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Abstract

Artificial intelligence (AI) and machine learning (ML) in medicine are currently areas of intense 

exploration, showing potential to automate human tasks and even perform tasks beyond human 

capabilities. Literacy and understanding of AI/ML methods are becoming increasingly important 

to researchers and clinicians. The first objective of this review is to provide the novice reader with 

literacy of AI/ML methods and provide a foundation for how one might conduct an ML study. We 

provide a technical overview of some of the most commonly used terms, techniques, and 

challenges in AI/ML studies, with reference to recent studies in cardiac electrophysiology to 

illustrate key points. The second objective of this review is to use examples from recent literature 

to discuss how AI and ML are changing clinical practice and research in cardiac 

electrophysiology, with emphasis on disease detection and diagnosis, prediction of patient 

outcomes, and novel characterization of disease. The final objective is to highlight important 

considerations and challenges for appropriate validation, adoption, and deployment of AI 

technologies into clinical practice.

Feeny et al. Page 2

Circ Arrhythm Electrophysiol. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

artificial intelligence; atrial fibrillation; cardiac electrophysiology; computers; diagnosis; machine 
learning

Artificial intelligence (AI) refers to machine-based data processing to achieve objectives that 

typically require human cognitive function (Table 1). In the modern era, AI has mined dense 

data and provided the potential to classify complex patterns and novel representations of 

data beyond direct human interpretation. Machine learning (ML) is a subdiscipline of AI and 

employs algorithms to learn patterns empirically from data. ML extends the range of 

traditional statistics because it is able to identify nonlinear relationships and high-order 

interactions between multiple variables that may be challenging for traditional statistics. 

Deep learning (DL) has emerged as a powerful ML approach that leverages large datasets 

and recent increases in computational power to make efficient decisions on complex data. 

The successes of ML and DL in diverse disciplines, ranging from language processing, 

gaming, computer vision, engineering, industrial, and scientific arenas, has led to an 

increasing public awareness of the promise of AI across multiple facets of life.

AI is not a new concept in cardiac electrophysiology with automated ECG interpretation 

existing since the 1970s.1 However, the relatively recent development of large electronic 

databases in which data have been labeled by experts, innovations in algorithms, software 

tools, and hardware capabilities are rapidly transforming the role of AI in cardiovascular 

imaging2 and cardiac electrophysiology. AI tools have shown promise in automating and 

assisting disease diagnosis, and tools are now being developed to enhance prediction of 

disease prognosis and response to therapeutics and provide novel characterization of health 

and disease (Figure 1).

We structure this review with 3 objectives. (1) We first provide novice readers with literacy 

of the technical concepts in AI and ML, as well as a basic foundation to conduct ML studies. 

Throughout this section, we provide brief relevant examples from cardiac electrophysiology 

to illustrate technical concepts. (2) We then provide current perspective of how recent AI 

studies have influenced the direction of clinical practice and research in cardiac 

electrophysiology, with an emphasis on clinical results rather than detailed technical 

methodology. (3) Lastly, we briefly discuss important considerations for adopting AI 

technologies into clinical practice for cardiac electrophysiology.

TECHNICAL OVERVIEW OF COMMON AI METHODS

Representing Data as Features

AI interpretation of data requires that input data are structured as feature vectors. A feature 

refers to a quantifiable property of the input data. Features are assembled into feature vectors 

to mathematically represent the input data and are subsequently computationally processed 

by ML algorithms. Features are inclusive of a wide variety of data. In their simplest form, 

features are minimally processed from the original data, such as clinical variables stored in 

the electronic medical record (EMR). In traditional ML studies that do not use DL, 

handcrafted features are engineered by humans to measure specific, relevant attributes of the 
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data. For example, in early attempts to automate ECG interpretation, typical features 

consisted of coefficients of mathematical representations of ECG waveform morphology.3–5 

Meanwhile, modern DL approaches, which are discussed in further detail in the DL section, 

are capable of automatically computing and selecting relevant features from raw input data, 

such as in recent studies using DL to interpret 12-lead ECG waveforms.6–10

Supervised ML

The objective of supervised ML is to train a model to relate input data, represented by 

feature vectors, to labeled (known) outcomes of interest. Classification refers to predicting 

outcome labels on new data. This can be done in a binary manner (eg, identifying normal 

versus abnormal ECG) or in a multiclass manner (eg, classifying the type of rhythm on 

ECG; normal versus atrial fibrillation versus atrioventricular block, etc). Regression refers to 

predicting a continuous outcome (eg, predicting the degree of ejection fraction improvement 

after heart failure intervention).

In supervised ML, training data consisting of input features and corresponding data labels 

(outputs) are provided to an ML algorithm. The ML algorithm then fits the ML model by 

learning the relationships between the features and the data labels, a process referred to as 

training. Once the model is trained, it is able to make predictions from new data, a process 

referred to as testing.

Traditional Supervised ML

Traditional supervised ML, which we use to refer to non-DL techniques, has existed for 

several decades. A variety of supervised ML algorithms can identify relationships between 

input data and output labels in linear and nonlinear manners. An overview of some common 

algorithms is provided in Table 2. In traditional supervised ML, beyond algorithm selection, 

the most critical component to model performance often lies in feature engineering and 

selection to represent the input data in the most relevant manner.

A study using surface ECG to predict abnormal myocardial relaxation illustrates the basic 

use of traditional supervised ML.11 The ECG was the first signal processed from the time-

voltage domain into spectrograms (energy spectra in the time-frequency domain) using the 

wavelet transform. Handcrafted features were extracted from these spectrograms. An ML 

model was trained using a random forest algorithm to use input features (ECG spectrogram 

metrics) to predict corresponding data labels (presence of impaired myocardial relaxation).

Key Points in Traditional Supervised ML

• Supervised ML algorithms are capable of learning linear and nonlinear 

relationships from labeled data.

• Model success is most dependent on successful feature engineering.

Deep Learning

DL is a powerful subtype of ML and has shown state-of-the-art performance in speech 

recognition, computer vision and image/video processing, game-playing, and medical 

diagnosis. When compared with traditional supervised ML, the ultimate strength of DL is 
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that it is a powerful, flexible way of representing complex raw input data that does not 

require manual feature engineering. For example, in the problem of automated ECG 

interpretation, early traditional supervised ML studies relied on human-defined ECG 

features. Meanwhile, a modern DL model learned patterns within raw ECGs to diagnose 

sinus rhythm and multiple other arrhythmias, with performance similar to cardiologists.12

DL is predated by and built from artificial neural networks, which are computational 

systems modeled after biological neuronal connections. Layers of nodes (processing 

elements to represent neurons) manipulate and transform the input data to create a data 

representation, which ultimately links the input data with outputs. Each node from one layer 

is connected to each node from the neighboring layers, termed fully connected layers. 

Layers between the input and output layer are termed hidden layers. The strength of 

connections between nodes from different layers, which represent synapses, are quantified 

by weights. As learning occurs, weights are iteratively adjusted to move network error (the 

cost function) in the direction of the steepest negative slope, a process termed gradient 

descent. Gradient descent ultimately identifies node connection weights that minimize the 

cost function, thus maximizing the network’s accuracy. Figure 2A depicts an artificial neural 

network from an early study predicting cardiovascular mortality from ECG features.13

Compared to artificial neural networks with only a small number of layers, DL is defined by 

the use of neural networks with many successive hidden layers before a final output is 

generated. Another important distinction is that DL does not require the nodes from 

neighboring layers to be fully connected and offers different types of neural network 

architectures to manipulate data in varying ways. The ensuing processing complexity has 

required contemporary advances in computational software and hardware.

