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Abstract

Discovered as a b-ZIP transcription repressor 30 years ago, E4 promoter-binding protein 4 

(E4BP4) has been shown to play critical roles in immunity, circadian rhythms, and cancer 

progression. Recent research has highlighted E4BP4 as a novel regulator of metabolisms in 

various tissues. In this review, we focus on the function and mechanisms of hepatic E4BP4 in 

regulating lipid and glucose homeostasis, bile metabolism, as well as xenobiotic metabolism. 

Finally, E4BP4-specific targets will be discussed for the prevention and treatment of metabolic 

disorders.
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Introduction

The PAR proteins, named after the conserved proline-and acid-rich (PAR) domains in a 

subset of basic leucine zipper (b-ZIP) transcription factors, consist of four family members, 

TEF/VBP, HLF, DBP, and E4BP4 (Cowell and Hurst 1994). The PAR family proteins form 

homodimers or hetero-dimerize within other family proteins and function as either 

transcription activators or repressors (Hai and Hartman 2001). The PAR family proteins have 

been found to have diverse physiological functions in mammals, including circadian 

rhythms, immunoregulation, and cancer development (Green 2016). This review will focus 

on the role of E4 promoter-binding protein 4 (E4BP4), also named as nuclear factor, 

interleukin 3 regulated (NFIL3), the least known PAR transcription factor, in liver metabolic 

regulation. NFIL3/E4BP4 was initially cloned as a b-ZIP transcription factor that binds to 

the consensus sequence (G/A)T(G/T)A(C/T)GTAA(C/T) in the adenoviral E4 promoter 

DNA (Cowell, et al. 1992). Further analysis revealed that E4BP4 functions as a transcription 

repressor with its repression activity primarily located in its C-terminal region (Cowell and 

Hurst 1994)(Figure 1). Although Northern blotting analysis indicates the E4bp4 mRNA was 
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ubiquitously expressed in various cell lines and mouse tissues, very low abundance of the 

E4BP4 protein was detected in most cases, suggesting that the E4BP4 protein level is likely 

controlled at both the translational and post-translational levels (Chen, et al. 1995).

One of the best-known biological functions of E4BP4 is related to immunomodulation 

(Male, et al. 2012). The E4bp4 promoter was found to be activated by interleukin 3 in T 

lymphocytes, giving rise to its other name NF-IL3 (Zhang, et al. 1995). Subsequently, 

multiple studies have illuminated the essential role of E4BP4 in NK cell development/

maturation as well as the development of innate lymphoid cells (ILC) (Geiger, et al. 2014). 

E4BP4 also functions as a key regulator of IL 3-dependent pro-B lymphocyte survival and 

immunoglobulin class switch (Ikushima, et al. 1997). Moreover, E4BP4 was shown to 

regulate cytokine production and the effector functions in a subsets of T lymphocytes 

(Kashiwada, et al. 2011). Given its broad actions in multiple immune cells, it was speculated 

that E4BP4 might be relevant in human immune disorders. Indeed, E4BP4 has been reported 

to be implicated in the pathogenesis of IBD, MS, and systemic lupus erythematosis (Yin, et 

al. 2017).

As a protein wearing multiple hats, E4BP4 has also been identified as a key circadian output 

oscillator in the molecular circadian clock system. In its core, the circadian clock comprises 

a transcription-translational feedback loop driven by key circadian proteins including 

BMAL1, CLOCK, PERIOD, CRY, and nuclear receptors (NR1D1 and RORs) (Partch, et al. 

2014). The E4bp4 mRNA expression was shown to display a classical circadian oscillation 

pattern that was blunted in the Bmal1−/− mice, supporting that E4bp4 is a direct output gene 

of the molecular circadian clock (Chen, et al. 2019c). E4BP4 was also found to interact with 

the core clock protein CRY2 in cultured cells (Ohno, et al. 2007). However, deletion of 

E4bp4 showed little impact on the oscillations of core clock genes. Most recently, the Lazar 

group has shown that the rhythmic expression of E4bp4 was disrupted in Kupffer cells from 

the liver of adult hepatocyte-specific Rev-erbα and Rev-erbβ double knockout mice, 

highlighting an essential role of the hepatic clock in coordinating metabolic events in the 

liver (Guan, et al. 2020). Given the extensive expression of E4BP4 in a variety of tissues, it 

is likely that E4BP4 may control a subset of circadian output genes in a tissue-specific 

manner.

