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Summary

Single cell sequencing technologies, including transcriptomic and epigenomic assays, are 

transforming our understanding of the cellular building blocks of neural circuits. By directly 

measuring multiple molecular signatures in thousands to millions of individual cells, single cell 

sequencing methods can comprehensively characterize the diversity of brain cell types. These 

measurements uncover gene regulatory mechanisms that shape cellular identity and provide 

insight into developmental and evolutionary relationships between brain cell populations. Single 

cell sequencing data can aid the design of tools for targeted functional studies of brain circuit 

components, linking molecular signatures with anatomy, connectivity, morphology and 

physiology. Here, we discuss the fundamental principles of single cell transcriptome and 

epigenome sequencing, integrative computational analysis of the data, and key applications in 

neuroscience.
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eTOC/In Brief:

Sequencing the transcriptomes and epigenomes of single cells enables deep molecular 

characterization of brain cells with high throughput. Armand, Li, Xie et al. review the key 

experimental principles and computational methods and discuss recent landmark applications in 

neuroscience.
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Introduction

Brain cells are complex biological machines whose function is defined at the molecular level 

by conserved gene expression programs. Understanding the molecular identity of neural cell 

types requires measuring thousands of genes to uncover fine-grained distinctions between 

cells. At the same time, a large sample of cells is required to capture rare types and 

accurately assess heterogeneity. Fine-grained analysis using many genes and broad scope of 

coverage for many cells have often been viewed as mutually exclusive goals: experiments 

typically probe many molecular signatures in a limited number of samples or target a small 

number of genes in a large number of samples. In this Primer, we describe how high-

throughput single-cell sequencing assays enable high-resolution, broad-scope analysis of 

brain cell types.
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Sequencing DNA and/or RNA quantifies the information-bearing molecules that encode and 

enact each cell’s biological identity. The abundance of RNA molecules defines the 

transcriptome, while chemical modifications of DNA and histone proteins along with the 

physical conformation of DNA within the nucleus define the epigenome (Fig. 1a). The 

interaction among thousands of genes and hundreds of thousands of gene regulatory DNA 

sequence elements gives rise in each cell to one of hundreds of robust cellular phenotypes. 

Neuroscience is fundamentally oriented toward understanding information processing in 

biological networks, and computational- and systems-neuroscientists seek to understand the 

emergence of complex adaptive behavior. It is thus natural that neuroscientists recognize the 

opportunity to use fine-grained, broad-scope single cell sequencing data to advance 

understanding of the transcriptomic and epigenomic identity of brain cell types.

We focus on the fundamental principles that define the resolution and scope of single cell 

transcriptome and epigenome sequencing; recent reviews provide more technical 

introductions to specific technologies (Luecken and Theis, 2019; Rostom et al., 2017; Stuart 

and Satija, 2019; Zhu et al., 2020) and applications to neurobiology (Fishell and Kepecs, 

2019; Huang and Paul, 2019; Tosches and Laurent, 2019; Zeng and Sanes, 2017). We also 

describe key computational techniques for analyzing and interpreting single cell sequencing 

data. Although some bioinformatic methods may be unfamiliar to neuroscientists, many 

computational techniques used for electrophysiology and microscopy data also play a 

prominent role in single-cell sequencing. Indeed, computational neuroscience has a distinct 

perspective on understanding complex biological datasets compared with the field of 

bioinformatics (De Schutter, 2008), emphasizing synthetic modeling rather than hypothesis 

testing. We believe that this neuroscience perspective can inspire new ways of understanding 

the rich information provided by single cell genomics.

1. Single cell sequencing samples the cell’s information-bearing 

molecules

Until recently, analysis of RNA and DNA in brain tissue was largely limited to bulk assays 

of the average composition of a tissue. By making a molecular smoothie, bulk assays destroy 

the association of transcripts or DNA modifications with individual cells and may fail to 

detect rare cell type signatures. Gene expression signatures of one cell type may be masked 

by complementary patterns in other cell types. Techniques for purifying whole cells or 

nuclei from specific cell populations can partially overcome these limitations. Yet, these 

require highly selective RNA or protein markers or genetic tools (e.g. mouse CRE lines), 

and can only be applied to previously characterized cell types.

Single-cell sequencing technologies measure RNA or DNA from individual cells without the 

need for selective cell purification. These techniques can be summarized by three 

characteristics: scope (number of cells), granularity (number of genes or epigenetic 

features), and spatial resolution (Fig. 1b). Moreover, single cell technologies measure 

different types of RNA transcripts or epigenetic modifications. Although single cell 

sequencing does not require cell purification, it does rely on high-quality primary or frozen 

tissue obtained from careful expert dissection of neuroanatomical regions.
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The transcriptome of mammalian cells consists of 105–106 individual messenger RNA 

(mRNA) molecules (Shapiro et al., 2013). These messages represent some 4,000–12,000 

different genes per cell (Yao et al., 2020a), including many distinct mRNA isoforms 

encoding multiple variants of each gene. Although post-transcriptional regulation is 

complex, the number of mRNA transcripts in a cell correlates with the abundance of the 

encoded protein and is thus a signature of cell identity and function (Liu et al., 2016).

Single cell epigenome assays measure DNA methylation, chromatin accessibility and/or 

chromatin conformation. These chemical and physical modifications of DNA are established 

during development and regulate gene expression through the lifespan. Whereas the 

transcriptome is a snapshot of gene expression, reflecting in part the cell’s state and the 

impact of neural activity around the time of tissue collection (Hrvatin et al., 2018), 

epigenetic marks include both transient and stable modifications of long-lived chromatin 

components. Epigenomic data also reveal cis-regulatory elements such as enhancers that 

establish and maintain cell type-specific gene expression.

Together, single cell transcriptome and epigenome sequencing constitute a powerful toolkit 

for understanding the brain’s cellular components, enabling functional studies of the roles of 

specific cell types in healthy and diseased brains.

2. Single cell transcriptomes

Single-cell mRNA sequencing (scRNA-seq) initiated a new era of molecular studies of brain 

cell types (Darmanis et al., 2015; Macosko et al., 2015; Tasic et al., 2016; Zeisel et al., 

2015). Like bulk RNA-Seq, scRNA-Seq performs reverse transcription using mRNA 

molecules as the template to synthesize complementary DNA (cDNA). Next-generation 

sequencing (NGS) libraries are generated by amplifying cDNA, followed by fragmentation, 

additional amplification, and quantification by NGS.

2a. Plates and droplets

Individual cells or nuclei can be physically separated using plate-based cell sorting or 

droplets. Plate-based methods distribute individual cells or groups of cells into wells using 

fluorescence-activated cell sorting (FACS) (Tasic et al., 2016) or microscope-guided 

capillary pipettes (Paul et al., 2017). Droplet-based methods segregate cells into individual 

aqueous compartments in a lipid suspension (Macosko et al., 2015). Cells are lysed within 

droplets and mRNA molecules are reverse-transcribed and tagged with oligonucleotide 

barcodes that uniquely identify the cell. Droplet-based scRNA-seq is efficient due to the 

small reaction volume, and rapidly processes thousands of cells by continuous flow in 

microfluidic devices.