DL most commonly involves deep convolutional neural networks (CNNs), which typically 

process raw input data (eg, images, ECGs) to predict a categorical output. The functional 

building blocks of CNNs are convolutional layers. Each convolutional layer uses a set of 

convolution filters, which are mathematical operations that detect data features (eg, straight 

edges, curves in images), to construct feature maps. After each convolutional layer, a 

pooling layer subsamples the feature maps. Repeated layers of convolution and pooling learn 

higher-level features from the previous feature maps, creating hierarchical representations of 

the data (eg, learning how edges and curves construct more complex shapes). CNNs then 

employ fully connected layers at the end of the network to generate global data 

classifications from the feature representations learned from the convolutional layers. CNNs 

have become the primary network architecture to make advanced predictions from ECGs in 

recent studies.6–10,12,14,15 Figure 2B depicts one of these modern DL architectures used to 

predict left ventricular dysfunction from ECG.7

Fully convolutional networks are CNNs that consist only of convolutional layers and lack 

the fully connected layers at the end. Instead of making a categorical prediction from the 

input data, fully convolutional networks are able to use the learned features to make pixel-

level predictions on the input image, which becomes especially useful for image 

segmentation. As an example, dual fully convolutional networks have been used to 
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automatically segment the left atrial epicardium and endocardium in late gadolinium-

enhanced magnetic resonance images in patients with atrial fibrillation (AF).16

Although CNNs are typically used to process data from a single point in time, recurrent 

neural networks are built to analyze the temporal sequence of data and are often useful in 

speech or text analysis. In recurrent layers, each neuron’s output is adjusted at each time 

step. A recent study used recurrent layers after a series of convolutional layers to analyze 

temporal patterns of 5-second ECG segments within longer ECG recordings, and 

subsequently classify AF from other rhythms in single-lead ECG recordings of variable 

length.14

Generative adversarial networks17 are DL architectures using 2 networks to compete with 

each other. A generator network creates new data, and a discriminator network assesses 

whether the generated data is similar to training data, with the intention of creating synthetic 

data that mimics the original data. Generative adversarial networks are well known in digital 

artwork and image creation. For example, a generative adversarial network generated 

artificial ECG data to address data scarcity in medical data analysis studies.18 Such use of 

generative adversarial networks has simultaneously led to concerns of developing realistic 

fraudulent data.

A final important concept in DL is transfer learning. Developing a strong DL model from 

scratch requires a very large, labeled training data set, and may take several days to train. 

However, in transfer learning, layers and weights (and thus learned data features) from an 

existing trained model are used as the starting point for a new model with a different, but 

related, task. The new model will already have access to the low-level features learned from 

the pretrained model, and the new model will then focus on relating these features to the new 

task. In image classification tasks, seminal DL models trained from large scale databases, 

such as AlexNet,19 VGG Net,20 GoogLeNet,21 and ResNet,22 among others, are available to 

use for transfer learning. In one instance, the authors used transfer learning from AlexNet to 

classify ECGs from the Massachusetts Institute of Technology–Beth Israel Hospital 

arrhythmia database.23 However, to date, most DL models in cardiac electrophysiology have 

been developed in-house, which is often a result of institutional ownership of the data 

required to develop the models. Transfer learning presents an intriguing opportunity to 

diversify the clinical applications of existing pretrained DL models. For example, consider 

the features learned by CNN trained to predict left ventricular dysfunction from ECG,7 and 

applying transfer learning to develop a new network to predict subtle signs of ischemia on 

ECG.

Key Points in DL

• DL is well-suited for interpreting complex raw data and does not require manual 

feature engineering.

• DL most commonly involves the use of CNNs for classification problems, but 

many other types of DL exist.
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Model Development and Evaluation

In supervised ML, it is difficult to predict what type(s) of model will perform best, so model 

development and optimization are typically empirical. In traditional supervised ML, model 

development and optimization consists of selecting a learning algorithm, an optimal feature 

set, and tuning hyperparameters of the learning algorithm. In DL, model optimization 

includes testing different neural network architectures and tuning hyperparameters within 

the architectures. Some important hyperparameters in the DL training process are learning 

rate, batch size, and epoch size. Hyperparameters of the architecture itself, such as number 

of nodes, layers, and types of layers, activation functions, should also be considered. Then, 

hyperparameters within the layers can be adjusted (eg, filter sizes and number of filters in 

convolutional layers).

There are several ways to evaluate model performance throughout model development. 

Classification algorithms produce a continuous value rather than a binary or discrete output. 

Receiver operating characteristic curve analysis is used to compute area under the curve 

(AUC) based on classifier output. At specific operating points on the receiver operating 

characteristic curve, model accuracy, sensitivity (also called recall), specificity, positive 

predictive value (also called precision), negative predictive value, and the F1 score 

(2×precision*recall/[precision+recall]) can also quantify performance. Confusion matrices 

specify where classification errors occur. Regression performance can be assessed with 

mean absolute error, root mean-squared error, or R2 goodness of fit (Table 1).

Careful data partitioning is required during model development and evaluation. Data used to 

evaluate model adjustments should never be incorporated in the training process of that 

model. One common scheme for unbiased data partitioning is to use the training set to 

perform model adjustments over successive iterations of k-fold cross validation11,24–26 and 

evaluate the optimal model on a dedicated testing set. An alternative method uses 3 

partitions: a training set, a hold-out validation set, and a testing set. The model is fit using 

data from the training set, and the effect of model adjustments are evaluated on the 

validation set. The optimal adjustments are then used to develop a final model that can 

undergo unbiased evaluation on the testing set. Compared with cross-validation, this 

approach reduces computational time but does not maximize the amount of data that may be 

used for model development. Given reduced computational burden, a validation set is often 

used in DL studies.7,8,10,12

Key Points in Model Development and Optimization

• Model development and optimization is performed empirically and involves 

algorithm selection and hyperparameter adjustment.

• Careful data partitioning into training, validation, and testing sets optimizes 

evaluation of model performance without bias.

Challenges in Conducting Supervised ML and DL Studies

The first limitation of supervised ML is that all data must be annotated with labels, which 

can be laborious, may limit the amount of data available for analysis, and may necessitate 

arbitrary dichotomization of labels that are intrinsically continuous. In cardiac 
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electrophysiology studies, this may require annotating ECGs, segmenting images, and 

collecting clinical outcomes. Approaches have been proposed to reduce the need for 

labeling, such as heuristic pretraining to classify AF from smartwatch 

photoplethysmography tracings.27 Such strategies should be developed to enable the 

analysis of very large clinical data which would otherwise be difficult or impossible to label 

categorically. In addition to needing labeled data, the quantity of data should also be 

maximized. DL in particular often requires large annotated datasets to achieve strong 

performance (eg, 91 232 annotated ECGs trained a CNN to classify ECG rhythm).12 This 

may also require intense computational processing and advanced hardware capabilities 

through graphics processing units. As mentioned above, transfer learning can also be used to 

address this challenge in DL.23

Once data have been collected, a common issue in classification tasks is imbalanced class 

proportions. For example, in the study to automate ECG rhythm classification,12 some 

arrhythmias such as atrioventricular block were rarely present in comparison to sinus 

rhythm. Thus, the model could maintain a high overall accuracy by labeling all cases of 

atrioventricular block as sinus rhythm, without ever learning to detect atrioventricular block. 