E4BP4 in liver metabolism

Liver is the central organ in charge of metabolic homeostasis in mammals. During the cycles 

of food intake, liver turns on anabolic metabolism upon feeding and switches to catabolic 

metabolism during fasting (Rui 2014b). This switch between different metabolic pathways is 

tightly controlled at both the transcriptional and post-translational levels. A panel of 

transcription factors sensitive to the nutrient status has been identified as critical regulators 

in maintaining metabolic homeostasis in the liver (Hatting, et al. 2018; Wang, et al. 2016). 

For instance, SREBP-1c, FXR, and ChREBP have been identified as critical transcription 

factors in lipid and bile acid biosynthesis during feeding (Chiang 2013a; Wang, et al. 2015), 

whereas FOXO1, CREB, and PPARα are required in gluconeogenesis and lipid oxidation 

during fasting (Rui 2014a; Wang et al. 2016). Although the E4bp4 expression was shown to 

be most abundant in the liver, the regulation of its mRNA by nutrients and hormone 
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signaling has been largely uncharacterized. Our lab has discovered that refeeding induces the 

E4bp4 mRNA and protein in the mouse liver (Tong, et al. 2010). We also found that insulin 

potently induces E4bp4 expression through the AKT/mTORC1/SREBP-1c pathway (Tong, 

et al. 2016b). Most recently, we reported that chemical or diet-induced ER stress potently 

induces hepatic E4BP4 to promote lipid accumulation via the suppression of AMPK 

pathway (Yang, et al. 2020). All together, these data suggest that E4BP4 could be a critical 

player during anabolic metabolism.

1. E4BP4 in lipid metabolism

E4BP4 and FGF21-promoted fatty acid oxidation—During fasting, liver turns on 

lipolysis to break down triglycerides to release free fatty acids (FFAs) for fatty acid 

oxidation and ATP production inside the mitochondria (Rui 2014b). The nuclear receptor 

PPARα plays a dominant role in activating fatty acid oxidation genes in the liver during 

fasting (Bougarne, et al. 2018). Pparα−/− mice were shown to develop liver steatosis along 

with the suppression of FAO gene expression under food deprivation (Bougarne et al. 2018; 

Lee, et al. 2004; Sugden, et al. 2002). One of the PPARα targets is FGF21, a hepatic 

hormone critical for energy mobilization during fasting (Badman, et al. 2007; Inagaki, et al. 

2007). Once released from liver, FGF21 can stimulate adipocyte lipolysis in white and 

brown adipose tissues and increase the levels of FFAs in circulation. We observed that 

E4BP4 represses the Fgf21 expression in a circadian fashion in hepatocytes. The Fgf21 
mRNA oscillations were anti-phase to those of E4bp4 during a circadian cycle in the mouse 

liver (Tong et al. 2010). We also detected a drastic decrease in the level of FGF21 in the 

medium from primary mouse hepatocytes transduced with Ad-E4bp4. Our chromatin 

immunoprecipitation (CHIP) assay uncovered the direct binding of E4BP4 to the Fgf21 
promoter, consistent with its potent repression of the Fgf21 expression in hepatocytes. We 

further confirmed the physiological role of E4BP4 as a suppressor of FGF21 in hepatocytes 

in response to insulin. Later on, we reported that G9a, a histone methyltransferase is 

required to mediate the suppression of FGF21 by E4BP4 in hepatocytes (Tong, et al. 2013). 

In contrast, CREBH, an ER-sensitive transcription factor, has been shown to facilitate the 

PPARα-stimulated Fgf21 expression in the liver during fasting (Zheng, et al. 2016). The 

Zhang group reported that E4BP4 interacts with CREBH and antagonizes the CREBH-

mediated activation of FGF21 in the liver (Bhattacharya, et al. 2018; Zheng et al. 2016). 

Collectively, these results suggest that E4BP4 might contribute to catabolism of lipids by 

suppressing hepatic FGF21 in response to insulin during feeding.

