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Formulation and in vitro evaluation 
of self‑nanoemulsifying liquisolid 
tablets of furosemide
Lena Dalal1,2*, Abdul Wahab Allaf2 & Hind El‑Zein1,2

Self-nanoemulsifying drug delivery systems (SNEDDS) were used to enhance the dissolution rate of 
furosemide as a model for class IV drugs and the system was solidified into liquisolid tablets. SNEDDS 
of furosemide contained 10% Castor oil, 60% Cremophor EL, and 30% PEG 400. The mean droplets 
size was 17.9 ± 4.5 nm. The theoretical model was used to calculate the amounts of the carrier (Avicel 
PH101) and coating materials (Aerosil 200) to prepare liquisolid powder. Carrier/coating materials 
ratio of 5/1 was used and Ludipress was added to the solid system, thus tablets with hardness of 
45 ± 2 N were obtained. Liquisolid tablets showed 2-folds increase in drug release as compared to the 
generic tablets after 60 min in HCl 0.1 N using USP apparatus-II. Furosemide loaded SNEDDS tablets 
have great prospects for further in vivo studies, and the theoretical model is useful for calculating the 
adequate amounts of adsorbents required to solidify these systems.

Class IV drugs of the Biopharmaceutical Classification System (BCS) present a great challenge in oral formu-
lations due to their low solubility and permeability since solubility enhancement approaches alone may not 
be sufficient to enhance oral bioavailability of these drugs (e.g., amphotericin B, furosemide, acetazolamide, 
ritonavir, paclitaxel)1.

Self-emulsifying drug delivery systems (SEDDS) present a useful mean to enhance both solubility and perme-
ability of both class II and IV drugs2,3. The drug is dissolved in a mixture of oil, surfactant and co-solvent which 
forms oil-in-water (o/w) micro- or nano-emulsion with the gastrointestinal aqueous fluids after oral administra-
tion under gentle agitation by the digestive system4–7. SEDDS promote the intestinal lymphatic transport of the 
drug and inhibit its enzymatic degradation and gut wall efflux, which increase the intracellular concentration of 
the drug, and reduce the variability in rate and extent of absorption8–12.

Liquisolid systems (LS) were also developed to enhance drugs solubility. The drug solution in non-volatile 
solvent is adsorbed on a carrier material, and then mixed with a coating material with high surface area to 
prepare a dry powder13–15.

Liquid SEDDS are usually filled in soft gelatine capsules which limited their widespread16–18. This led to the 
development of solid SEDDS by several methods into powder to be either filled in hard capsules or compressed 
into tablets19,20. However, the preparation of tablets is highly beneficial since hard capsules may only be filled up 
to about 400 mg due to the low bulk density of the carriers used (e.g. silicates)21.

Furosemide (FUR), a potent loop diuretic, is a class IV drug due to its low solubility in water (5–25 µg/ml) 
and low permeability22,23. The oral bioavailability of FUR is highly variable and the response to treatment is 
unpredictable with a large degree of differences within and between patients24.

The aim of this study was to optimize a hybrid liquisolid/self-emulsifying system of FUR as a model for class 
IV drugs and to prepare liquisolid tablets with acceptable properties.

Materials and methods
Materials.  FUR was provided as a gift sample from UNIPHARMA pharmaceutical industries (AMRI, 
Aurangabad, India). Tween 80 was obtained from Riedel-De häen (Seelze-Hannover, Germany). Cremophor 
EL and Cremophor RH40 were a gift sample from Dar Al Dawa’ pharmaceutical Co. Ltd (Amman, Jordan). 
Castor oil, Oleic acid, Glycerol, Propylene glycol (PG) and Polyethylene glycol 400 (PEG 400) were purchased 
from Panreac Co. Ltd (Barcelona, Spain). Sesame oil, Sunflower oil, and Soybean oil were purchased from the 
local market. Avicel PH101 was obtained from FMC Co. Ltd (Philadelphia, USA). Aerosil 200 was from Evonik 
industries (Rheinfelden, Germany). Ludipress was purchased from BASF (Ludwigshafen, Germany).
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Formulation of FUR loaded self‑nanoemulsifying drug delivery system (FUR‑SNEDDS).  Equi‑
librium solubility of FUR in excipients.  In order to prepare FUR-SNEDDS, the required dose of FUR (20 mg) 
should dissolve in a small amount of the system. The solubility of FUR in various oils (Sesame oil, Castor oil, 
Sunflower oil, Soybean oil, Oleic acid), surfactants (Tween 80, Cremophor El, Cremophor RH40), and co-sol-
vents (Glycerol, PG, PEG 400) was determined by shake flask method25. An excess amount of FUR was added 
to each capped tube containing 5 ml of each of the selected vehicles and was shaken at 25 °C for 48 h to reach 
equilibrium. Each tube was centrifuged at 6000 rpm (HERMLE Z200A, Germany) for 15 min. The supernatant 
was then filtered and diluted with methanol as necessary. The amount of soluble FUR was determined using 
UV-spectrophotometer (Scinco S-3100, Korea) at 274 nm, with methanol as a blank. All measurements were 
done in triplicates.