An alternative to physically isolating cells is multiplexed sequencing of cDNA indexed with 

unique combinations of cell-specific barcodes (Rosenberg et al., 2018). Groups of cells are 

distributed into wells and tagged with well-specific barcodes, then pooled, re-split, and 

tagged with another barcode. By repeatedly pooling, splitting and tagging, cells acquire 

random barcode combinations. The number of cells per pool can be adjusted to ensure most 

cells have a unique barcode combination with high probability. The cDNA from all cells is 
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then pooled and sequenced, and data computationally demultiplexed. Combinatorial 

indexing and droplet-based methods have higher throughput and lower cost per cell, whereas 

plate-based methods provide more sensitive gene detection and are more customizable 

(Ziegenhain et al., 2017).

Importantly, these strategies differ in how they quantify mRNA abundance (Fig. 2A). 

Droplet-based scRNA-Seq methods count the 5’ or 3’ ends of mRNA molecules, 

incorporating unique molecular identifiers (UMIs) to avoid double-counting PCR products 

of the same molecule (Kivioja et al., 2011). These data do not distinguish mRNA isoforms 

that share the same promoter (5’ end) or transcription termination site (3’ end). By contrast, 

plate-based strategies can sequence fragments of full-length transcripts, including internal 

fragments covering all expressed exons and splice junctions (Gupta et al., 2018; Tasic et al., 

2016). These methods have shown that isoform usage differs between brain cell types. By 

combining full-transcript sequencing with UMIs, thousands of unique mRNA molecules can 

be reconstructed in single cells (Hagemann-Jensen et al., 2020).

2b. Single cells and single nuclei

The intricate network of dendrites, axons and glial processes in brain tissues present 

multiple challenges for scRNA-seq. Distal cellular compartments contain a substantial 

population of mRNAs, which enable dendritic protein synthesis (Cajigas et al., 2012; Tushev 

et al., 2018). Yet, these transcripts are largely lost following dissection and cell dissociation. 

Because all transcripts originate in the nucleus, scRNA-seq can still capture newly 

synthesized dendritic and axonal mRNAs in the nucleus or soma before transport to distal 

cell compartments.

Moreover, scRNA-seq cannot be applied to frozen human post-mortem brain tissue, since 

cell membranes are ruptured during freezing. An alternative is to isolate and sequence RNA 

from single nuclei (snRNA-seq) (Grindberg et al., 2013). Nuclear transcripts comprise ~20%

−50% of all the RNA in the cell (Bakken et al., 2018), including immature and unspliced 

RNA molecules containing introns (Fig. 2a). Despite this, snRNA-seq provides robust 

markers of brain cell types (Ding et al., 2020; Lake et al., 2017) with resolution comparable 

to scRNA-seq (Bakken et al., 2018; Yao et al., 2020a). Dendritic transcripts may be 

separately detected in single cells by manual microdissection (Middleton et al., 2019).

snRNA-Seq data may be less affected by some technical artifacts than scRNA-Seq. Because 

nuclei are relatively uniform in size and morphology, snRNA-seq is more likely than 

scRNA-seq to capture an unbiased sample of all cell types. Some cells, such as cortical layer 

5 pyramidal tract neurons, may be more likely to die during cell isolation for scRNA-seq 

(Tasic et al., 2018). Moreover, snRNA-seq is less susceptible to spurious activation of gene 

expression during tissue dissection and cell isolation (Lacar et al., 2016), although this can 

be mitigated with a transcription inhibitor (Wu et al., 2017).

The technical differences between sc and snRNA-seq call for care in data analysis and 

interpretation. Differential expression in sc vs. snRNA data may reflect the localization of 

transcripts, such as the highly abundant nuclear-localized non-coding RNA Malat1 that 

regulates RNA splicing among other functions (Bakken et al., 2018; Yao et al., 2020a). 
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While scRNA-seq data are analyzed by mapping sequenced fragments to exons, snRNA-seq 

data analysis should also consider the abundance of intronic reads from pre-mRNA, which 

may account for >75% of fragments (Bakken et al., 2018; Gaidatzis et al., 2015). Indeed, the 

distinct information in exonic vs. intronic reads can be used to estimate changes in mRNA 

expression over time (Bergen et al., 2020; La Manno et al., 2018).

2c. Neuroscience applications of single cell transcriptomics

Cell type discovery and characterization—Single cell technologies have transformed 

our understanding of the diversity of brain cell types. Dozens of morphologically and 

functionally distinct brain cell types have been recognized, but traditional methods of 

microscopy and physiology have limited scope for comprehensively characterizing cell types 

in mammalian brain circuits with millions of cells. Recent scRNA-seq studies sampled 

>20,000–750,000 cells in individual mouse brain regions (Kozareva et al., 2020; Shekhar et 

al., 2016; Tasic et al., 2018; Yao et al., 2020a). Broader surveys have covered multiple 

regions in both the central and peripheral nervous systems of mouse (Marques et al., 2016; 

Saunders et al., 2018; Zeisel et al., 2018) with as many as 1.2 million cells comprising 379 

cell types (Yao et al., 2020b). These are not yet comprehensive, and additional coverage is 

needed especially in subcortical regions. The largest individual sc/snRNA-seq datasets 

represent ~1% of the ~100 million neuronal and glial cells in the adult mouse brain.

The human brain, with ~1000 times more neuronal cells than the mouse brain (Azevedo et 

al., 2009), is more daunting to sample comprehensively. Single-nucleus transcriptomes from 

multiple regions of the human brain have established cell type taxonomies (Fig. 2B–D) 

(Darmanis et al., 2015; Habib et al., 2017; Lake et al., 2016). Comparing human with mouse 

and non-human primates reveals both conserved and distinct cell type signatures, including 

species-specific differences in the proportions of cell populations and in gene expression 

within homologous cell classes and types (Bakken et al., 2020; Hodge et al., 2019; Krienen 

et al., 2020). sc/snRNA-seq also provides insight into the diversity of glial cells including 

the oligodendrocyte lineage (Marques et al., 2016) and functional states of microglia 

(Masuda et al., 2019).