E4BP4 and insulin-induced de novo lipogenesis.—During food intake, liver turns 

on anabolic lipid metabolism via insulin to upregulate de novo lipogenesis and cholesterol 

biosynthesis(Rui 2014b). Once bound to the insulin receptor on hepatocytes, insulin 

activates the PI3K-AKT-mTORC1 signaling cascade. The Goldstein lab discovered that 

insulin potently induces the lipogenic master sterol regulatory element-binding protein 1 

(SREBP-1) downstream of AKT-mTORC1, which in turn upregulates the mRNA levels of 

key enzymes for lipogenesis such as Fasn, Acc1, Atp-cl, and Scd1 (Brown and Goldstein 

1997; Horton, et al. 2002). SREBP-1 is a member of the basic-helix-loop-helix (bHLH) 

leucine zipper transcription factors (Shimano 2001). SREBP-1 consists of both SREBP-1a 

and SREBP-1c isoforms. SREBP-1a is mainly expressed in the intestine and spleen, whereas 
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SREBP-1c is the predominant isoform in the liver (Shimano 2001). The factors that regulate 

the SREBP-1c transcription, processing, and stability have been shown to impact the degree 

of hepatic lipid biosynthesis and diet-induced liver steatosis.

We recently reported that insulin stimulates both the mRNA and protein abundance of 

E4BP4 in mouse hepatocytes via the classical AKT-mTORC1-SREBP-1c pathway (Tong, et 

al. 2016a). E4bp4-deleted hepatocytes display a more than 50% reduction in the rate of de 

novo lipogenesis and the expression of lipogenic enzymes. We detected a marked reduction 

of nuclear SREPB-1c in the E4bp4-deleted primary mouse hepatocytes. Adenoviral 

overexpression of E4BP4 enhances the nuclear abundance of SREBP-1c in a feed-forward 

feedback loop. More interestingly, the pro-lipogenic action of E4BP4 relies on its ability to 

enhance the SREBP-1c acetylation via protein-protein interaction. These findings strongly 

indicate that hepatic E4BP4 is a pro-lipogenic factor downstream of the insulin signaling.

2. E4BP4 in glucose metabolism

Liver is also critical for maintaining glucose homeostasis (Rui 2014a). After food intake, 

liver synthesizes glycogen and inhibits gluconeogenesis. In contrast, liver undergoes 

glycogenolysis and gluconeogenesis to maintain blood glucose level during fasting. These 

metabolic processes are tightly controlled by a panel of hormonal and nutritional signals 

(Petersen, et al. 2017; Rui 2014b). Insulin promotes glycogen synthesis mainly by 

stimulating the phosphorylation of GSK3 and inhibits gluconeogenesis by enhancing the 

FOXO1 phosphorylation (Bergman, et al. 2019; Lee and Dong 2017). During fasting, the 

glucagon signaling activates the PKA-CREB pathway and triggers glycogenolysis and 

gluconeogenesis in the liver (Ravnskjaer, et al. 2016). Many factors that influence either the 

insulin-AKT-FOXO axis or the glucagon-PKA-CREB signaling could impact liver glucose 

metabolism and consequently systemic glucose homeostasis.

Recently, the Koo group has reported the in vivo role of E4BP4 in glucose metabolism, 

suggesting that E4BP4 may down-regulate gluconeogenesis in the liver (Kang, et al. 

2017).They found that E4BP4 reduces glucose production and suppresses the gluconeogenic 

genes including G6pase and Pepck in part through competing with CREB. Ectopic 

expression of E4BP4 in the liver of ob/ob mice ameliorated hyperglycemia and glucose 

intolerance. On the flip side, acute depletion of E4bp4 in the mouse liver elevated blood 

glucose and the expression of hepatic gluconeogenic genes. These findings are in line with 

our own unpublished data supporting the role of E4BP4 as an insulin-induced gene and the 

ability of E4BP4 to suppress the Pgc-1α transcription.

So far, whether E4BP4 contributes to impaired glucose metabolism during obesity remains 

controversial. The Koo group found that the protein other than mRNA level of E4BP4 was 

reduced in the liver of ob/ob mice after 27-week high-fat diet feeding, possibly due to the 

impaired E4BP4 protein stability in the insulin-resistant mouse liver (Kang et al. 2017). K. 