Pseudo‑ternary phase diagram.  The concentration of each component of the system that produced clear emul-
sions under mild stirring at room temperature (25 °C) was then determined using water titration method26. 
Three mixtures of surfactant/co-solvent (S/coS) were prepared in 3 ratios: A-mix (1/1), B-mix (2/1), and C-mix 
(1/2), then each mixture was mixed with the oil phase in 9 ratios (9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9). Water was 
added drop-wise under mild agitation by a magnetic stirrer for 15 min. The resulted mixtures were inspected vis-
ually for the formation of a clear/translucent emulsion that is associated with the formation of microemulsions26. 
The ratios that produced optically clear emulsions were plotted on a pseudo-ternary phase diagram using Tri-
plot v1-2–4. No attempt was made to evaluate other phases when a white emulsion or gel-like phase was formed.

Preparation of FUR‑SNEDDS.  FUR-SNEDDS was prepared by dissolving FUR in sufficient amount of the self-
emulsifying system (20 mg FUR/100 mg SNEDDS) and was sonicated for 30 min at 40 °C to facilitate solubiliza-
tion. The droplets size and polydispersibility index (PdI) of the prepared system were measured using Zetasizer 
(Nano S, Malvern Instruments Ltd, UK) after diluting 1 ml with 100 ml of distilled water under gentle mixing 
by a magnetic stirrer.

Formulation of LS powders.  Hybrid LS compacts were prepared using the theoretical model14 to calcu-
late the required amounts of the carrier and coating materials and produce flowable powders of FUR-SNEDDS 
as the liquid vehicle. Avicel PH101 and Aerosil 200 were used as carrier and coating materials, respectively.

The angle of slide (θ) was measured as described by Karmarkar et al.27, where uniform FUR-SNEDDS/powder 
admixtures that contained either Avicel PH101 or Aerosil 200 with increasing quantities of FUR-SNEDDS were 
prepared. The liquid/solid ratio that corresponded to an angle of slide of 33° was considered the flowable liquid-
retention potential (Φ-value). Φ-value is the maximum amount of liquid that can be retained inside powder 
bulk (w/w) while maintaining acceptable flowability27.

Φ-value for SNEDDS of Avicel PH101 (ΦCa) and Aerosil 200 (ΦCo) were used to calculate liquid loading 
factor (Lf) with variant R-values (5, 10, 15, 20) using Eq. (1). The amount of carrier (Q) and coating (q) materi-
als can be calculated by rearranging Eqs. (2) and (3) once the amount of liquid medication (W), and (R) values 
were determined28.

Flowability of each LS compact with different R-ratios was evaluated using Carr’s compressibility index29.

Reconstitution test.  The ability of the hybrid LS compacts to re-emulsify spontaneously was tested by 
diluting an amount of LS powder that contained 1 ml of SNEDDS 100 times with water under mild agitation 
to form a clear emulsion and was then filtered to remove solids. The droplets size of the formed emulsion was 
measured using Zetasizer (Nano S, Malvern Instruments Ltd, UK).

Preparation and characterization of hybrid LS tablets.  The calculated amounts of Avicel PH101 
and FUR-SNEDDS were blended using a mortar and pestle. The coating material (Aerosil 200) was then added 
to the mixture to obtain a dry LS powder. Ludipress was added to the LS powder as an adjuvant. A schematic 
representation of the preparation of the hybrid LS tablets (LST) is illustrated in Fig. 1 30. Conventional directly 
compressed tablets (DCT) of FUR mixed with the powder components without the self-emulsifying system were 
prepared to evaluate the effect of self-emulsifying on drug release. The compositions of LST and DCT are shown 
in Table 1.

Single punch tablet machine (Erweka AR 402, Germany) with flat-faced punch was used for both tablets (LST 
and DCT). The hardness and friability of LST were evaluated using hardness (Erweka TBH 300, Germany) and 
friability testers (Erweka TAR 120, Germany).