A recurring theme from single-cell studies of the brain is the greater diversity of 

glutamatergic vs. GABAergic neurons across brain regions (Tasic et al., 2018; Yao et al., 

2020b; Zeisel et al., 2015) or species (Bakken et al., 2020; Lake et al., 2016). This is also 

supported by single cell DNA methylation data (see below) (Luo et al., 2017). Cortical 

excitatory neuron transcriptomes may be more heterogeneous due to their developmental 

origin spread across the dorsal telencephalon, compared with GABAergic populations that 

originate in the ganglionic eminences and migrate to cortex (Mayer et al., 2018).

scRNA-Seq has also been applied in non-mammalian brains, illuminating basic questions 

about development, cell regulation and aging. The transcriptomes of Drosophila olfactory 

projection neurons targeting different glomeruli are distinct during development but very 

similar in the adult (Li et al., 2017). Aging dramatically reduces the amount of RNA in 

Drosophila brain cells (Davie et al., 2018). Correlations in gene expression across 52 

transcriptomic cell types in the Drosophila optic lobe support a model of phenotypic 

convergence, in which multiple transcription factors regulate the same set of effector genes 
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(Konstantinides et al., 2018). In the zebrafish brain, distinct neural stem cell populations 

were differentially affected by amyloid toxicity in an Alzheimer’s disease model (Cosacak et 

al., 2019).

Development and plasticity—scRNA-seq reveals how neuronal and glial cell type 

identities emerge in developing mouse (Mayer et al., 2018; Telley et al., 2019; Tiklová et al., 

2019) and human brain (Li et al., 2018; Nowakowski et al., 2017; Pollen et al., 2015), and 

even across whole organisms (Farrell et al., 2018). sc/snRNA-seq is particularly suited to 

studying brain development, because critical stem cell and neural progenitor populations 

may be transient and difficult to isolate without prior knowledge of specific molecular 

markers. scRNA-seq at multiple timepoints can reconstruct developmental trajectories, 

revealing the dynamics of transcription factors and downstream effectors regulating 

specialized neural populations (Di Bella et al., 2020; La Manno et al., 2020; Zhong et al., 

2018, 2020). Differentiation trajectories of newborn neurons and oligodendrocytes in adults 

can also be reconstructed (Habib et al., 2016; Marques et al., 2016). An exciting frontier is 

the combination of sc/snRNA-seq with lineage tracing by artificial labeling (Raj et al., 2018) 

or using natural somatic mutations shared by cells within a lineage (Huang et al., 2020).

In addition to developmental dynamics, changes in gene expression due to neural activity 

and plasticity can be assessed by sn/scRNA-seq, as shown for visual cortical neurons 

following light exposure (Hrvatin et al., 2018). Moreover, analyzing activity-regulated genes 

can identify active cells (Hu et al., 2017). Given the key role of activity- and calcium 

signaling-dependent gene regulation in synaptic plasticity, single cell techniques will be 

essential for understanding the cell type-specific context of transcriptome dynamics.

The role of cell types in disease—Transcriptomic signatures of disease can be studied 

by snRNA-seq applied to post-mortem brain tissue from patients. By performing snRNA-seq 

in >80,000 single nuclei from 48 individuals with Alzheimer’s disease (AD) pathology 

(Mathys et al., 2019), many more differentially expressed (DE) genes were detected in 

individual cell types than bulk tissue. In particular, gene dysregulation in glial cells was 

detected in snRNA-seq, but not bulk RNA-seq, due to the relatively low contribution of glia 

to the total RNA in the tissue. snRNA-seq has been applied to brain tissue from patients with 

disorders including AD (Grubman et al., 2019; Zhou et al., 2020), major depression (Nagy et 

al., 2020), autism (Velmeshev et al., 2019), Rett syndrome (Renthal et al., 2018) and 

multiple sclerosis (Schirmer et al., 2019).

Notably, disease studies have focused on a relatively modest number of transcriptomic or 

epigenomic clusters corresponding to cell classes, not individual types. Dissecting the 

contributions of fine-grained cell types to disease is important but challenging, as biases in 

the computational assignment of single cells to clusters could significantly impact the 

findings.

3. Single cell epigenomes

Stable patterns of gene expression are maintained partly through epigenetic modifications of 

DNA, such as genomic cytosine methylation, and of histone proteins. These marks impact 
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gene expression by directing the binding of transcription factor proteins (TF) to specific 

genomic regions, which can enhancer or reduce transcription of nearby or distal genes. 

Whereas individual mRNA molecules are relatively transient messengers with a half-life on 

the order of minutes to hours (Chen et al., 2008), covalent modifications of DNA and some 

histone proteins in post-mitotic neurons can persist for months to years (Maze et al., 2015). 

Yet, parts of the chromatin landscape can also be flexibly reconfigured following neuronal 

activity (Su et al., 2017). The dynamic regulation of the epigenome across brain cell types 

and through the lifespan establishes and maintains cell identity, and may support plasticity 

and behavior. Single cell epigenomes complement transcriptomes, providing insight into cell 

type-specific gene expression regulation.

Like snRNA-seq, epigenomic assays can be applied to dissociated nuclei obtained from 

frozen and archived post-mortem tissue. These methods assess the whole genome, including 

non-protein coding regions that comprise over 95% of the genome. Non-coding regions 

contain millions of candidate cis-regulatory elements (cCREs) that influence gene 

expression, including promoters and enhancers (Nord and West, 2019; Roadmap 

Epigenomics Consortium et al., 2015). cCREs are defined by open chromatin, low levels of 

DNA methylation, and physical interactions with gene promoters via the 3-dimensional 

conformation of DNA in the nucleus.

Identifying cell type-specific enhancers can guide development of viral vectors and 

transgenic lines targeting cell types for functional studies (Graybuck et al., 2019; Hrvatin et 

al., 2019). In the future, it will be interesting to investigate dynamic regulation of the 

epigenome, including developmental trajectories (Trevino et al., 2020) and neuronal activity 

dependent modifications of the genome during learning and memory (Day et al., 2013), at 

the single cell level.

3a. DNA methylation

In mammals, genomic cytosine can be covalently modified by a methyl group. 

Methylcytosine (mC) is frequently found at CG dinucleotides, where it often correlates with 

transcriptional repression. DNA methylation in brain cells has two unique features compared 

with other cells (Kinde et al., 2015). First, neurons have high levels of 

hydroxymethylcytosine (hmC), a derivative of mC that may have distinct functional roles 

(Kriaucionis and Heintz, 2009; Mellén et al., 2017). Second, neurons accumulate substantial 

mC at non-CG sites, primarily CA and CT dinucleotides, during postnatal development 

(Lister et al., 2013; Xie et al., 2012). The pattern of DNA mC and hmC at nearly 1 billion 

CG and non-CG sites throughout the genome is a rich signature of cell type-specific gene 

regulation in neurons and glia (Kozlenkov et al., 2018; Mo et al., 2015).

