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Seagrasses provide a novel 
ecosystem service by trapping 
marine plastics
Anna Sanchez‑Vidal1*, Miquel Canals1, William P. de Haan1, Javier Romero2 & Marta Veny1

There is strong evidence that the seafloor constitutes a final sink for plastics from land sources. There 
is also evidence that part of the plastics lying on the shallow seafloor are washed up back to the 
shoreline. However, little is known on the natural trapping processes leading to such landwards return. 
Here we investigate microplastics and larger plastic debris within beached seagrass remains including 
balls (aegagropilae) made of natural aggregates of vegetal fibers intertwined by seawater motion. We 
found up to 1470 plastic items per kg of plant material, which were mainly composed of negatively 
buoyant polymer filaments and fibers. Our findings show that seagrass meadows promote plastic 
debris trapping and aggregation with natural lignocellulosic fibers, which are then ejected and escape 
the coastal ocean. Our results show how seagrasses, one of the key ecosystems on Earth in terms of 
provision of goods and services, also counteract marine plastic pollution. In view of our findings, the 
regression of seagrass meadows in some marine regions acquires a new dimension.

Microplastics -plastic particles smaller than 5 mm in size1-derive from fragmentation and degradation of large 
plastic items2,3, and also from direct manufacturing of microscopic particles such as virgin plastic pellets, cos-
metic microbeads and clothing microfibres4,5. Research on microplastic pollution has long focused on sea surface 
accumulations6–8. However, there is a growing body of evidence that floating plastic debris account for less than 
1% of the global ocean plastic inventory9, whereas the vast majority sinks to the seafloor1,10,11. Microplastics have 
indeed been found in all marine environments, shallow and deep, close to shore and amidst ocean basins11–15. 
Further, recent studies have shown that bottom currents control the distribution of microplastics on the seafloor, 
transporting them from shallow to deep waters where they accumulate14,16. In this study, we provide evidence of 
the entrapment of plastic debris from the shallow marine environment by seagrasses. This represents a continu-
ous purge of plastic debris out of the sea that has been omitted in surface (nearshore to offshore) and bottom 
(shallow to deep) simulations of microplastics transport3,8,17,18.

Seagrass meadows are widespread in shallow coastal waters19 and provide important ecosystem services and 
benefits, such as water quality improvement20, CO2 absorption21, climate change mitigation22, sediment produc-
tion for seafloor and beach stabilization23, coastal protection24, nursery and refuge areas for many species25, and 
support in fisheries production26. We have investigated microplastics and larger plastic debris washed ashore 
together with natural debris of the seagrass Posidonia oceanica, a Mediterranean endemic seagrass forming lush, 
extensive meadows from 0.5 to 40 m of water depth. According to the latest and more accurate estimate the total 
area covered by P. oceanica is 1.2 M Ha27. P. oceanica has long, ribbon-like leaves, with a clear differentiation in 
leaf blade (photosynthetic) and leaf base or leaf sheath (non pigmented and fibrous) that attaches the leaf to the 
stem, called rhizome28.

As a temperate species, P. oceanica loses leaves in autumn, which are washed by waves and currents and accu-
mulate on adjacent beaches as wrack beds. These vegetal deposits, besides attenuating wave energy, protecting the 
shoreline and preventing coastal erosion, influence also dune vegetation not only by providing it with nutrients 
but also by preventing substrate aridity29. In addition, in this species (as in other congenerics in the southern 
hemisphere) leaf sheaths remain attached to the rhizome when leaves shed, and are slowly buried by sedimenta-
tion in the so called “matte”, an accumulation of dead rhizomes and roots that can persist for millennia30. During 
the burial process, leaf sheaths, which are rich in lignocellulose, suffer mechanical erosion, releasing part of the 
constituent fibers that intertwine to form ball-shaped agglomerates known as seaballs, Neptune balls or aega-
gropilae (EG)31. These balls are also washed ashore. While leaf sheaths are present in almost all seagrass genera, 
only sheath cells in Posidonia have thin and lignified walls28, and thus fibers provide the needed stiffness to form 
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EG32. The genus Posidonia has a unique fragmented distribution in the temperate waters of the Mediterranean 
Sea and southern Australia. Regrettably, it is estimated that between 13 and 50% of potential initial P. oceanica 
area may have been lost since 196027,33.