Differential Scanning Calorimeter (DSC).  The physical state of FUR in SNEDDS and LS powder was 
studied by DSC (Mettler Toledo TG50, Germany). Changes in melting enthalpy, glass transition temperature, 
and percentage of crystallinity due to any interactions with excipients were evaluated. Accurately weighed sam-

(1)Lf = �Ca+�Co(1/R)

(2)Lf = W/Q

(3)R = Q/q
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ples (2–10 mg) were placed in standard aluminium pans and the sample cell was purged with dry nitrogen at a 
flow rate of 100 ml/min. All samples were scanned from 25 to 400 °C at a heating rate of 10 °C/min.

X‑ray diffraction (XRD).  XRD patterns for FUR in LS powder and its pure components were recorded at 
room temperature (Stadi-P diffractometer, STOE, Germany). The samples were subjected to 40 kV voltage and 
30 mA current conditions. The patterns were scanned over the angular range 3–90° (2θ) with 0.05° intervals and 
a counting time of 60 s per step.

Scanning electron microscopy (SEM).  SEM imaging was utilized to examine the surface morphological 
characters of LS powder. The samples were mounted on a slab of metal with a double-sided adhesive carbon tape 
and were examined (VEGA-II, Tescan, Czech Republic).

In‑vitro dissolution studies.  FUR release from LST in comparison to DCT and generic FUR tablets (GT) 
was determined by USP apparatus-II (DIS 8000, Copley, UK). The dissolution medium was 900 ml of either 
phosphate buffer pH 5.8 or HCl 0.1 N at 37 ± 0.5 °C, stirred at 100 rpm for 60 min. At the predetermined inter-
vals (5, 10, 20, 30, 45, 60 min), 5 ml aliquots were withdrawn, filtered through a 0.45 µm membrane filter and 
assayed spectrophotometrically (Scinco S-3100, Korea) at 274 nm. Measurements were done in triplicates. Two-
tailed student’s t-test was performed to evaluate the significant differences in FUR release from LST and DCT or 
GT. The difference was considered statistically significant at p-value < 0.05.

Results and discussion
The solubility of FUR in each phase is displayed in Table 2. The highest solubility of FUR was in Castor oil 
(1.23 ± 0.045 mg/g) and Oleic acid (1.1 ± 0.057 mg/g) as oily phase, and in Cremophor EL (47.62 ± 2.227 mg/g) 
and PEG 400 (158.48 ± 6.379 mg/g) as surfactant and co-solvent, respectively. Therefore, the pseudo-ternary 
phase diagrams consisted of Cremophor El/PEG400 (S/coS) in different ratios: A-mix (1:1), B-mix (2:1), and 
C-mix (1:2) with Castor oil. The concentrations at which a clear/translucent emulsion was formed are represented 
as (X) in the diagrams in Fig. 2. Oleic acid was excluded from the results since its mixture with (S/coS) did not 
form a clear emulsion at any ratios.

Figure 1.   Schematic representation of the formulation of hybrid LS powder30.

Table 1.   The compositions of LST and DCT for 1 tablet.

Ingredients LST DCT

Furosemide 20 mg 20 mg

SNEDDS 100 mg –

Avicel PH101 260 mg 260 mg

Aerosil 200 65 mg 65 mg

Ludipress 300 mg 300 mg



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1315  | https://doi.org/10.1038/s41598-020-79940-5

www.nature.com/scientificreports/

Table 2.   The solubility of FUR in various oils, surfactants, and co-solvents (mean ± SD, n = 3).

Vehicle Solubility (mg/1 g) ± SD

Soybean oil 0.06 ± 0.00

Sunflower oil 0.06 ± 0.00

Castor oil 1.23 ± 0.04

Oleic acid 1.10 ± 0.06

Sesame oil 0.23 ± 0.02

Tween 80 31.4 ± 0.93

Cremophor RH40 30.71 ± 1.17

Cremophor El 47.62 ± 2.23

Glycerol 0.87 ± 0.01

PG 13.17 ± 0.55

PEG-400 158.48 ± 6.38

Figure 2.   Pseudo-ternary phase diagrams of Cremophor El /PEG400:Castor oil:water with different 
Cremophor El/PEG400 ratios: (A)1:1, (B)2:1 and (C)1:2. (X) Represents the concentrations at which a clear/
translucent emulsion was formed. (diamond) Gel-like phase. (triangle) White emulsion.
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The diagrams show that the system consisting of 90% B-mix with 10% Castor oil formed a clear emulsion even 
after the addition of water up to 90% (Fig. 2B). On the other hand, for A-mix and C-mix the emulsion turned 
white after water addition up to 50% and 40%, respectively (Fig. 2A,C). This may be due to the higher concentra-
tion of Cremophor El (60%) as surfactant in B-mix, which formed a nano-emulsion upon water dilution with 
mean droplet size of (17.9 ± 4.5 nm), and PdI was 0.064. PdI below 0.3 indicates a good droplets size distribution. 
The droplets size was reported to have an impact on drug absorption since the smaller is the droplets size the 
larger is the interfacial surface for absorption31.

