal injury (Ye et al., 2019).

Altered microbiota associated with pathogen invasion and colonization contributes to 

intestinal dysfunction, and increasing evidence supports a role of the non-canonical 

inflammasome in regulating intestinal inflammation and development of inflammatory 

bowel disease. Caspase-11 expression in the intestinal mucosa is elevated after dextran 

sodium sulfate (DSS)-induced colitis, and caspase-4 and caspase-5 expression is 

significantly increased in colonic biopsies from ulcerative colitis patients (Demon et al., 

2014; Williams et al., 2015). Similar to Casp1−/− mice, also Casp11−/− mice are more 

susceptible to DSS-induced colitis with increased mortality and accelerated disease severity, 

which is at least in part due to defective IL-18-mediated epithelial cell proliferation and 

barrier function (Demon et al., 2014; Oficjalska et al., 2015; Williams et al., 2015). 

Silencing of caspase-4 in cultured epithelial cells shows a comparable IL-18-mediated 

protection in response to colonization with S. Typhimurium and E. coli (Knodler et al., 

2014). Furthermore, disruption of colonic function by high-fat diet is linked to the non-

canonical inflammasome, as palmitate promotes the intracellular transport of LPS into 

enteric neurons, thereby linking high-fat diet to enteric neuronal cell death. In agreement, 

Casp11−/− mice are protected from western-diet induced colonic dysmotility associated with 

decreased enteric neuronal pyroptosis (Ye et al., 2020).

Chronic inflammation is also implicated in the etiology of neurodegenerative disease, and 

evidence exists for a contribution of the non-canonical inflammasome. In the autoimmune 

encephalomyelitis (EAE) mouse model of Multiple Sclerosis, Casp11−/− mice show reduced 

activation of caspase-3, correlating with less oligodendrocyte cell death and increased 

resistance to EAE (Hisahara et al., 2001). A similar observation has been made in a genetic 

mouse model of amyotrophic lateral sclerosis and in an induced model of Parkinson’s 

Disease (Furuya et al., 2004; Kang et al., 2003). In all instances, an increased expression of 

caspase-11 was observed in neurons of diseased mice, preceding neuronal defects (Furuya et 

al., 2004; Hisahara et al., 2001; Kang et al., 2003).

5. Perspective

Canonical inflammasomes were first described 18 years ago and ample progress has been 

made to dissect their precise role in physiology and pathology (Martinon et al., 2002). 

Although, caspase-11 has been discovered even before that, the non-canonical 

inflammasome has only been identified nine years ago, and we learned even more recently 

about its role in LPS recognition (Hagar et al., 2013; Kayagaki et al., 2011; Kayagaki et al., 

2013). Nevertheless, as discussed throughout this article, significant progress has been made 

in discovering more details about its activation by GBPs, its role in host defense, and its 

contribution to human disease. However, substantial effort is nevertheless needed to fill in 

many of the still existing gaps. While this review focuses on mammalian non-canonical 

inflammasomes, a related pathway has been characterized in zebrafish, further emphasizing 

the importance of this host defense system. Interestingly, the zebrafish genome contains 5 
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functional inflammatory caspases with 3 showing greater than 50% homology to human 

caspase-1, caspase-4, and caspase-5 (Sakamaki and Satou, 2009). Indeed, zebrafish caspy2, 

which shares the highest homology to caspase-5, induces pyroptosis and its knockdown 

protects larvae from LPS-induced lethality (Yang et al., 2018). Reminiscent to the canonical 

inflammasome effector zCaspy, also zCaspy2 contains a PYRIN domain (PYD), rather than 

the CARD found in mammalian inflammatory caspases (Masumoto et al., 2003; Yang et al., 

2018). Yet, the PYD of zCaspy2 also directly binds LPS, resulting in its oligomerization, 

activation and cleavage of a GSDMD homolog, GSDME, to induce pyroptosis and to 

promote shock in vivo (Yang et al., 2018). This provides opportunities for the discovery of 

novel aspects of non-canonical inflammasome biology in the simpler zebrafish system. 

Although, caspase-4 and caspase-5 have largely been considered to be redundant in many 

aspects and we are just beginning to understand some of the functional differences between 

caspase-4 and caspase-5, as well as the crosstalk with the canonical inflammasome. For 

example, NLRP1 can recruit both, canonical caspase-1 and non-canonical caspase-5, and 

under experimental conditions of lysing cells in the presence of LPS, both are necessary for 

full NLRP1 inflammasome activation (Martinon et al., 2002). Recent evidence shows that 

IL-1α is specifically cleaved and released by the human non-canonical caspase-5 

inflammasome and mouse non-canonical caspase-11 inflammasome (Wiggins et al., 2019). 

Although the downstream effector functions of IL-1α are still not fully elucidated, it is 

required for the IL-1α-dependent senescence-associated secretory phenotype (SASP) and 

deficiency of these caspases impairs SASP-mediated immune surveillance (Wiggins et al., 

2019). We can expect to continue elucidating additional unique aspects for each of these 

inflammatory caspases. While the pyroptotic role is best characterized, non-canonical 

inflammasomes contribute to other cellular aspects, such as non-lytic GSDMD activation, 

caspase-3 activation in neurodegenerative disease, phagosome and autophagosome 

maturation, actin remodeling and leukocyte migration. It is most likely that novel cellular 

functions and substrates have yet to be discovered (Akhter et al., 2012; Caution et al., 2015; 

Evavold et al., 2018; Furuya et al., 2004; Hisahara et al., 2001; Kang et al., 2003; Krause et 

al., 2018; Li et al., 2007; Wang et al., 2017; Zanoni et al., 2017). While LPS is the best 

described ligand for the non-canonical inflammasome, several other activators have been 

identified, including oxPAPC, Leishmania lipophosphoglycan and heme, which therefore 

may provide scenarios for identifying novel non-canonical inflammasome components 

(Bolívar et al., 2020; de Carvalho et al., 2019; Zanoni et al., 2016). Numerous 

posttranslational modifications have been identified for canonical inflammasome 

components (Christgen et al., 2020), and evidence exists for PKA-mediated phosphorylation 

of caspase-11 (Chen et al., 2019b), and therefore it is very likely that additional 

modifications will be discovered. While we begin to unravel cell type specific roles, 

availability of conditional Casp11−/− mice will surely enable the discovery of context 

specific non-canonical inflammasome functions. And most importantly, initial discovery of 

compounds targeting the non-canonical inflammasome or downstream effectors, including 

already FDA-approved ones, will extend these findings to the clinic (Chen et al., 2019b; Chu 

et al., 2018; Hu et al., 2020; Li et al., 2018b; Qiu et al., 2020). Therefore, there are many 

opportunities for discovering novel aspects of non-canonical inflammasome biology ahead.
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Figure 1. 
Schemata of human (left) and mouse (right) inflammatory caspases. The yellow asterisk 

marks the catalytic center and red arrows mark proteolytic cleavage sites involved in 

processing the caspase zymogens.
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Figure 2. 
Overview of non-canonical inflammasome activation leading to pyroptosis and subsequent 

activation of the canonical NLRP3 inflammasome for cytokine maturation and secretion.
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Figure 3. 
Schemata of activators and inhibitors that directly- (solid line) or indirectly (dashed line) 

interact with non-canonical inflammasome caspases. The yellow asterisk marks the catalytic 

center.
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