Evaluating model performance with metrics, such as AUC and F1 score, is more helpful in 

this situation. The dataset can also be resampled to be more balanced by removing negative 

cases or replicating positive cases. The authors in this study oversampled rare rhythms in 

training to ensure that the model learned to identify these rhythms.12 Penalization for false 

negatives could also be introduced into a model, such as penalizing failure to detect life-

threatening arrhythmias.

Another critical challenge in supervised ML is overfitting, which occurs when the model 

learns noise and random fluctuations as false relationships in the training data, resulting in 

high performance on the training data with lower performance on the testing data. Common 

causes of overfitting include insufficient training data, excessive noise in training data, or 

excessive model complexity. These can be combated by improving the training data (eg, 

increasing the quantity, diversity, or quality of data) or reducing model complexity (reducing 

model variance).

In traditional ML approaches, model complexity is often caused by high-dimensional feature 

spaces, requiring a large quantity of training data to adequately represent the variability in 

feature combinations.28 The optimal number of features is problem-dependent, but a 10:1 

ratio of data samples to features is a general starting point. Regularization techniques 

penalize the model based on magnitude of feature weights to emphasize small feature 

weights and reduce model variance. The feature space can also be reduced before training by 

feature selection.29 As an alternative, dimensionality reduction, discussed later, can reduce 

the data requirement and problem complexity, albeit at the cost of reduced interpretability of 

lower-dimensional feature sets.

Several techniques in DL can reduce model complexity and resist overfitting. Networks can 

be simplified by reducing the number of nodes or layers. Weight regularization within the 

network helps constrain the magnitude of feature weights. Adding a dropout layer to the 

network drops outputs from a random sample of nodes from the previous layer, enforcing 
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the network not to rely on a few nodes, and instead learn features from other nodes to make 

more robust decisions. Lastly, in DL, early stopping can be used to stop training a network 

once the error on the validation set rises, prohibiting the network from learning more noise. 

Comparable performance in training and validation datasets helps confirm that overfitting is 

avoided.

Finally, interpreting supervised ML results requires thoughtful consideration of bias. If the 

study data is poorly reflective of other datasets, the model will generalize poorly to external 

datasets. This effect can be considered in study design. For example, the ECG rhythm 

classification model was validated on an external set of ECGs from PhysioNet to assess 

whether the model was generalizable to other ECG data sources.12

Key Points in Challenges of Supervised ML

• Large quantities of annotated data are needed.

• Recognition and mitigation of overfitting is imperative.

Brief Guide to Conducting a Supervised ML Study

1. Decide on classification or regression

2. Prepare the input data and annotate the desired corresponding outcomes

3. Decide on a traditional ML approach versus DL

a. If using traditional ML, engineer and extract features

b. If using DL, format the input data to be compatible with a DL 

architecture

4. Partition data

a. Training, validation, and testing, or

b. Training (cross-validation), and testing

5. Optimize model parameters on the validation set or with cross-validation

6. Test the optimal model

a. Train the model on the training set, evaluate on the testing set

b. Calculate performance metrics

7. Continue to externally validate the model on additional datasets

Unsupervised ML

Unsupervised ML is relatively underdeveloped compared with supervised ML but offers 

intriguing possibilities. In contrast to supervised ML, unsupervised ML does not train a 

model to predict labels from input data. Unsupervised ML instead quantifies natural patterns 

within input data, blind to the labels of interest. Parsing out these patterns reveals underlying 

structure to complex data which may help to identify relevant subgroups. For example, 

unsupervised ML of clinical data combined with complex echocardiographic left ventricular 
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strain and volume traces was used to identify different phenotypes of heart failure patients in 

the MADIT-CRT trial (Multicenter Automatic Defibrillator Implantation Trial With Cardiac 

Resynchronization Therapy), and the resulting phenotype groups experienced significantly 

different treatment effect from cardiac resynchronization therapy (CRT).30

Cluster analysis is an unsupervised technique often used to identify subgroups from complex 

input data. Hierarchical agglomerative clustering is a popular clustering approach that 

identifies groups of data that are similar to each other. It starts by identifying small clusters 

of similarity, then sequentially creating larger clusters by merging small clusters in a bottom-

up approach. Hierarchical clustering results are typically presented with dendrograms and 

heat maps, which can help provide visual interpretation of high-dimensional data. An 

example of this approach is provided by authors who used hierarchical clustering of large 

quantities of clinical variables identified novel clinical phenotypes of AF.31 As an alternative 

to hierarchical clustering, k-means clustering identifies a prespecified number k clusters 

within the data such that every data point belonging to a given cluster is closer to that 

cluster’s centroid than all other cluster centroids (Figure 3). For example, k-means clustering 

was used to identify 4 different heart failure phenotype groups in the aforementioned 

analysis of the MADIT-CRT trial.30

Dimensionality reduction is an unsupervised technique that yields representations of input 

data that may facilitate clustering (Figure 3). High-dimensional data is reduced into lower-

dimensional representations while preserving the relevant variation and structure within the 

full-dimensional data. An intuitive example of dimensionality reduction is representing 

Earth (3-dimensional) using a map (2-dimensional). Many linear and nonlinear 

dimensionality reduction algorithms exist. In the previously mentioned example identifying 

heart failure phenogroups of patients in MADIT-CRT, multikernel dimensionality reduction 

simplified a 1682-dimensional feature vector of complex echocardiography traces and 

clinical parameters into a 2-dimensional representation to facilitate k-means clustering.30

Challenges in Conducting Unsupervised ML Studies

Like supervised ML, unsupervised ML studies may require extensive processing to prepare 

useful input data. The patterns that unsupervised ML uncovers also may not be the patterns 

that are best related to the outcome of interest, and a supervised ML approach may be more 

optimal. When using cluster analysis, it can be nebulous to decide how many clusters are 

needed. For example, although 4 heart failure phenogroups were identified from patients in 

the MADIT-CRT study,30 the authors ran their algorithm using 3 to 8 clusters and chose the 

cluster number that maximized statistical significance of the treatment effect among the 

clusters. Additionally, some nonlinear dimensionality reduction and clustering processes use 

distributions specific to the analyzed data which cannot be directly applied to new data.

Key Points in Unsupervised ML

• Unsupervised ML does not involve training a model but instead finds underlying 

structure in data.

• Common strategies are dimensionality reduction to simplify complex data or 

cluster analysis to identify relevant groups.
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• Unsupervised ML is relatively underdeveloped compared with supervised ML.

Brief Guide to Designing an Unsupervised ML Study

1. Choose clinical outcome(s) of interest (eg, event-free survival).

2. Choose how to represent the input data with a feature vector (eg, handcrafted 

features, raw signals, or dimensionality reduction methods to alter the data 

representation).