The solubility of FUR in the SNEDDS was (210.8 ± 26.6 mg/ml, n = 3), which is mainly attributed to the use 
of PEG 400 in the system as co-solvent.

Preparation of FUR‑SNEDDS LS powders.  The measured angle of slide of each admixture was plotted 
against Φ-value of either Avicel PH101 or Aerosil 200 with SNEDDS as the liquid vehicle in Fig. 3. Φ-values that 
corresponded to the angle of slide of 33° were 0.25 and 0.75 for Avicel PH101 (ΦCa) and Aerosil 200 (ΦCo), 
respectively. These values were used to calculate Lf using the Eqs.  (1–3), where the amount of liquid FUR-
SNEDDS (W) was considered (120 mg) in a dosage unit, as each unit contained 20 mg FUR dissolved in 100 mg 
SNEDDS. Several admixtures with variant R-values (5, 10, 15, 20) were prepared and their flowability and com-
pressibility were evaluated using Carr’s compressibility index as demonstrated in Table 3. LS-1 powder with the 
highest Aerosil 200 amount displayed the best flowability with Carr’s index of 15.38% (Table 3). Increasing the 
amount of Aerosil 200 enhanced the flow properties of LS powder. This may be due the large surface area of 
Aerosil 200 that covers the surface of carrier particles and works as a lubricant and enhance powder flowability.

Reconstitution test.  The mean droplets size of the reconstituted hybrid LS system was (19.82 ± 2.71 nm). 
The hybrid LS system maintained its ability to form a nanoemulsion after adsorption onto the solid carrier. PdI 
increased to (0.137) compared to the liquid system after water dilution, but still indicates a good uniformity in 
droplets size (PdI < 0.3)31.

Characterization of LST.  The adsorbents used to solidify SNEDDS have large surface area and conse-
quently have low bulk density which presents a challenge upon filling the required quantities in hard gelatine 
capsules. However, tablets preparation holds some challenges due to the high compressibility index of silicates 
and squeezing out of liquids under compression that would lead to fragile tablets; especially at high liquid 
loads17. Decreasing drug load by increasing the powder quantity would significantly increase tablets size and 
weight to more than 1 g which makes it harder to swallow.

In the present study, Avicel PH101 and Aerosil 200 were employed as carrier and coating materials, respec-
tively. Avicel PH101 is a commonly used carrier in liquisolid tablets formulation due to its good compactability32. 
Microcrystalline cellulose (Avicel) exhibits plastic deformation under compression, its microcrystalline nature 

Figure 3.   Angle of slide for admixtures of Avicel PH101 and Aerosil 200 SNEDDS as the liquid vehicle in 
different ratios.

Table 3.   The compositions and compressibility indexes of LS compacts. *CI Carr’s compressibility index.

LS compact R value Lf
Avicel PH101
(mg)

Aerosil 200
(mg)

CI*
(%)

LS-1 5 0.4 300 60 15.38

LS-2 10 0.325 369.23 36.92 27.27

LS-3 15 0.3 400 26.67 27.91

LS-4 20 0.2875 417.39 20.87 26.67
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and the hydrogen bonds between cellulose molecules gives tablets cohesion and strength15. On the other hand, 
very fine silica derivatives powders like Aerosil 200 with high adsorption properties are employed as coating 
materials in liquisolid compacts. The coating material (e.g. Aerosil 200) covers the wet carrier particles saturated 
with liquid to produce dry flowable powder33. Increasing the amount of Aerosil 200 in LS-1 increased Lf, which 
lowered the amount of powders needed to solidify the emulsifying system. To overcome the compressibility 
issues of Aerosil 200, an adjuvant was added. Kollidon K30 and Methocel K4M were respectively added to the 
LS powder in 1:1 ratio with no significant changes in powder compressibility (data not shown).

Ludipress (a mixture of Lactose monohydrate, Povidone, and Crospovidone) was added in increased ratios 
and tested. When Ludipress was added in 1:1 ratio to LS powder (see Table 2), tablets hardness and friability 
were 45 ± 2 N and 0.53%, respectively. The mean weight of LST unit was (745.62 ± 11.67 mg, n = 10) and none of 
the tablets showed a percentage deviation from the mean weight more than ± 5%. The prepared LST fulfilled the 
pharmacopeial standards of USP-38. Drug content was (99.81%) and within the accepted limits of 95.0–105.0%.