Hofmann et al. found that streptozotocin (STZ)-induced diabetes did not affect the E4bp4 
mRNA level. Their data showed a loss of diurnal rhythm in the expression of E4bp4 in 

spontaneous type 1 diabetic male rats (Hofmann, et al. 2013). In addition, the Gimble group 

reported that the E4BP4 mRNA level displays a positive correlation with BMI in the 
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overweight young (age < 36 years) people (Wu, et al. 2009). More research using a variety 

of animal models is needed to clarify the role of E4BP4 in glucose metabolism in the liver.

3. E4BP4 in bile acid metabolism

Liver is also the primary organ for biosynthesis of bile acids from cholesterol. Conversion of 

cholesterol into bile acids requires a complex biosynthetic pathway involving up to 17 

enzymatic steps (Chiang 2013b). CYP7A1 represents the rate-limiting enzyme of the bile 

acid biosynthesis. One of the major regulators of bile acid metabolism is the bile acid-

activated nuclear receptor farnesoid X receptor (FXR) (Huang, et al. 2006; Preidis, et al. 

2017; Urizar, et al. 2000). Extensive research from multiple groups has established the 

model by which FXR inhibits hepatic CYP7A1 expression. FXR was shown to indirectly 

suppress the Cyp7a1 transcription by inducing both small heterodimer partner (SHP) in the 

liver and fibroblast growth factor-15 in the intestine (Byun, et al. 2017; Goodwin, et al. 

2000; Huang et al. 2006; Inagaki, et al. 2005; Kliewer and Mangelsdorf 2015; Preidis et al. 

2017; Shin and Osborne 2009). In a luciferase reporter assay, E4BP4 overexpression 

potently suppressed the Cyp7A1 promoter-driven luciferase activity (Noshiro, et al. 2007). 

Other studies have provided indirect evidence for E4BP4 as a physiological regulator of 

Cyp7a1 expression and bile acid metabolism. In a mouse model with increased hypoxia 

signaling in the liver, elevated E4BP4 leads to the suppression of hepatic Cyp7a1 
(Ramakrishnan, et al. 2014). In another study, E4BP4 was found to directly bind to the 

Cyp7A1 promoter by ChIP assay (Yoshitane, et al. 2019). As of now, whether E4BP4 is 

required for controlling the diurnal expression of hepatic Cyp7A1 remains to be established.

4. E4BP4 in xenobiotic metabolism

Liver is the primary organ to carry out xenobiotic metabolism of drugs, pollutants, and 

toxins (Zhang, et al. 2018). Xenobiotic metabolism depends on three type of enzymes: Phase 

I enzymes modify the substrates, Phase II enzymes conjugate the substrates, and Phase III 

enzymes excrete the end products. P450 (CYP) enzymes are the most abundant among 

Phase I enzymes responsible for clearing drugs in the liver. In the mouse liver, several 

cytochrome P450 enzymes including Cyp17, Cyp2a4, and Cyp2e1 were shown to display a 

diurnal oscillation in their mRNA expression (Chen, et al. 2019a; Manikandan and Nagini 

2018; Tornio and Backman 2018; Zhang et al. 2018). E4BP4 was also reported to control the 

expression of CYP3A4 (Cyp3a11 in mice), one of the most important enzymes for drug 

metabolism and detoxification (Tong, et al. 2019). Takako Takiguchi et.al found that, in 

synchronized human hepatoma cells HepG2, the mRNA levels of Cyp3A4, Dbp, and E4bp4 
exhibited a 24-hr oscillation (Takiguchi, et al. 2007b). They also found that DBP 

overexpression activates the promoter of Cyp3A4, whereas E4BP4 does the opposite in an in 

vitro luciferase reporter assay. Moreover, the CYP3A4 protein and activity were found to 

increase in the liver of E4bp4−/− mice, resulting in altered pharmacokinetics of Midazolam 

(Takiguchi, et al. 2007a).