3. Cluster analysis on chosen input data representation to identify subgroups.

4. Compare outcomes in the subgroups identified by the cluster analysis.

5. Interpret the input data representation and differences between subgroups.

6. Continue to assess if unsupervised learning representations and clusters 

generalize to new cohorts.

Appropriate Use of ML

ML and DL approaches offer great potential, but to most appropriately use ML, it is useful 

to consider (1) if ML/DL yields better results than simpler traditional regression, and (2) 

when reduced interpretability in ML/DL approaches is and is not a concern.

In less complex problems, advanced ML algorithms often do not enhance performance 

beyond traditional regression with well-selected variables, a finding suggested in predicting 

CRT response from clinical variables,24 as well as predicting risk of AF.32 Advanced 

ML/DL is also unlikely to overcome limitations of the data itself, such as small datasets or 

poor outcome acquisition, and in such scenarios, traditional regression is a better-suited 

approach. Advanced ML is most appropriate when studying large datasets with large 

numbers of features where complex pattern recognition may be important, such as 

interpreting subtle patterns in ECG waveforms from hundreds of thousands of patients.

Another major limitation in ML, and especially DL, is its black box nature: difficulty in 

interpreting the contribution of features to model output.33 Poor interpretability is generally 

acceptable in performance-based tasks without immediate clinical ramifications, such as 

automated image segmentation. However, interpretability is especially important when 

trusting an AI model for clinical decision-making. For example, a clinician may feel 

uncomfortable with diagnosing a patient with disease detected by a DL ECG model that did 

not provide any interpretable rationale for that classification. This concern becomes even 

more important when considering that DL models are susceptible to adversarial attacks to 

input data that cause erroneous model output. A recent study demonstrated the ability to 

create adversarial examples, which are small perturbations imperceptible to humans, to ECG 

waveforms that were provided to a DL ECG rhythm classification model.34 Despite being 

invisible to human experts, these adversarial examples reduced the DL ECG rhythm 

classification accuracy from 88% to 26%.

One solution to poor interpretability is to develop inherently interpretable models,33 via 

cleverly designed features that reflect and quantify relevant biology. Another alternative is 
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the development of glass box models, which return some explainability to ML model output. 

In traditional ML, some algorithms can provide variable importance metrics to assist 

interpreting the model. Several approaches are also being investigated to better interpret DL 

models.35 For example, a DL model to identify cardiac rhythm devices from chest 

radiographs was also able to highlight relevant aspects of the image that might otherwise 

pass unnoticed to help educate the observer.36

A recent study illustrates prudent use of ML models with different levels of interpretability 

when attempting to automate disease diagnosis from ECG.26 First, the investigators used 

uninterpretable DL to automatically segment the ECG waveforms, a purely performance-

based task. However, they performed disease detection using an interpretable supervised ML 

classifier with variable importance metrics. Unlike an uninterpretable DL ECG model, this 

classifier could reveal which segments of the ECG waveform were most important in 

making the classification, which could be reexamined and corroborated by a clinician. An 

interpretable framework is important to consider when using ML to generate clinical 

decisions or make new disease insights, and perhaps human interpretation augmented by ML 

model output may ultimately perform best.

Key Points in Appropriate Use of ML

• In many scenarios, simpler models perform as well as complex models.

• Implications of poor model interpretability should be considered.

AI and ML in Clinical Cardiac Electrophysiology: Where Are We Now?

To provide pragmatic perspective, we discuss recent applications of AI to transform clinical 

cardiac electrophysiology and the implications this has on disease diagnosis, clinical 

outcomes prediction models, and novel characterization of disease. A summary of recent 

studies is provided in Table in the Data Supplement.

Disease Detection and Diagnosis

The development of mobile and wearable technology and AI is rapidly altering the 

landscape of disease detection and diagnosis in cardiac electrophysiology.

Mobile Technology to Detect Arrhythmia

Wearable photoplethysmographic sensors have transformed possibilities for AF screening by 

enabling long-term, passive assessment of pulse rate and regularity to detect an irregular 

pulse consistent with AF. In the Apple Heart Study,37 the photoplethysmographic 

monitoring algorithm of the Apple Watch was evaluated in 419 297 participants, with 2161 

participants receiving an irregular pulse notification when 5 out of 6 photoplethysmographic 

tachograms suggest AF. In the 450 participants who subsequently wore an external heart 

monitor for ≈1 week, AF was identified in 34% of participants, and positive predictive value 

between the photoplethysmographic and a concurrent external monitor was 84%.37 In a 

similar study in China,38 AF screening using photoplethysmographic monitoring technology 

in Huawei wristband and wristwatches was assessed in 187 912 individuals. Two hundred 

sixty-two individuals received notification for potential AF and had effective follow-up with 
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clinical evaluation and ECG monitoring. Eighty-seven percent of these individuals were 

confirmed to have AF, and positive predictive value of the photoplethysmographic signals 

was 92%.

Beyond photoplethysmographic pulse detection, Kardiaband and Apple Watch Series 4–5 

are cleared by the Food and Drug Administration to use wearable ECG recording 

capabilities for on-demand ECG confirmation of photoplethysmographic-based detection of 

AF. On Apple Watch Series 4–5, irregular rhythm detection on photoplethysmographic 

prompts the user to record a single-lead ECG using a sensor of the digital crown. The 

Kardiaband algorithm uses photoplethysmographic and pedometer sensors on an Apple 

Watch Series 2 or 3 to continually assess heart rate and activity level. Discordances in these 

measures prompt the wearer to record a modified lead I ECG by placing their thumb on the 

proprietary sensor embedded in the watchband. The performance of the algorithm was 

validated on 24 patients with implantable cardiac monitors and a history of paroxysmal AF. 

Episode sensitivity for AF episodes ≥1 hour was 97.5% with a duration sensitivity of 97.7%.
39 The Kardiaband-coupled app for ECG interpretation algorithm was assessed separately in 

100 patients undergoing cardioversion. Compared with ECG, the Kardiaband app for AF 

detection algorithm interpreted AF with 93% sensitivity, 84% specificity, and a K coefficient 

of 0.77.40 False positives or unclassified readings for both Kardiaband and Apple Watch 

Series 4 are seen most frequently in the presence of bundle branch blocks, frequent ectopy, 

junctional rhythm, or rates outside the Food and Drug Administration–mandated range of 

programmed range of 50 to 150 bpm for Apple Watch and 50 to 100 BPM for Kardiaband.

In addition to passive photoplethysmographic recordings on smartwatches, active assessment 

of contact-free facial and fingertip photoplethysmographic measurements using smartphone 

cameras has also shown potential for AF screening and diagnosis across a series of studies.
41–45 A meta-analysis of studies to date found that AF was diagnosed with a combined 

sensitivity and specificity of 94% and 96%.46

Expanding the Use of the 12-Lead ECG

The obvious application of AI to ECG interpretation is the rapid, reliable, and automated 

determination of ECG diagnosis. In this realm, automated cardiologist-level classification of 

12 different rhythms has been obtained through DL of single-lead ECGs.12 However, AI 

interpretation of the ECG can also confer information about disease not typically diagnosed 

on ECG. These 2 capabilities represent complementary application of AI to medicine - 

scaling our current workflow and insuring quality but also adding value to a routine medical 

test.