DSC.  The thermogram of FUR in Fig. 4D showed a big sharp exothermal peak at 226.94 °C due to its decom-
position at its melting temperature34–37. Aerosil 200 is an amorphous material, the thermogram only showed 
a broad shallow feature due to the evaporation of adsorbed water (Fig. 4B). Similar observation was noticed 
for Avicel PH101 (Fig. 4C) at 50° to 120 °C before its melting at about 285 °C. The thermogram of LS powder 
(Fig. 4A) lacked the distinguishing exothermal peak of FUR with broadened endothermic peak of Avicel PH101. 
The disappearance of drug features in LS formulation indicates the formation of an amorphous solid solution as 
the drug is molecularly dispersed in LS system38,39.

XRD.  XRD patterns demonstrate the crystalline nature of FUR and the solid components of LS powder 
(Fig. 5). The diffraction pattern of FUR (Fig. 5D) exhibited its crystalline nature with sharp and well-defined 
peaks. Avicel PH101 showed a typical microcrystalline pattern with broad peaks due to the small crystallites 
(Fig. 5C). Aerosil 200 is amorphous, thus the pattern has no defined features that indicate a crystalline module 
(Fig. 5B). The diffraction pattern of LS powder in (Fig. 5A) showed the broad peaks of Avicel PH101 with a small 
decline in its intensity. The disappearance of FUR features could be due to its conversion from crystalline to 

Figure 4.   DSC thermograms of: (A) LS powder, (B) Aerosil 200, (C) Avicel PH101, (D) FUR.
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amorphous state. These results are in agreement with the previously mentioned DSC results and implicate that 
FUR is solubilized in the emulsifying system40.

SEM.  SEM images in Fig. 6C,D showed dry LS powder. This implicates; according to the liquisolid theory30, 
that the liquid system is adsorbed onto Avicel PH101 (the carrier material shown in Fig. 6B) and Aerosil 200 
(the coating material shown in Fig. 6A) is adsorbed on Avicel particles that appears as a coating layer to form 
dry surface (see Fig. 1). This would interpret the compressibility index of LS-1 powder as Aerosil 200 acted as a 
lubricant and enhanced the powder’s flowability.

In‑vitro dissolution studies.  The percentages of FUR released from LST, GT and DCT in different medi-
ums are illustrated in Fig. 7. Both LST and GT released about 89% of FUR after 60 min with similar release 
profiles (P > 0.05, n = 3) in phosphate buffer pH 5.8. This may be attributed to the solubility of FUR in the dis-
solution medium due to its weak acidic properties (pKa ~ 3.9)24. This would lead to rapid absorption of FUR in 
the stomach, and the absorption is slowed down along the rising pH in the gastrointestinal tract from 3 to 541.

Therefore, FUR release was studied in HCl 0.1 N as a dissolution medium. The release profile of LST was 
significantly different (P < 0.05, n = 3) from both GT and DCT release profiles. LST released 70.3% of FUR after 
60 min, and 50% of FUR was released in 20 min. GT and DCT released about 36.7% and 48.8% of FUR after 
60 min, respectively.

The self-emulsifying technique enhanced the solubility of FUR in the acidic medium up to 2-folds. The 
formation of nano-sized droplets upon mixing with the dissolution medium provided a large interfacial surface 
area, and presented FUR in a dissolved form9. Moreover, FUR is in the more soluble amorphous state in the LS 
compacts, which increased its solubility in the dissolution medium.

Conclusion
LST demonstrated 2-folds increment in FUR release in the acidic medium (HCl 0.1 N), thus, have great potentials 
for further in vivo studies because of its higher dissolution in the medium where FUR is mostly absorbed. LS 
theoretical model is useful in calculating the adequate amounts of adsorbents required to solidify these systems, 
and the addition of Ludipress in tablets’ formulation helped to overcome the poor compressibility characters 
of Aerosil 200.

Figure 5.   XRD patterns of (A) LS powder, (B) Aerosil 200, (C) Avicel PH101, (D) FUR.
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Figure 6.   SEM images of (A) Aerosil 200, 1000x. (B) Avicel PH101, 1000x. (C) LS powder, 1000x, (D) LS 
powder, 2000x.

Figure 7.   Percentage drug release of FUR from various tablets against time (min) in different mediums. Data 
are expressed as mean ± SD (n = 3).
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