To examine the role played by these piles of vegetal remains in trapping and extracting plastic debris from sea 
and carrying them to shore we have examined both EG and beach wracks accumulated on different beaches of 
Mallorca Island, in the Western Mediterranean Sea. This island, 3640 km2 in area and ca. 560 km in perimeter, 
is an optimal site to address these issues, because of both the extensive meadows of P. oceanica in its waters34 and 
the fact that the highest accumulations of floating plastic debris in the Mediterranean Sea occur in its nearshore35.

Results and discussion
Plastic debris in loose leaves (wracks) were found in 50% of the samples, with up to 613 plastic items per kg 
of dead leaves. Plastic items consisted mostly of fragments (61.29%) followed by pellets (33.67%) and foams 
(2.90%). The polymers were identified by spectrometry and included polyethylene (PE) (50.57%) followed by 
polypropylene (PP) (32.18%) and polyvinyl chloride (PVC) (6.90%). Plastic sizes ranged from 0.55 to 287 mm 
and averaged 9.08 mm.

Plastics of different sizes were found intertwined in 17% of the inspected EG (Fig. 1A, Table S2), with up to 
1,470 plastic items per kg of dead seagrass remains. The plastic debris found were mostly filaments and fibers 
(64.86%), fragments (21.62%), films (8.11%) and foams (5.41%) (Fig. 1A). The polymers identified by spec-
trometry (n = 124) included polyethylene terephthalate (PET) (35.14%), PE (21.62%), PP (13.51%), polyamide 
(PA) (10.81%) and PVC (10.81%) (Fig. 1B). Plastic sizes ranged from 1.05 to 59.02 mm and averaged 9.48 mm.

Plastic debris weight represented < 1.6% and < 0.15% of the mass of dead leaves and EG, respectively. Plastic 
weight ranged 0–13.3 mg per EG unit.

Our findings demonstrate that high density plastic items in shallow meadows are intertwined, and subse-
quently trapped, with the lignocellulosic debris of the seagrass P. oceanica to form EG, which are washed ashore 
by sea waves mainly during stormy conditions (Fig. 2). Indeed, seagrass beds are known to promote deposition 
and reduce resuspension of sedimentary particles as a result of the reduction of water flow, turbulence and wave 
action by the plant canopies36. In addition, particle collision with dense seagrass canopies plays a role in sedi-
ment transport to the seabed and extraction from the water column37. Sediment trapping by seagrass meadows 
may also include plastic debris. Huang et al.38 found that microplastics in seagrass meadows were enriched by a 
factor up to 2.9 compared to non-vegetated areas. The reduction of the flow and the trapping effect of canopies 
may create soft bottom accumulations of plastic debris, deposited and stranded on the seabed, from where they 
can hardly escape. Accordingly, a statistically significant higher loading of polymers denser than seawater such as 
PET, PA, and PVC (Chi-square test = 22.6, df = 1, p < 0.001) were found in EG (Fig. 1B). Their negative buoyancy 
may have favoured their accumulation and aggregation with natural fibres in the meadow. Low density PE and 
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Figure 1.   Plastic debris in seagrass remains. (A) Pie chart illustrating size of plastic debris 
(microplastics < 5 mm, mesoplastics 5–25 mm, and macroplastics > 25 mm), and type of plastic (filaments and 
fibers, fragments, films, foams, pellets and sticks) found in beached aegagropilae (EG) and loose leaves (wracks). 
(B) Relative abundance of each plastic polymer in plastic waste generation, floating plastic debris, plastic debris 
in loose leaves and aegagropilae (EG) vs. polymer density. Plastic waste generation is from Geyer et al.64, and 
plastic polymers floating at the sea surface are from Suaria et al.43. Only plastic polymers with percentages > 1% 
in at least two matrices (floating, leaves, EG) are taken into account. PA polyamide, PE polyethylene, PET 
polyethylene terephthalate, PP polypropylene, PS polyestyrene, PU polyurethane, PVC polyvinyl chloride.
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PPs, which float in sea water, still represented a significant proportion among EG trapped plastic debris. Positively 
buoyant plastic debris may have reached the seabed due to collision with seagrass leaves, momentum loss and 
particle deposition37, or due to buoyancy loss because of biofouling39 or aggregation40.