A recent series of studies have investigated DL interpretation of raw ECG waveforms to 

expand the utility of the ECG in several arenas. One example is determining serum 

potassium. Extreme potassium concentration perturbations have well-described ECG 

manifestations, but more subtle potassium changes may be detectable by DL of the ECG and 

a CNN identified hyperkalemia with an AUC of 0.85 to 0.88.10 This approach may have 

implications for outpatient titration of medications that disrupt potassium homeostasis or 

renal function, or for altering dialysis schedules. Such work may yield a bloodless assay for 

serum electrolyte concentrations.
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Similarly, although myocardial diseases causing poor function are often detectable on the 

ECG, the ECG itself is not a good screening test for asymptomatic left ventricular 

dysfunction—a condition affecting up to 2% to 5% of the adult population. However, a CNN 

trained using ECG and echocardiography pairs could reliably detect left ventricular 

dysfunction (AUC, 0.93).7 This network performed well in a subsequent validation study 

performed at the same institution,47 and is currently being tested in a prospective, cluster-

randomized clinical trial (EAGLE [ECG AI-Guided Screening for Low Ejection Fraction], 

URL: https://www.clinicaltrials.gov; Unique identifier: NCT04000087).48

DL of sinus rhythm ECGs also identified patients with paroxysmal AF. A CNN was trained 

to recognize ECG patterns to diagnose AF while in sinus rhythm in those patients who had 

both rhythms at different times.9 The network performed well (AUC, 0.87) and when 

multiple sinus rhythm ECGs were considered together, the model improved to an AUC of 

0.90. This approach may help identify patients who benefit from longitudinal screening for 

AF or patients who may benefit from anticoagulation after a stroke of undetermined source.

Most recently, a CNN used ECGs to predict sex (AUC, 0.97) and estimate age (average error 

of 6.9±5.6 years).6 Patients whose CNN-predicted age exceeded their actual age by >7 years 

had a higher proportion of low ejection fraction, hypertension, and coronary disease, 

suggesting that the CNN interpretation of age based on the ECG may be a mechanism to 

measure overall health. This finding was further bolstered by a study using a CNN to predict 

1-year mortality from ECGs (AUC, 0.88), even among ECGs that were interpreted to be 

normal by physicians (AUC, 0.85).49

Predictive and Prognostic Models for Response to Therapy

The Precision Medicine Initiative in 2015 raised expectations for understanding individual 

variation in prevention and treatment of disease. The Centers for Medicare and Medicaid 

Services mandated the use of evidence-based patient decision aids in primary prevention 

implantable cardioverter-defibrillator implant50 and left atrial appendage closure51 to foster 

shared decision-making with patients. Meeting these objectives necessitates models tailored 

to individual patients and methods to present these models. ML algorithms that use diverse 

data from the EMR may become central to this process.

Improving CRT Response Prediction

Several recent studies demonstrated early-stage attempts at developing models to answer this 

need in CRT. One study25 developed a random forest model to predict a composite end point 

of heart failure event or death following CRT using 45 commonly available baseline 

variables. The model differentiated outcomes (AUC, 0.74) better than current clinical 

discriminators of bundle branch block morphology and QRS duration. Another study24 

predicted echocardiographic response to CRT in a retrospective cohort from 2 institutions. 

The authors evaluated a variety of ML algorithms and clinical variable sets and found that an 

ML model created with a naive Bayes classifier and only 9 variables performed better than 

other models with wider feature sets. The ML model outperformed current guidelines in 

predicting response and improved discrimination of event-free survival, although 

improvement was modest—AUC for ML model 0.70 versus 0.65 for guidelines. A third 
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study52 sought to predict 1- to 5-year all-cause mortality in CRT patients using 33 clinical 

variables to train random forest classifiers to generate the SEMMELWEIS-CRT score, and 

again found that ML classifiers predicted mortality (AUC range, 0.77–0.80) better than 

preexisting clinical risk scores (AUC range, 0.53–0.74). The final CRT study sought to 

predict CRT response using clinical variables in combination with 2-word features extracted 

from clinical free note text via natural language processing.53 A model trained using a 

gradient boosting classifier predicted patients with reduced CRT benefit (defined as <0% 

improvement in left ventricular ejection fraction or death by 18 months) with an AUC of 

0.75 and was able to identify 26% of the patient population who experienced reduced CRT 

benefit with a precision of 0.79 and accuracy of 0.65. These studies begin to build a 

framework for using ML models to predict patient outcomes, but significant work remains in 

clinical adoption, which we discuss in the Validation and Translation section.

Novel Characterization of Disease

AI opens possibilities to provide novel characterization of disease processes and phenotypes 

between individuals and potentially to develop novel granular classifications that enable 

personalized medicine, which may ultimately assist with enhanced disease diagnosis and 

prediction of patient outcomes.

Computational Modeling and ML to Study AF

The explosion of mapping and imaging in AF patients provides increasingly detailed data 

that could be used by AI to classify AF and personalize therapy for patients. Several 

approaches have been reported. Recent studies show a role for multiscale computer 

modeling to identify specific ablation targets in individuals.54 In studies of computer models 

derived from magnetic resonance images (MRI) of left atrial geometry in AF patients, ML 

of spatial atrial fibrosis patterns predicted sites of AF drivers that were unaffected by 

ablation.55–57 In separate work, ML has been shown to potentially clarify the controversial 

field of AF mapping.58,59 A major unmet need is to reduce ambiguity in mapped AF 

patterns because current AF mapping systems require operator interpretation by 

automatically identifying ablation targets. Deep CNNs were recently trained on 175 000 AF 

maps from 35 patients to identify potential sites for ablation, including termination sites of 

persistent AF, and provided accuracy of 95%.60 Another recent study used a cellular 

automaton model to simulate the ability of ablation lesions to eliminate swirling and 

sometimes meandering vortices of fibrillatory activity.49 The authors found that ablating 

approximately one-third of the grid area eliminated currently apparent vortices, although 

residual wavelets continued to propagate. Conversely, simultaneous electrical stimulation at 

electrodes distributed throughout the atria was able to terminate AF.49 Recent work has 

extended ML to locating re-entrant drivers in cellular automaton models.50

Image-Based Characterization of AF for Ablation

Integrating imaging with cellular computational modeling provided important insight into 

the relationship between atrial fibrosis and AF mechanisms. Late gadolinium-enhanced MRI 

is an important imaging modality to visualize fibrosis and objectively assess scar.61 An 

important subsequent processing task is segmentation of relevant anatomic structures62 and 

fibrotic regions on MRI, a laborious and intensive task with interobserver variability when 
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performed manually. DL has been able to generate automated segmentation of atrial fibrosis,
63,64 as well as the left atrial epicardium and endocardium in MRI.16 Extension of this work 

has yielded a computational framework to estimate 3-dimensional atrial wall thickness,65 

which may further yield improved characterization of atrial remodeling and subsequently 

impact clinical management of AF. ML will likely continue to play a role in better 

characterizing relevant fibrosis patterns for clinical outcomes. This will also be relevant 

outside of AF, such as detecting for amyloidosis versus scar and has been used to analyze 

spatial scar patterns and risk for ventricular arrhythmia.66

Meanwhile, novel image characterization of left atrial morphology has been useful in 

predicting ablation outcomes in AF. AF induces morphological changes of the left atrium, 

which can manifest as changes in atrial volume and shape. Recent studies have developed 

image-based features from advanced imaging to predict AF recurrence using radiographic 

features. On cardiac MRI of AF patients who received catheter ablation, quantitative 

assessment of left atrial shape via particle-based modeling generated 19 shape features that 

were used to predict time to AF recurrence.67 The authors identified 3 features via feature 

selection and found that adding these shape features into a Cox regression model of clinical 

parameters and left atrial fibrosis increased the model’s concordance index from 0.68 to 

0.72. Visualized shapes showed that a round left atrial shape with a shorter, laterally rotated 

appendage was associated with recurrence. Another study used statistical shape models from 

MRIs to identify salient image variations across the study cohort, then used an ML classifier 

to distinguish patients with AF recurrence versus nonrecurrence with an AUC of 0.71.68 

Alternative to traditional ML approaches, DL has been useful to quantify dynamic shape 

features in other cardiac investigations.69 Although DL of left atrial shape features in AF has 

not yet been published, it is likely a fruitful area of future investigation.