DNA methylation can be measured in single cells by plate-based sorting of individual 

nuclei, followed by bisulfite conversion of DNA and multiplexed sequencing (Luo et al., 

2017; Mulqueen et al., 2018; Smallwood et al., 2014), capturing up to ~30% of the genome 

per cell (Luo et al., 2018a). Sodium bisulfite treatment converts cytosine to uracil, while 

methylcytosine is protected from conversion; sequencing the bisulfite-converted DNA 

fragments reveals the methylation status at each cytosine position. This technique produced 

over 110,000 single cell DNA methylomes from 45 mouse brain regions (Liu et al., 2020), 
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identifying ~161 fine-grained neuronal cell types across the cortex, striatum, and olfactory 

areas. Each neuron population has unique DNA methylation signatures at gene bodies, 

which largely correlate with gene expression, as well as thousands of small (100–500 base-

pair) differentially methylated regions (DMRs) which define cCREs (Fig. 3b). Droplet-based 

bisulfite chemistry could potentially increase the efficiency of single cell DNA methylome 

profiling, but the high cost of whole-genome compared with transcriptome sequencing 

would remain a factor limiting the application of this technique to substantially larger 

numbers of cells. In the future, single cell analysis of hydroxymethylation will elucidate the 

relative amount of mC and hmC in neuronal cell types (Mooijman et al., 2016).

3b. Mapping chromatin accessibility in 1D

Just as genes are basic units of transcriptome analysis, cCREs are a foundation for analysis 

of the epigenome. cCREs can be defined by the displacement of nucleosomes due to the 

binding of transcription factor proteins, forming regions of accessible chromatin. The single 

nucleus assay of transposase-accessible chromatin (snATAC-Seq) tags, captures and maps 

such regions using the Tn5 transposase enzyme (Buenrostro et al., 2015; Cusanovich et al., 

2015).

Like sc/snRNA-seq, snATAC-seq can use droplets or combinatorial indexing (Cusanovich et 

al., 2015; Preissl et al., 2018). Combinatorial indexing snATAC-seq can be applied to frozen 

brain tissue (Preissl et al., 2018), and scales to >104 cells per experiment (Li et al., 2020). 

Notably, of all the distal cCREs that can be detected in a particular cell type, snATAC-seq 

captures around ~2–3% in each cell (Li et al., 2020; Preissl et al., 2018). This sparse 

coverage could reflect the sensitivity of the assay, and/or heterogeneous accessibility across 

individual cells of the same type.

Despite its sparseness, snATAC-seq data reliably distinguish fine-grained neuron and glia 

types. For example, 160 cell types were identified using snATAC with a median of ~5,000 

unique sequenced fragments per cell in >800,000 mouse brain cells (Li et al., 2020). A total 

of ~500,000 accessible regions (cCREs) were found across all cell types. Alternatively, 

droplets can be used to physically separate nuclei for barcoding after tagging open 

chromatin with Tn5 transposase in bulk, yielding up to a median of ~34,000 unique 

sequenced fragments per cell (Lareau et al., 2019).

Whereas sc/snRNA-seq data are quantified using known genes and transcripts, regions of 

accessible chromatin are distributed throughout the genome and generally not known a 
priori. Many types of features have been used to quantify snATAC data, including gene 

promoters, putative enhancers, or combinations of regions sharing common DNA sequence 

motifs (Bravo González-Blas et al., 2019; Cusanovich et al., 2018; Fang et al., 2019; Schep 

et al., 2017). Each method is sensitive to different biological signals and is affected 

differently by the noise introduced by sampling a sparse set of fragments. Systematic 

benchmarking and comparison of computational analysis methods is important to achieve 

the maximum possible resolution (Chen et al., 2019a).
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3c. Mapping chromatin conformation in 3D

CREs and gene promoters interact via the 3-dimensional organization of chromatin loops 

and domains (Fig. 3D). Single-cell assays of 3D chromatin conformation, closely related to 

Hi-C used in bulk tissue (Lieberman-Aiden et al., 2009), identify pairs of interacting regions 

by cross-linking, fragmenting, and re-ligating DNA fragments that are in physical proximity. 

Sequencing the resulting libraries detects chimeric DNA fragments that contain sequences 

separated by long distances in the linear (1D) genome, but which are closely associated in 

3D, forming a contact matrix (Fig. 3C). A single-cell Hi-C study in neurons obtained ~1 

million contacts per cell, illuminating the development of inverted chromatin in rod 

photoreceptor cells and the segregation of olfactory receptor genes in olfactory sensory 

neurons (Tan et al., 2019).

A challenge for 3D chromatin assays is the large space of possible pairwise contacts among 

chromosomal locations. Even if a substantial portion of the genome could be captured in a 

single cell Hi-C assay, the resulting pairwise contact matrix would contain only a small 

fraction of the 3D contacts between genomic locations because each DNA fragment can 

only participate in one ligation event. Cluster analysis of single cell Hi-C data can identify 

groups of cells with similar chromatin organization (Zhou et al., 2019), but on its own it 

does not reliably distinguish cortical neuron types (Lee et al., 2019; Li et al., 2019a).

An alternative strategy uses thin (~0.2 μm) tissue slices, followed by laser-capture 

microdissection of single nuclei and sequencing fragments contained in the same section 

(Beagrie et al., 2017). This confirms differences in chromatin organization between broad 

neuron classes without proximity ligation, but it does not provide single cell resolution 

contact estimates (Winick-Ng et al., 2020).

3d. Applications of single cell epigenomics

Dissecting neuronal gene regulatory networks—Single cell epigenomes can be used 

to characterize the networks of transcription factors (TFs) and cCREs that establish and 

maintain brain cell identity. DNA-binding TF proteins recognize specific sequences, or 

motifs, typically 6–10 base pairs long. The TFs that regulate specific brain cell types can be 

identified by detecting enriched sequences within cCREs, and comparing them with known 

TF binding motifs (Lake et al., 2018; Li et al., 2020; Liu et al., 2020; Luo et al., 2017; 

Preissl et al., 2018). This approach was applied to integrated multimodal (transcriptomic and 

epigenomic) data from mouse motor cortex, revealing a role for the TF Rfx3 in regulating 

Layer 2/3 excitatory neurons (Yao et al., 2020a). High precision analysis of the exact 

location of TF binding can be performed by detecting so-called footprints, i.e. characteristic 

chromatin accessibility patterns at the binding site (Li et al., 2019b; Mo et al., 2015). 

However, footprint analysis has so far been limited to bulk ATAC-seq.

Linking genetic elements with disease risk—Although genome-wide association 

studies (GWAS) have identified risk loci for some neurological and psychiatric disorders, the 

selective vulnerability of specific brain cell types in each disease remains largely unknown 

(Wang et al., 2018a). Partitioned heritability analysis using cell type-specific transcriptomes 

or epigenomes can identify cell types whose active genes are enriched near GWAS risk loci, 
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suggesting a potential direct or indirect role in the disease (Fig. 3F) (Calderon et al., 2017). 

This does not require molecular data from patient tissue samples, instead using sc/snRNA-

seq from healthy subjects together with GWAS information. Partitioned heritability analysis 

can also use epigenomic data to link genetic risk variants with cell type-specific cCREs 

(Lake et al., 2018; Luo et al., 2019).

4. Single-cell spatial transcriptomics

sc/snRNA-seq disrupts tissues to isolate cells, sacrificing the spatial context of neural 

circuits. Brain cells migrate to unique laminar and areal positions before birth, which 

constrain their connectivity. For neurons, spatial context and connectivity are essential to cell 

identity and function.