In the seabed, it is likely that agitation caused by sea motion aggregates and holds together sheath fibers and 
plastic debris forming EG (Fig. 2). It has been suggested that EG formation is initiated at low abundances of 
vegetal fibers41, and that they grow by random aggregation of smooth fibers under relatively calmed conditions 
and for a long period of time32. Then, on a shorter time, sudden change in sea motion may cause repeated col-
lisions of the EG with the seabed subsequently inducing the formation of an outward dense shell (hardening), 
which in turn, inhibits addition of new material32. EG size was observed to be inversely correlated with plastic 
abundance (r(27) = − 0.30, p < 0.01; including only EG with plastic presence). This suggests that the relatively 
rigidity of plastic debris, and specially polyamide filaments from fishing lines (Fig. 3), may decrease the natural 
tendency of the lignocellulosic fibers to agglomerate to form balls stiff when agitated by sea motion.

Plastic debris abundance per mass unit in loose dead leaves was significantly lower than those in EG (p < 0.001, 
Mann–Whitney U test) and mostly composed of low-density polymers (PE and PP) fragments and pellets 
(Fig. 1, Table S1). This suggests that plastic debris found stranded in wracks are, for the most, those drifting at 
the sea surface, which are transported close to shore by surface currents and wind waves, and are washed ashore 
at the same time as leaf litter. Indeed, similar low density polymer contributions have been found floating off 
the investigated beaches35 and drifting in open waters of the Mediterranean Sea43 (Fig. 1B). The occurrence of 
an extraordinary convective rainfall event in Mallorca Island in autumn 201744 may had loaded coastal waters 
with an extra amount of PP pellets (Supplementary Table 2). Drifting floating plastic items were flushed ashore 
during autumn storms, alongside with seagrass remains from natural massive seasonal leaf loss45. Interestingly, 
plastic debris in wracks along the shoreline undergo photo-oxidative degradation and gradual fragmentation46, 
and may be eventually backwashed to the coastal sea and transported seaward by swash waves47. Accordingly, 
low-density plastic debris found in wracks show smaller size (Fig. 1) and thus higher deterioration than those in 
EG. In contrast, enclosure of plastic debris in EG protects them from exposure to UV radiation and mechanical 
abrasion and thus from breakdown into smaller sized pieces.

The fate of the EG is an open question. On the one hand, and in the context of beach residues management, 
one possibility would be to remove the balls to eliminate their associated plastic debris. However, it would be 
difficult to remove the balls without removing the stranded leaf litter, which is known to protect beaches against 
erosion48, provide nutrients for dune plants29 and feed beach arthropod communities49. On the other hand, 
the dense outward shell of the EG32,42, the refractory character of their lignocellulosic fibers50 and their low N 
content51 provide them with a high stiffness and resistance to degradation. Thus, the probability of a plastic 
debris being disentangled and degraded and/or backwashed may be relatively low. In any case, what happens to 
the plastic debris in the EG once ashore deserves further investigation.