Clinical Phenotyping of AF

AF is a heterogeneous multifactorial disorder with diverse phenotypic expression, and 

unsupervised clustering may improve phenotypic classification of AF to aid clinical 

evaluation and management. In an analysis of 9749 patients with AF from the United States, 

cluster analysis using 60 clinical characteristics identified 4 primary cluster phenotypes31: 

(1) AF with limited risk factors, (2) younger AF patients with comorbid behavioral 

disorders, (3) AF patients with tachycardia-bradycardia with device implantation due to 

sinus node dysfunction, and (4) AF with atherosclerotic vascular disease. The cluster 

phenotypes were validated in a separate United States cohort. Interestingly, the clusters were 

not driven by left atrial size nor type of AF but rather by comorbid illness. Similar to other 

cluster analyses in cardiovascular disorders, the cluster phenotypes had distinct associations 

with cardiovascular outcomes. More recently, a cluster analysis in a Japanese population 

with AF found different cluster phenotypes, including younger patients with paroxysmal AF, 

(2) persistent AF with left atrial enlargement, and (3) AF with atherosclerotic vascular 

disease.70 Thus, regional variation may be evident and important in defining AF phenotypes, 

or perhaps resulting cluster differences could be an effect of data differences between 

registries.
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Cluster phenotyping not only enables better description of AF but also may guide therapy. 

Certain risks and outcomes inherent to certain cluster phenotypes can be targeted with 

specific pharmacological, behavioral, or catheter-based therapies. Beyond clinical 

management, cluster phenotyping may also facilitate clinical investigation. For example, 

when designing a clinical trial for a novel investigational therapy, targeting a specific cluster 

phenotype may be more relevant than targeting a broad population.

Phenotyping Heart Failure Among CRT Candidates

Integration of complex imaging data with standard clinical variables for unsupervised 

phenotyping has also been demonstrated on heart failure patients in the MADIT-CRT trial.30 

To expand the utility of echocardiography beyond standard single measurements, the authors 

used multiple kernel learning (unsupervised dimensionality reduction) integrating cycle-

wide left ventricular strain and volume traces with clinical data of 1106 heart failure patients 

randomized to receive CRT or implantable cardioverter-defibrillator. This approach 

integrated complex regional patterns of cardiac function (1632 echocardiographic data 

points per cardiac cycle) with extensive clinical parameters. Four phenogroups were 

identified by k-means clustering with significantly different clinical and echocardiographic 

characteristics. Two phenogroups were associated with the highest proportion of clinical 

characteristics known to be predictive of volumetric response to CRT and had substantially 

better treatment effect from CRT. The algorithm outperformed independent analyses of 

clinical parameters or complex echocardiographic descriptors alone. The results suggest that 

unsupervised ML may yield novel, interpretable, and clinically meaningful phenotyping of 

heterogeneous patient cohorts that may also aid in patient selection for therapy.

Validation and Translation

There is an abundance of AI/ML studies in clinical research, but relatively few have been 

adopted into clinical practice. In this section, we address proper practice to validate and 

translate AI toward meaningful improvements to clinical practice.

Importance of Generalizability

As in other fields of medicine, before widespread use of an AI model, it is important to 

assess whether AI-based models are generalizable to data external to model development. 

For example, hospital-specific biases hampered the reliability of a generalized DL model 

used to detect pneumonia on chest x-ray.71 Nearly all AI studies have been retrospective and 

use data from limited numbers of institutions or high-quality clinical trial data that may not 

be generalizable to other cohorts. In AI models in cardiac electrophysiology, it should be 

assessed if the patient population is representative of other patient populations and if the AI 

model is robust to variation in data collection and processing techniques (eg, imaging 

scanners, imaging sequences, ECG acquisition equipment and techniques, interobserver 

differences in data collection protocol, feature computation definitions).

Validation, Translation, and Adoption

AI has been implemented in many industries, and successful implementation improves 

decision-making, decreases resource utilization, and provides cost savings. But the 
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application of AI in medicine is more complex than in the business, commercial, or technical 

sectors. First, before clinical deployment, a fixed AI model must be selected for Food and 

Drug Administration scrutiny, which is important to consider given the possibility of AI 

models that may continuously change as more training data becomes available over time. 

Additionally, for implementation of AI in cardiac electrophysiology, the potential for 

catastrophic error (eg, missed diagnosis of a life-threatening arrhythmia), susceptibility to 

adversarial attack,34 the need to explain model outputs (eg, selecting patients for CRT 

implantation), the importance of maintaining patient privacy (eg, could AI identify patients 

from anonymous ECG waveforms?), and potential subsequent legal ramifications are also 

crucial factors that should be considered.72 Many AI studies have been retrospective proof-

of-concept studies, but developing trust in the practicality and the benefits of AI in a real-

world setting will require prospective clinical studies. Prospective studies can focus on AI 

outcomes data and patient experience compared with traditional decision models, which 

may help define what constitutes successful AI. The prospective EAGLE trial,48 the Apple 

Heart Study,37 and the Huawei Heart study38 are among the few early examples in cardiac 

electrophysiology.

Furthermore, for clinical adoption, AI tools need to better immersed in the clinical 

ecosystem. Currently, many AI models exist as inaccessible research tools at specific 

institutions. In a modestly more accessible format, 2 of the CRT prediction studies provided 

an online calculator for clinicians to use with patients,24,52 but these calculators are still not 

integrated with the EMR. Even if the model itself is accessible, the data required as input for 

the AI model must be able to easily pass from the clinical data environment to the AI model. 

Tools that use data beyond clinical EMR variables become even more challenging. For 

example, for optimal clinical adoption of the DL ECG interpretation tools, a digital ECG 

acquired in clinic must be stored at that institution’s data server. The digital ECG waveforms 

must be in a compatible format and then be securely exported to the AI model, which 

subsequently provides an interpretation. The clinical provider can then use this interpretation 

to guide clinical management of the patient. Without a fluid ecosystem, this may prove to be 

a cumbersome process for practical clinical use.