Carboxylesterases (CES) are a family of Phase I enzymes that play an important role in 

xenobiotic clearance and lipid metabolism. One of CES proteins, CES2, was found to be 

reduced in the liver of E4bp4−/− mice. This reduction led to slowed metabolism of its main 

substrate CPT-11 (irinotecan) (Zhao, et al. 2018). Flavin-containing monooxygenase 5 
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(FMO5) is another important Phase I enzyme in xenobiotic metabolism in the liver. Hepatic 

Fmo5 expression was found to be upregulated and its circadian rhythm was attenuated in 

E4bp4 −/− mice. All those findings support E4BP4 as a novel regulator of pharmacokinetics 

of detoxification enzymes. Identification of the underlying mechanisms could lead to a 

better understanding of how the molecular circadian clock system influences drug 

metabolism in the liver (Chen, et al. 2019b).

5. E4BP4 in obesity and metabolic syndrome

The ever-increasing prevalence of obesity leads to type 2 diabetes, cardiovascular-renal 

complications, and many types of cancers worldwide. Obesity is likely to be a result of both 

altered lifestyles and genetic susceptibilities. Nowadays, circadian disruption/misalignment 

has garnered a lot of attention as one of the major contributors to metabolic dysfunction and 

obesity (Rana, et al. 2003; Wu et al. 2009; Zvonic, et al. 2006). Several studies have found 

high-fat diet feeding dampens the amplitude of circadian genes while altering the period of 

molecular clock system in multiple tissues of rodents (Hatori, et al. 2012; Kaneko, et al. 

2009; Kohsaka, et al. 2007). Specifically, the circadian oscillations of Dbp and E4bp4, two 

direct circadian output genes, were largely lost in both the liver and kidney of those high-fat 

diet-fed mice (Hsieh, et al. 2010).

So far, whether E4BP4 could be involved in metabolic dysfunction after high-fat diet feeding 

remains largely undetermined. Several studies suggest that E4BP4 could regulate obesity in 

a tissue-specific manner. The Lee group reported that E4BP4 is required for the 

accumulation of NK cells in adipose tissue upon high-fat diet feeding (Lee, et al. 2016). 

E4bp4−/− mice were shown to be resistant to diet-induced adipose inflammation along with 

improved insulin resistance (Lee et al. 2016). The Hoover group discovered that E4BP4 in 

intestinal epithelial cells controls the expression of a circadian lipid metabolic program and 

regulates lipid absorption and export. Intriguingly, they found that microbiota regulates body 

composition by modulating the circadian oscillations of E4bp4 within enterocytes (Wang, et 

al. 2017). In our most recent study, we discovered that both ER stress inducer tunicamycin 

and high-fat low methionine and choline-deficient (HFLMCD) diet induce E4BP4 and 

promote lipid accumulation in the liver. Using hepatocyte-specific E4bp4 knockout mice, we 

have found that loss of hepatic E4bp4 protects mice against HFLMCD diet-induced liver 

steatosis and hepatocyte injury. Mechanistically, we show that E4bp4 is most likely to 

promote lipid droplet formation by suppressing the AMPK pathway in hepatocytes (in 

press).

Conclusion and Future directions

In summary, recent findings have highlighting the novel role of E4BP4 in regulating 

metabolism and metabolic diseases, supporting that E4BP4 could be an important regulator 

of glucose, triglycerides, cholesterol, and xenobiotic metabolism in the liver. It has become 

increasingly clear that E4BP4 impacts various metabolic pathways via its specific regulation 

of a subset of genes in different tissues. Given the complexity of its functions, E4BP4 can 

either repress or activate the gene expression of metabolic pathways through completely 

different mechanisms (Figure 2). Currently, the biochemical basis for this functional switch 
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remains unknown. Therefore, an in-depth understanding of how E4BP4 controls the 

expression of its targets in different tissues is crucial to identifying unique drug targets for 

the prevention and treatment metabolic disorders such as diabetes and NAFLD.
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Figure 1: 
Schematic of E4BP4 functional domains.
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Figure 2: 
Overview of metabolic actions of E4BP4 in the liver. Hepatic E4BP4 expression and activity 

are likely to be sensitive to the cycle of fasting/refeeding, hormones, stress signals, and the 

circadian clock. Hepatic E4BP4 regulates lipid metabolism, glucose metabolism, bile acid 

metabolism, and xenobiotic metabolism to impact the whole body homeostasis.
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