Two approaches have emerged to provide spatially resolved single-cell transcriptomes (Fig. 

1B). Spatially resolved sequencing uses slides pre-patterned with beads carrying unique 

DNA barcodes to tag mRNA molecules based on their location in a brain slice, enabling 

whole-transcriptome sequencing with ~10 μm spatial resolution (Rodriques et al., 2019; 

Ståhl et al., 2016). Assigning transcripts to individual cells requires finer spatial resolution, 

below ~1 μm, which can be achieved by optical imaging-based methods. Single molecule 

fluorescence in situ hybridization (smFISH) detects individual mRNA transcripts with high 

sensitivity using fluorescent oligonucleotide probes (Raj et al., 2008). Probes can be 

localized with diffraction-limited resolution of ~250 nm or larger, sufficient to assign 

transcripts within cell somata (Moffitt et al., 2018; Zhang et al., 2020a). Finer spatial 

resolution can be achieved by super-resolution imaging (Lubeck and Cai, 2012) or isotropic 

physical expansion of tissue prior to imaging (Chen et al., 2015a; Xia et al., 2019).

smFISH uses pre-defined probes to detect specific transcripts rather than directly sequencing 

mRNA molecules. To achieve broad transcriptome coverage of hundreds to thousands of 

transcripts, smFISH may be combined with barcoding strategies and multiple rounds of 

optical decoding (Chen et al., 2015b; Wang et al., 2018b; Zhang et al., 2020a). Transcripts 

are identified by unique combinations of probes. Error-correction can be achieved with 

redundant probes. The number of detectable transcripts scales exponentially with the number 

of probes. While most studies in brain have used panels of several hundred genes (Kim et 

al., 2019a; Moffitt et al., 2018; Zhang et al., 2020a), up to 10,000 transcripts have been 

imaged in cell lines (Xia et al., 2019) and in mouse brain (Eng et al., 2019). These methods 

detect up to 3,300 genes per cell in mouse brain (Eng et al., 2019), ~3-fold less than the 

highest-resolution sc/snRNA-seq (Yao et al., 2020a).

Spatial transcriptomics can dissect neural circuits with complex anatomical organization, 

such as specific subdivisions of mouse hypothalamus that are critical for social and 

reproductive behaviors (Kim et al., 2019b; Moffitt et al., 2018). Spatial maps of ~1 million 

cells in the hypothalamic preoptic region revealed over 70 molecularly distinct cell types 

(Moffitt et al., 2018). Notably, fine-grained cell type resolution was achieved despite probing 

only 155 genes, suggesting that neuron types can often be defined by a modest set of 

judiciously chosen mRNA targets.
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While these methods have clear advantages for interrogating brain cells in their spatial 

context, they currently have key limitations compared with dissociated single cell 

transcriptome sequencing. First, smFISH requires designing probes to query a predefined list 

of genes. Marker gene selection and probe design are critical, and the data cannot provide 

information about genes which are not pre-selected for study. Second, it remains challenging 

to unambiguously assign transcripts to single cells. For Slide-seq (Rodriques et al., 2019), 

this is limited by spatial resolution (~10 μm), while smFISH based methods use 

computational image processing to define cell boundaries in dense brain tissue. Because 

many neuronal mRNAs localize to distal dendrites and axons, they cannot be assigned to a 

cell. Third, smFISH methods may require complex experimental set up and time-consuming 

imaging, a challenge for large tissue volumes such as whole mammalian brains.

5. Multi-omics: Single cells, multiple data modalities

Fully characterizing cell identity requires jointly measuring gene expression and epigenetic 

regulation in the same cell. Although single cell epigenetic data can identify cCREs and link 

them with genes via chromatin looping in 3D, they cannot establish whether an active cCRE 

drives gene expression. For this, RNA measurements must be obtained from the same cell. 

Single cell transcriptome and epigenome datasets can be computationally integrated (see 

below) (Butler et al., 2018; Haghverdi et al., 2018; Hie et al., 2019; Stuart et al., 2019; 

Welch et al., 2019), but empirical confirmation requires multiomic sequencing in single 

cells. Moreover, functional validation of cell types identified by single cell sequencing 

requires techniques that combine sequencing with physiology, connectivity, and/or 

morphology.

5a. Multimodal sequencing in single cells

Multiomic sequencing combines DNA and RNA measurements in single cells. As many as 

24 distinct multiomic techniques have been published since 2015, covering 11 combinations 

of 7 modalities (Zhu et al., 2020). Here we focus on the main techniques that have been 

applied in brain tissue to date.

An important class of multiomic methods combines transcriptome (sc/snRNA-seq) and 

chromatin accessibility (snATAC-seq) measurements in the same cell (Cao et al., 2018; Chen 

et al., 2019b; Zhu et al., 2019). Tagging open chromatin with transposase and reverse 

transcription of mRNA can be performed sequentially, in either order, without damaging 

nuclear structure. Combinatorial indexing or droplet-based techniques can be used to 

achieve high throughput. Paired snRNA-seq and snATAC-seq of over 15,000 cells in fetal 

and adult mouse cortex revealed cell type-specific dynamic regulation of promoter 

accessibility during brain development (Chen et al., 2019b; Zhu et al., 2019). These assays 

currently provide ~1000-fold less RNA coverage than state-of-the-art sc/snRNA-seq from 

fresh brain tissue, with 400–4,000 RNA-seq reads per cell and 1,000–6,000 ATAC-seq reads 

(Fig. 1b). As a result, high-throughput multi-omics studies in mouse cerebral cortex 

identified 9–22 cell types (Chen et al., 2019b; Zhu et al., 2019), compared with over 100 cell 

types found using scRNA-seq (Tasic et al., 2018; Yao et al., 2020a, 2020b).
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Multiomic sequencing can also assay the transcriptome and DNA methylome from the same 

cell (Angermueller et al., 2016; Hou et al., 2016; Hu et al., 2016; Luo et al., 2018b). These 

methods have been applied to modest numbers of cells (up to several thousand) due to the 

large amount of sequencing required to sample DNA methylation genome-wide. Yet, the 

depth of RNA and DNA coverage are comparable to scRNA-seq or single cell DNA 

methylome sequencing, respectively. The methods can be extended to measure open 

chromatin using single cell nucleosome occupancy and methylation sequencing (NOME-

seq) (Pott, 2017), as recently demonstrated in human brain samples (Luo et al., 2019).