Lastly, reimbursement for AI technologies may occur in the future and would likely 

introduce cost savings. A cost-benefit analysis of AI utilized in imaging revealed the low 

cost of a graphics processing unit, the ability to process thousands of images per second, and 

the potential imaging capacity of millions of images per day, creating a low-cost imaging 

reading output.73 One could envision such a system for cardiologist-level ECG diagnosis, 

but this model must take into consideration the need for human input and contextual 

reasoning. With the emphasis on value-based care, improving efficiency and realizing the 

maximum benefit from AI models may improve a hospital’s financial performance, 

potentially decreasing operating costs.

Gaps, Needs, and Future Directions

To date, AI in cardiac electrophysiology has shown great preliminary promise, but 

significant needs remain in basic and translational research, an institution-level improvement 

in data collection and harmonization practices, and clinical validation and practical 
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implementation (Figure 4). From a research standpoint, opportunities remain to investigate 

AI in more basic science applications: genomic and proteomic data, histological 

characterization, or drug discovery in understanding and treating arrhythmia. Additionally, 

most recent AI studies exist in isolation. An advantage of ML techniques is the capability to 

fuse different types of data. For instance, building off from many AF studies discussed in the 

article, one could imagine using AI to integrate the DL interpretation of ECG waveform data 

with patient-specific fibrosis patterns from MRI with clinical variable cluster phenotypes 

from the EMR. Similar efforts for data fusion in multiomic studies on a more basic science 

level may help relate biological understanding of diseases such as AF with their 

heterogeneous clinical phenotypes.

In addition, an institution-level focus on improved data collection would only facilitate and 

strengthen future AI research. Currently, most AI studies are performed by extracting data 

independently from within the institution. However, this makes it challenging to combine 

data across institutions. A concerted effort in collecting and labeling clinical data and 

outcomes and harmonizing data across institutions would be immensely beneficial to AI. 

This data collection should move beyond clinical variables in the EMR. In cardiac 

electrophysiology, data from imaging, 12-lead ECG, Holter and wearables, telemetry, and 

electrophysiological studies could also be collected and harmonized. Storing harmonized 

data in repositories that are made more accessible to researchers would also rapidly advance 

AI in this field. There already exist some publically available data repositories for 

electrophysiological data, such as the ECG databases available from PhysioNet,74 which 

have led to great development in AI technologies with ECG, but there is significant room for 

growth in increasing availability in other data with clinical outcomes.

Lastly, as the potential for AI is further expanded, the next challenge is developing a 

framework for incorporating AI into clinical practice. As discussed above, the clinical safety, 

reliability, and benefit of AI models need to be more rigorously validated in prospective 

studies. Mechanisms to smoothly integrate AI models into clinical practice while 

considering needs of data access and transfer and patient privacy are needed. Meanwhile, 

market needs of commercial establishment, Food and Drug Administration approval, and 

reimbursement mechanisms must be addressed.

Conclusions

Modern processing hardware, innovation in software algorithms, and collection of large 

electronic datasets have placed AI in a position to alter the landscape of biomedical research 

and clinical practice, with AI showing promise both to perform expert-level tasks and extend 

capabilities beyond human cognition. In cardiac electrophysiology, we have begun to see 

how AI is changing traditional mechanisms to detect and diagnose disease, predict patient 

outcomes, and understand and characterize disease processes. Significant work remains to 

better understand the capabilities, pitfalls, and appropriate deployment of AI in order for it to 

be integrated clinically. Leaders in the field will need to thoughtfully consider the 

appropriate application of AI and its implications. Meanwhile, researchers and clinicians 

alike would be empowered to have literacy in AI and ML, providing them with the ability to 

interpret the output of such methods as they continue to be adopted into modern use.

Feeny et al. Page 19

Circ Arrhythm Electrophysiol. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Sources of Funding

Research reported in this publication was supported by the National Heart, Lung, and Blood Institute of the 
National Institutes of Health under award number R01-HL111314, the American Heart Association Atrial 
Fibrillation Strategically Focused Research Network grant, the National Institutes of Health National Center for 
Research Resources for Case Western Reserve University and Cleveland Clinic Clinical and Translational Science 
Award under award number UL1-RR024989, Center of Excellence in Cardiovascular Translational Functional 
Genomics, Heart & Vascular Institute and Lerner Research Institute funds, Tomsich Atrial Fibrillation Research 
Fund, Heart & Vascular Institute and Lerner Research Institute Philanthropy funds, National Cancer Institute of the 
National Institutes of Health under award numbers 1U24CA199374-01, R01CA202752-01A1, 
R01CA208236-01A1, R01 CA216579-01A1, R01 CA220581-01A1, and 1U01 CA239055-01, the National 
Institute for Biomedical Imaging and Bioengineering under award number 1R43EB028736-01, the National Center 
for Research Resources under award number 1 C06 RR12463-01, VA Merit Review Award IBX004121A from the 
United States Department of Veterans Affairs Biomedical Laboratory Research and Development Service, the 
Department of Defense (DOD) Breast Cancer Research Program Breakthrough Level 1 Award 
W81XWH-19-1-0668, the DOD Prostate Cancer Idea Development Award (W81XWH-15-1-0558), the DOD Lung 
Cancer Investigator-Initiated Translational Research Award (W81XWH-18-1-0440), the DOD Peer Reviewed 
Cancer Research Program (W81XWH-16-1-0329), the Ohio Third Frontier Technology Validation Fund, and the 
Wallace H. Coulter Foundation Program in the Department of Biomedical Engineering, the British Heart 
Foundation (Project, Programme, and Centre of Research Excellence Grants), and the National Institute for Health 
Research Biomedical Research Centre, United Kingdom. The content is solely the responsibility of the authors and 
does not necessarily represent the official views of the National Institutes of Health, the US Department of Veterans 
Affairs, the Department of Defense, or the United States Government.

Disclosures

Dr Chung serves on the steering committee for and has spoken at conferences for EPIC Alliance, a forum for 
networking and mentoring of women in cardiac electrophysiology sponsored by Biotronik, but declines honoraria 
from device companies. Dr Madabhushi is an equity holder in Elucid Bioimaging and Inspirata; is a scientific 
advisory consultant for Inspirata; has been a scientific advisory board member for Inspirata, AstraZeneca, and 
Merck; and has sponsored research agreements with Philips and Inspirata. His technology has been licensed to 
Elucid Bioimaging and Inspirata. He is involved in National Institutes of Health grants with Path-Core and 
Inspirata. Mayo Clinic has licensed the underlying technology to EKO, a maker of digital stethoscopes with 
embedded ECG electrodes. Mayo Clinic may receive financial benefit from the use of this technology, but at no 
point will Mayo Clinic benefit financially from its use for the care of patients at Mayo Clinic. Drs Friedman, Kapa, 
Noseworthy, and Attia may also receive financial benefit from this agreement. Dr Narayan reports consulting from 
Beyondai Inc, TDK Inc, Up to Date, Abbott Laboratories, and American College of Cardiology Foundation, and 
intellectual property rights from the University of California Regents and Stanford University. Dr Passman receives 
research support, consulting fees, and speaking fees from Medtronic, and research support from AliveCor. Dr Perez 
reports grants from Apple Inc as well as personal fees from Apple Inc and Boehringer-Ingelheim. Dr Peters reports 
consulting fees from Google. Dr Piccini receives grants for clinical research from Abbott, American Heart 
Association, Boston Scientific, Gilead, Janssen Pharmaceuticals, National Heart, Lung, and Blood Institute, and 
Philips; and serves as a consultant to Abbott, Allergan, ARCA Biopharma, Biotronik, Boston Scientific, Johnson & 
Johnson, LivaNova, Medtronic, Milestone, Oliver Wyman Health, Sanofi, Philips, and Up-to-Date. Dr Tarakji 
reports consulting and advisory board fees from Medtronic, AliveCor, and Boston Scientific. Dr Trayanova is a 
founder of CardioSolv, holds an equity ownership interest in the company and acts as its Chief Scientific Officer. Dr 
Turakhia reports grants from Apple Inc as well as grants from Janssen Inc, AstraZeneca, Boehringer Ingelheim, 
Bristol Myers Squibb, American Heart Association, and SentreHeart; personal fees from Medtronic Inc, Abbott, 
Precision Health Economics, iBeat Inc, iRhythm, Novartis, Biotronik, Sanofi-Aventis, and Pfizer; other support 
from AliveCor; and grants and personal fees from Cardiva Medical. Dr Wang reports honoraria/consultant fees from 
Janssen, St. Jude Medical, Amgen, Medtronic; fellowship support from Biosense-Webster, Boston Scientific, 
Medtronic, St. Jude Medical; clinical studies from Medtronic, Siemens, Cardiofocus, ARCA Biopharma; and stock 
options from Vytronus. The other authors report no conflicts.