Finally, DNA methylomes can be combined with 3D chromatin conformation by bisulfite 

conversion of chimeric DNA fragments from proximity ligation (Lee et al., 2019; Li et al., 

2019a). Each sequenced read does double duty, providing contact information via the 

location of mapped read ends together with DNA methylation information about cytosines 

within the fragments. This was applied to over 4,000 neurons in human prefrontal cortex, 

generating deep coverage with 1.2 million reads per cell (Lee et al., 2019). The chromatin 

conformation data from single cells distinguish major cell classes such as neurons vs. 

astrocytes, but not neuron subtypes. Multiomic sequencing solves this problem by clustering 

cells using high resolution DNA methylation information, followed by separate analysis of 

the pooled (pseudo-bulk) chromatin conformation profiles from each cell type. The authors 

found chromatin loops connecting the excitatory-neuron specific transcription factor gene 

SATB2 with a nearby non-coding RNA in excitatory, but not inhibitory, neurons (Lee et al., 

2019).

5b. Combining single cell transcriptomes with physiology and morphology

Single cell sequencing and neuronal physiology can be directly linked by performing whole-

cell patch recordings in brain slices, followed by cytosol extraction through the patch pipette 

for transcriptome sequencing (patch-seq) (Cadwell et al., 2016; Fuzik et al., 2016). Cells can 

be filled with biocytin following patch recording, for subsequent imaging and morphological 

reconstruction. Compared with sc/snRNA-seq, patch-seq is laborious and requires 

individually characterizing cells by patch-clamp recording followed by labeling, imaging 

and scRNA sequencing. Despite this, it was applied to 1,300 cells in the mouse primary 

motor cortex, identifying >70 cell types with their transcriptomic and morpho-electrical 

properties (Scala et al., 2020). Another study profiled 3,700 GABAergic neurons in mouse 

visual cortex (Gouwens et al., 2020), showing that inhibitory interneurons in specific 

transcriptomic classes have distinct laminar distributions and electrophysiological properties. 

Conversely this study also highlights the difficulty in identifying a one-to-one 

correspondence between morpho-electric and transcriptomic cell types.

5c. Combining single cell sequencing with connectivity

By infecting axon terminals in a defined brain region with a retrograde virus, the cell bodies 

of source neurons projecting to that region can be labeled, sorted, and their transcriptomes 

measured by sc/snRNA-seq (Retro-seq) (Tasic et al., 2018). Retro-seq data can be jointly 

analyzed with other sc/snRNA-seq datasets to add axon projection information onto 

transcriptomic signatures. This approach helped identify sub-populations of layer 5 

pyramidal-tract neurons in the mouse motor cortex with distinct projections in the thalamus 
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and medulla, and different roles in motor control (Economo et al., 2018). Retro-seq can also 

be used with single cell DNA methylation to link projections with gene regulatory signatures 

(Zhang et al., 2020b). Retrograde labeling in combination with single-cell spatial 

transcriptomics provides the laminar and regional location of neurons with specific 

projections (Zhang et al., 2020a). This showed that mouse motor cortical intratalencephalic-

projecting (IT) neurons form a many-to-many projection pattern: cells of the same 

transcriptomic type project to multiple cortical regions, while those regions receive input 

from multiple cell types (Zhang et al., 2020a). Although transcriptomic or epigenomic cell 

types often align with cell populations defined by axonal projections, this is not always the 

case. For example, Retro-seq analysis of mouse primary visual cortical pyramidal cells 

projecting to different higher-order visual areas form a continuous transcriptomic 

population, although some differentially expressed genes were detected (Kim et al., 2020). 

Likewise, uniform transcriptomic cell types in the ventromedial nucleus of the hypothalamus 

comprise mixed populations with distinct projection targets (Kim et al., 2019b).

Individual neurons can make multiple collateral projections that may not be captured by 

labeling individual targets, as in Retro-seq. An alternative strategy uses short oligonucleotide 

barcodes to detect projections from individual neurons to multiple regions (MAPseq) 

(Kebschull et al., 2016). Neurons in a starting region are labeled with a library of barcoded 

Sindbis viruses, followed by microdissection of small volumes from putative target regions 

and sequencing of the barcodes. MAPseq can be combined with in situ barcode sequencing 

in the source region to obtain spatial and laminar information about the projection cells, and 

with FISH to assess expression of marker genes (Chen et al., 2019c). Further development of 

these methods, e.g. by combining single cell transcriptome sequencing with multiplex 

projection labeling, will help distill the relationship between transcriptomic and anatomic 

signatures of neuron types.

6. Computational analysis of single cell sequencing data

Single cell sequencing datasets have thousands of features (e.g. genes, or genomic bins) 

measured across thousands to millions of single cells. Analysing these data requires 

sophisticated computational procedures, and analysis pipelines can significantly impact the 

findings. Open source software packages allow neurobiologists to apply sophisticated 

analytic strategies (Butler et al., 2018; Kharchenko et al., 2014; Stuart et al., 2019; Wolf et 

al., 2018). Here we outline analysis steps that are common to many analysis workflows, 

emphasizing the conceptual foundations. More technical details can be found in recent 

reviews (Efremova and Teichmann, 2020; Luecken and Theis, 2019).

1. Quality control, mapping and quantification. The first step in analyzing sc/

snRNA-seq, snATAC-seq or single cell DNA methylation data is computational 

demultiplexing and alignment of sequenced reads from each cell with a reference 

genome or transcriptome. At this stage, it is also important to remove low-quality 

cells or reads. Each single cell sequencing technology has its own potential 

pitfalls, but common themes include low library complexity due to inefficient 

RNA/DNA capture; contamination by high levels of mitochondrial RNA; or 
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incomplete bisulfite conversion for DNA methylation assays. In most cases, low-

quality cells can be removed by appropriate choice of thresholds.

Following quality control and quantification, transcriptome data can be 

represented as a table containing a row for each cell, and a column for each gene 

or transcript. The entries of the table describe the estimated abundance of each 

gene. Single cell DNA methylation and ATAC-seq data have more diverse 

representations, which may include gene-oriented signatures (e.g. promoter 

chromatin accessibility or gene body DNA methylation) or non-gene signatures 

(e.g. accessibility or methylation in genomic bins).

2. Feature selection and dimensionality reduction. Gene expression and 

epigenomic measurements define high-dimensional feature spaces, where the 

data dimension is the number of quantified genes or features. However, 

correlations among the features reduce the intrinsic data dimensionality, i.e. the 

number of independent parameters needed to capture the meaningful biological 

variability. Dimensionality reduction removes noise and simplifies subsequent 

analysis (Sun et al., 2019). First, features with little detectable expression or low 

variance across cells are removed. Next, linear projection, e.g. using principal 

component analysis (PCA), reduces the dimension from several thousand to 

~50–100 features. The exact number of PCs to be retained is an unconstrained 

parameter, but in practice results may not be highly sensitive to this choice.

3. Reducing data sparseness. Single cell data are often sparse: genes which are 

expressed in a cell may be missed due to random sampling in sc/snRNA-seq, 

while snATAC-seq captures only a fraction of all regions of accessible chromatin 

in each cell. Pre-processing by data diffusion can help to combat sparseness and 

may improve visualization and cluster analysis (van Dijk et al., 2018).

4. Doublets. A common pitfall for single cell transcriptome and epigenome assays 

is the potential for incorrectly combining information from two or more cells, 

called doublets. This can occur due to physical association of cells that are 

captured in the same droplet or well. Doublets can also occur due to barcode 

collisions in combinatorial indexing experiments, in which multiple cells acquire 

the same combination of index barcodes by chance. Some doublet events can be 

removed by computational methods that detect signatures of apparent hybrid 

gene expression (Wolock et al., 2019). Although computational doublet removal 

may reduce the extent of contamination, it should be treated with caution when 

the true number of cell types is not known. Ultimately, putative cell types 

described by single cell sequencing must be confirmed by alternative techniques, 

such as spatial transcriptomics, which may be less susceptible to doublets.

5. Visualization. Exploratory data visualization builds intuition about the structure 

of abstract, high-dimensional single cell sequencing data, and helps formulate 

hypotheses for subsequent formal statistical analysis. Useful visualizations 

embed cells in a 2- or 3-dimensional space, optimizing the layout of cells so that 

their mutual distances approximate the distances of the high-dimensional data. 

Nonlinear manifold learning and data embedding techniques, including tSNE, 
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UMAP and force-directed layout embeddings (McInnes et al., 2018), make 

different compromises to force the complex relationships between single cell 

feature vectors into a 2- or 3-dimensional layout. More sophisticated approaches 

using variational autoencoders have also been applied to single cell data (Eraslan 

et al., 2019; Lopez et al., 2018). Low-dimensional embeddings are always 

imperfect; they are distorted and non-unique representations of the high-

dimensional data. They should be used for exploration, but not hypothesis testing 

or drawing conclusions.

6. Discrete clusters and continuous latent factors. The simplest description of a 

single cell sequencing dataset is in terms of discrete clusters, or groups of cells 

with distinct molecular signatures. Clusters can often be arranged in a hierarchy, 

with groups of cells forming closely related sub-classes and classes (Zeng and 

Sanes, 2017). Clustering large-scale datasets with millions of cells can be 

accomplished with efficient community detection algorithms that optimize a 

modularity index (Traag et al., 2019). Yet, cluster analysis on its own does not 

provide evidence of the statistical reliability or biological reality of resulting cell 

types.

In addition to discrete clusters, cells may also differ along one or more 

continuous gradients. Continuous trajectories occur during brain development 

(Nowakowski et al., 2017) and in differentiating cell populations in the adult, 

such as oligodendrocyte lineage cells (Marques et al., 2016) or newborn granule 

cells in the dentate gyrus of the hippocampus (Habib et al., 2016). Trajectory or 

pseudotime estimation procedures seek to estimate the continuous relationships 

between single cells (Cao et al., 2019; Trapnell et al., 2014). Continuous 

gradients in post-mitotic neurons can reflect the spatial distribution of neurons 

across lamina or cortical regions, or graded functional properties (Liu et al., 

2020). Methods to distinguish continuous and discrete variation in neural 

populations are a focus of current research (Harris et al., 2018; Stanley et al., 

2020).

7. Computational integration of multiple datasets. Correlated transcriptomic and 

epigenomic signatures can allow computational methods to integrate independent 

datasets despite batch effects and systematic differences (Efremova and 

Teichmann, 2020). Parametric methods, such as approximate canonical 

correlation analysis (CCA) implemented by Seurat (Stuart et al., 2019) or non-

negative matrix factorization (NMF) (Welch et al., 2019), project cells from 

multiple datasets into a common, low-dimensional space where they can be 

directly compared, clustered, and analyzed. Non-parametric methods such as 

mutual nearest neighbors (MNN) can also link cells across datasets, without 

learning a linear or nonlinear embedding in a common space (Haghverdi et al., 

2018; Hie et al., 2019; Luo et al., 2019). These techniques link cells in one 

dataset with closely matching cells in another dataset, e.g. by selecting the cells 

with the most correlated gene-oriented signatures. A recent study integrated 9 

multimodal datasets from the mouse primary motor cortex, including 7 sc/
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snRNA-seq datasets as well as single cell DNA methylation and ATAC-seq data 

(Yao et al., 2020a).

8. Cluster validation. Analysis of the statistical significance and reproducibility of 

clusters can help to define an appropriate cluster resolution, providing objective 

criteria to resolve the classic tension between lumpers (who tend to combine 

things in groups) and splitters (who emphasize fine distinctions and granular 

categories). A stringent test of cell type replicability uses transcriptomic 

signatures of a cell type learned from one or more datasets to try to predict the 

identity of cells in an independent dataset, providing a statistical score (area 

under the ROC curve) that quantifies the match between clusters (Crow et al., 

2018). Using this approach, signatures of cardinal GABAergic neuron types 

defined by transgenic mouse lines were validated in independent scRNA-seq 

datasets (Paul et al., 2017). This approach also verified the replicability of over 

70 transcriptomic cell types in mouse primary motor cortex across 7 scRNA and 

snRNA-seq datasets (Yao et al., 2020a).

Epigenomic signatures can further validate cell type distinctions and help to 

dissect their molecular regulation. By cross-validation using independent genes 

for clustering and data integration followed by testing cluster validity on held-out 

gene sets, a systematic comparison of scRNA, snRNA, DNA methylation and 

open chromatin data validated the cross-modal identity of mouse cortical cell 

types (Yao et al., 2020a).

9. Downstream analysis. After clustering, a wide variety of analyses can be used 

to further explore and characterize single cell sequencing data. Differentially 

expressed genes between cell types, or across samples or conditions, can be 

identified with statistical procedures (Finak et al., 2015; Kharchenko et al., 

2014). Unfortunately, different computational methods diverge significantly in 

estimating differential expression (Soneson and Robinson, 2018), and techniques 

specifically designed for sc/snRNA-seq may not perform better than standard 

methods used for bulk RNA-seq (Wang et al., 2019).

Single cell epigenomic data can be used to identify cCREs by detecting snATAC-

seq peaks (Preissl et al., 2018), and/or differentially methylated regions (Luo et 

al., 2017). Moreover, snATAC-seq data can link cCREs and the genes they 

directly regulate (Pliner et al., 2018) (Fig. 3e). These data can be used as a 

starting point for analysis of gene regulatory networks, and for predicting cell 

type specific enhancers for use in viral targeting tools (Hrvatin et al., 2019; Mich 

et al., 2020).

7. Limitations, opportunities and outlook

Single cell sequencing is transforming many areas of biology, and the impact may be 

especially profound in neuroscience. The diversity of brain cell types and the complex 

regulation of cell identity and experience-dependent plasticity throughout the life of a 

neuron make single cell analysis essential for understanding brain circuits.
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Like any emerging technology, single cell sequencing has important limitations. Doublets, in 

which two or more cells are captured in a single well or droplet or tagged with the same 

barcode, can distort single cell datasets and create spurious hybrid cell types. Contamination 

of scRNA-seq libraries, e.g. by cytoplasmic RNA from other cells in the same tissue, can 

lead to false positive gene detection. False negatives, or dropouts, are an even greater 

concern, since the sampling strategy typically recovers only a fraction of the total RNA or 

DNA. Single cell techniques can also be affected by non-physiological transcription caused 

by tissue dissection and cell dissociation (Lacar et al., 2016; Wu et al., 2017).