Nonstandard Abbreviations and Acronyms

AF atrial fibrillation
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AI artificial intelligence

AUC area under the curve

CNN convolutional neural network

DL deep learning

EMR electronic medical record

MADIT-CRT Multicenter Automatic Defibrillator Implantation Trial With Cardiac 

Resynchronization Therapy

ML machine learning

MRI magnetic resonance image

ROC receiver operating characteristic
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Figure 1. Overview of artificial intelligence and machine learning in cardiac electrophysiology.
A broad overview of how increasing quantities of diverse digital data in cardiac 

electrophysiology are being interpreted by artificial intelligence methods to generate 

advances in clinical practice and research. EMR indicates electronic medical record.
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Figure 2. Architectures of an artificial neural network vs deep learning in ECG interpretation.
A, An example of an artificial neural network used to predict whether or not a patient will 

experience cardiovascular mortality, using 4 clinical features and 132 resting ECG features 

(intervals and amplitudes of various ECG segments). These create a 1×136 feature vector 

input to the neural network, represented by neurons (x1, x2, x3,…x136). The input neurons 

are then connected to a single fully connected hidden layer of 70 neurons (h1, h2, h3,…h70), 

and then ultimately connected to the output node (y), which yields a prediction score of 

cardiovascular mortality. The black lines between nodes represent weights, which are 

iteratively adjusted during the training process to minimize output prediction error. B, An 

example of a deep learning convolutional neural network based on the network used to 
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predict whether or not a patient has left ventricular dysfunction from the waveforms of a 10-

s 12-lead ECG. The input is the entire 12-lead ECG signal, formatted as a 12×1024 sample 

matrix. This network first learns temporal features within each lead, by extracting feature 

maps via 6 iterations of 1-dimensional convolution in the temporal axis followed by 1-

dimensional pooling. Next, the network learns how the temporal features are distributed 

across leads by spatial feature learning via convolution across the 12 ECG leads. The 

resulting feature maps are flattened and passed to 2 fully connected layers (ha,1, ha,2, ha,3,…

ha,64) and (hb,1, hb,2, hb,3,…hb,32), which used the learned temporal and spatial features to 

classify whether or not the patient has left ventricular dysfunction, as predicted in output 

node y.
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Figure 3. Unsupervised machine learning: dimensionality reduction and k-means clustering.
Demonstration of an unsupervised machine learning approach to identify 2 subgroups of 

cardiac resynchronization therapy (CRT) patients based on ECG QRS complex waveforms.
75 A, Visualization of different dimensionality reduction techniques to reduce ECG QRS 

waveforms from 539 CRT patients into data points in a 2-dimensional representation. 

Principal components analysis (PCA) is a common linear dimensionality reduction method. 

Other pictured techniques are nonlinear dimensionality reduction techniques: t-distributed 

stochastic neighbor embedding (t-SNE), and locally linear embedding (LLE). Colors of the 
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example ECG waveforms and corresponding colors in the scatterplots indicate where each 

example waveform is projected in the 2-dimensional representations. B, Demonstration of k-

means clustering with k=2 on the PCA representation of the ECG waveforms to create 2 

clusters. The k-means algorithm is as follows: (1) k centroids are created at random 

locations, (2) each data point is then assigned to the nearest centroid, (3) the locations of the 

centroids are then updated to represent the mean location of the data points assigned to the 

centroid. Steps 2 and 3 are repeated over many iterations until the centroids no longer 

update. The centroid location and cluster assignment change over several iterations until 

reaching convergence.
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Figure 4. Future directions for artificial intelligence (AI) in cardiac electrophysiology.
On the bottom is a typical pathway from development of AI tools to their clinical 

deployment. Progress thus far in electrophysiology has largely been achieved through the 

retrospective studies component of this pathway, with early prospective studies just 

beginning. There is currently significant need to evaluate and develop existing AI 

technologies toward clinical deployment, and potential clinical and market challenges to do 

so are outlined. Future scientific efforts to develop new AI tools are also outlined. EMR 

indicates electronic medical record; and FDA, Food and Drug Administration.
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Table 2.

Overview of Common Supervised Machine Learning Classification Algorithms

Algorithm Description Advantages and Disadvantages Suitable Data in Cardiac Electrophysiology

Deep learning Mimics human 
neuronal structure with 
many processing layers

Represents state-of-the-art performance with 
raw input data in complex tasks and does not 
require any feature engineering but often 
requires extremely large datasets, intensive 
computational power, significant processing 
time, and algorithms are difficult to interpret

Raw 12-lead ECG, imaging (CT, MRI, 
echocardiography), clinical text, or other 
diagnostic and monitoring data (telemetry, 
Holter/wearables, electrograms, 
electrophysiological studies)

Traditional supervised ML algorithms

 Logistic 
regression

Linear combinations of 
log-odds

Transparent and fast but performs poorly with 
large numbers of variables and does not 
automatically capture interactions

Well-selected features obtained from the 
electronic medical record or manually 
engineered from processed data (eg, features 
extracted from ECG signal processing, specific 
measurements made on images, etc) Support 

vector machine
Identifies hyperplane 
that separates classes, 
can use a linear or 
nonlinear kernel

Fast can be flexible with kernel adjustment 
but is difficult to interpret and features may 
need normalization and scaling

 Naïve Bayes Bayes’ theorem of 
conditional 
probabilities

Fast, scalable, does not require large amounts 
of data, but is not directly interpretable and 
assumes independence between variables

 Random 
forest

Large ensembles of 
decision trees

Resistant to noise and overfitting even with 
large amounts of variables, flexible with 
continuous and categorical variables, capable 
of capturing variable interactions

High quantities of features obtained from the 
electronic medical record or manually 
engineered from processed diagnostic data 
(ECG, imaging, etc)

CT indicates computed tomography; ML, machine learning; and MRI, magnetic resonance imaging.
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