A more fundamental limitation of single cell techniques is the need to destroy the cell in 

order to extract its molecular signatures for sequencing. Although multiomic and 

multimodal techniques can increase the information obtained per cell, these methods are 

inherently snapshots of the life of a cell and do not record the dynamic changes in neural 

regulation that are critical to brain function. Some dynamic information can be inferred by 

analyzing mature vs. immature RNA transcripts (La Manno et al., 2018), but bona fide 
measurements of transcriptome dynamics in single cells (Cao et al., 2020) would be valuable 

in the brain.

The complexity of single cell datasets is both an opportunity and a challenge. Sophisticated 

computational methods for clustering, visualization and analysis of single cell data provide 

rich insight into the function of cellular machines. However, different computational 

methods or parameter choices can lead to divergent results for the same dataset. Clustering 

procedures are notorious for their inconsistency and lack of robustness, leading to 

subjectivity in the description of single cell data in terms of cell types. Single cell studies 

must address this by transparently investigating and reporting how biological conclusions 

depend on analytic choices.

The greatest challenge is to unify information from single cell sequencing with functional 

and physiological measures of neuronal cell type identity. Although there is remarkable 

correspondence between cell types defined by transcriptomic, epigenomic, anatomical and 

morphological criteria, efforts to harmonize these data at the level of hundreds of fine-

grained brain cell types are still at an early stage.

As innovations in single cell technologies overcome these challenges, they are opening new 

frontiers for neuroscience research. Single cell sequencing is providing comprehensive, 

whole-brain analyses of the cellular components of brains in multiple species and across the 

stages of development. Techniques that link single cell sequencing with electrophysiology, 

morphology, and connectivity will profoundly change our understanding of the dimensions 

of neuronal diversity. Cross-species and developmental comparisons of brain cell types will 

transform our understanding of brain ontogeny and phylogeny, potentially leading to a 

detailed mechanistic understanding of the evolutionary relationships among neural 

populations (Arendt et al., 2016). Evolutionary conservation and divergence provide insight 

into the gene regulatory programs that were selected for their impact on cognitive function 

(Bakken et al., 2020; Hodge et al., 2019; Krienen et al., 2020). By combining single cell 

sequencing with techniques for activity-dependent labeling, neuroscientists will be able to 

link transcriptomes and epigenomes with the roles of specific cell types in behavior (Kim et 
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al., 2019b). Alongside the technical progress described here, we expect that new conceptual 

and theoretical frameworks will emerge to turn the enormous information from single cell 

sequencing into organized and systematic knowledge about brain cell ontogeny and 

function.
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Highlights:

• Single cell sequencing provides deep molecular information about neuronal 

and glial transcriptomes and epigenomes

• Multiple experimental strategies balance efficient high-throughput data 

collection with deep coverage of mRNA transcripts, DNA methylation, or 

open chromatin regions

• Multi-omic methods combine different data modalities in the same cell

• Techniques such as spatial transcriptomics and patch-seq provide functional 

and anatomical information in combination with molecular signatures
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Figure 1. 
Single cell sequencing modalities for neuroscience. (A) Transcriptome and epigenome 

signatures that can be assayed by single cell sequencing, alongside spatial context, 

connectivity, and physiology. (B) Comparison of single-cell molecular assays in terms of the 

number of cells (scope, x axis) and number of unique molecules characterized per cell 

(depth, y axis). Below: spatial resolution for imaging and spatial transcriptomics. Shaded 

boxes show the range of values achieved in recent single-cell studies of brain cells. The 

estimated number of cells in an adult human brain (Azevedo et al., 2009) or mouse brain 

(Erö et al., 2018), the typical size of a neuronal cell body (Zhang et al., 2020a), and the 

estimated number of mRNA molecules in a mammalian cell (Shapiro et al., 2013) are 

indicated for comparison.
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Figure 2. 
Single cell transcriptomics applications in neuroscience. (A) The mouse gene Tac1, 

encoding the neuropeptide precursor Tachykinin-1 which is a specific marker of a subset of 

MGE-derived GABAergic neurons in cortex (Yao et al., 2020a), has five isoforms with 

different promoters, exon usage, and end sites (black gene models). Schematic tracks 

illustrate full-length RNA-sequencing (red) or 3’-end tagging (blue). (B) Hierarchical 

clustering of cell types in human medial temporal gyrus adapted from (Hodge et al., 2019), 

focusing on medial ganglionic eminence (MGE)-derived GABAergic interneurons. Branches 

from other cell classes truncated to (double-slash). CGE: caudal ganglionic eminence. (C) A 

two-dimensional embedding of 2,260 single nucleus transcriptomes computed using 

Uniform Manifold Approximation and Projection (UMAP) (McInnes et al., 2018). Each 

point represents one cell, and the arrangement of cells is an approximate representation of 

their degree of similarity (nearby points) or difference (distant points). Points are colored 

according to the cell type clusters from (B) (arrows). Rare subpopulations of SST CHODL 
and Chandelier cells are circled. (D) Violin plots show expression of marker genes in MGE-

derived interneurons.
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Figure 3. 
Single cell epigenomics. (A) 2-dimensional embedding of MGE-derived inhibitory neurons 

profiled by DNA methylation (snmC-seq, (Luo et al., 2017)) and open chromatin (snATAC-

seq, 10x Genomics). (B) Genome browser tracks showing pseudo-bulk signals pooled from 

many single cells of the same cell type (PV-expressing inhibitory interneurons from mouse 

cortex) around the marker gene Lhx6, showing open chromatin (10x Genomics), CG and 

non-CG DNA methylation (Luo et al., 2017). (C) 3D chromatin conformation from sn-m3C-

seq of human frontal cortex VIP cells (Lee et al., 2019). Heatmap shows the number of 

contacts detected between pairs of genomic bins; red triangular blocks correspond to 

domains of frequent chromatin interactions. (D) Illustration of enhancer-gene interaction, in 

which a 3D chromatin loop brings an enhancer in physical proximity with a gene promoter. 

(E) Enhancer-gene interaction inferred from the correlation of chromatin accessibility across 

cell types. (F) Schematic illustration of partitioned heritability analysis. Top: Genome-wide 

association studies (GWAS) provide a statistical measure of genetic association with a 

disease (y-axis; higher points are more significant) for individual genetic variants (x-axis: 

genomic coordinate). Red dots/shaded regions are loci passing a stringent threshold for 
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genome-wide significance (p<5e-8). Bottom: Gene expression or accessible chromatin 

profiles in three cell types. Right: Enrichment of active gene expression or accessible 

chromatin near significant disease-associated variants indicates a potential vulnerability 

specifically in cell type 1.
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