Our understanding of plastic fluxes and pathways is incomplete. There appears to be a considerable propor-
tion of all plastic dumped into the ocean that is missing as it has not been found in surveys tracking floating 
plastic debris3,6–9. Where this “missing” plastic is has been a longstanding scientific question after being posed by 
Thompson et al.1. During more than 15 years, an increasing number of studies have supported the idea that most 
plastic ends up in the seafloor11,13,15, acting as the ultimate reservoir of our throw-away society. However, other 
processes may also account for some of this discrepancy between estimations of plastics dumped and plastics 
floating at the sea surface. There are evidences that a natural sorting for plastic debris is occurring in coastal 

Figure 2.   Trapping of plastic debris by seagrasses. Representation of the processes involved in the accumulation 
and intertwining of plastic items and sheath fibers to form plastic-rich aegagropilae (EG) found stranded in 
beaches.
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environments, where a major part of entering plastics are stranded and captured, and only a small fraction escapes 
offshore52. Here we show that plastic debris in the shallow seafloor could be trapped in seagrass remains, eventu-
ally leaving the marine environment through beaching. Furthermore, taking an average plastic debris abundance 
in EG of 57.8 items kg−1, and a Mediterranean basin sheath fiber production of 6000–15,000 tonnes y−1 (estimate 
obtained combining data from Romero et al.51, Mateo and Romero53, Khiari et al.54, and Telesca et al.27) our results 
give a potential entrapment of 867 million plastic debris in EG each year. How many of these plastic-rich EG 
are annually flushed ashore is unknown. Given the ever-increasing plastic load reaching our oceans3, seagrass 
ecosystems such as P. oceanica meadows will play a crucial role. Therefore, in addition to the key and extensively 
documented ecosystem services provided by seagrass beds22,24,55, P. oceanica may provide a valuable added plastic 
buffering and trapping service. This may be particularly important in the Mediterranean Sea, where this species 
is endemic, where high microplastics loadings have been found at surface waters and on the seafloor14,40,43,56. 
The declining trend of the areal extent (13–50%), cover (− 1.22% yr−1 in average) and shoot density (50% thin-
ning) of P. oceanica meadows during the last few decades27,33, though de los Santos et al.,57 report deceleration 
trends, points to a severe reduction of the marine plastic trapping role by this seagrass species right when we 
are starting to realise it.

In addition, besides climate change, spreading of invasive species, excess nutrient inputs, coastal erosion 
and mechanical impacts33,58, plastic pollution may also pose a significant threat to seagrasses around the world. 
There are some evidence of alteration of seagrass competitive intensity59, adherence to seagrass tissues60, and 
consumption by herbivores61,62, even though current studies are not sufficient to provide a clear picture of the 
consequences of plastics in seagrass ecosystems63. What is clear is that the deterioration of seagrass meadows 
may compromise the services they provide, so it is crucial to undertake specific actions to mitigate threats caus-
ing regression and ensure conservation.

Methods
EG and loose leaves were collected in four beaches of Mallorca island in the western Mediterranean Sea: Sa 
Marina, Son Serra de Marina, Costa dels Pins, in the north-east of the island, and Es Peregons Petits, in the 
south-west. Beaches were microtidal, gently sloping and composed by medium to fine carbonate-rich sand, and 
were adjacent to extensive Posidonia oceanica meadows. EG and quadrats of loose leaves (500–1000 g) were 
collected in July–August 2018 and December 2018–January 2019 along 50 m long transects at 0 m, 2.5 m and 
7 m of the shoreline.

Once in the laboratory, samples were dried at room temperature (25 °C) and low humidity for several days. 
We assume low moisture content and comparability of samples (EG and loose leaves) in identical operative 
conditions. EGs were weighted with an analytical balance with a sensitivity of 0.01 mgr, and the length of their 
principal axes was measured. EG were then carefully disentangled and fibers sieved at 8 mm, 5 mm, 1 mm and 
0.63 mm using stainless steel sieves. Accordingly, the smallest plastic particle size detected was 0.54 mm. The 
content of the sieves was transferred to petri dishes, and H2O2 30% and HCl 10% were added to remove most 
of the organic matter and calcium carbonate. Samples were oven-dried at 50 °C for > 24 h. The Petri dishes were 

Figure 3.   Plastic debris in aegagropilae (EG) and loose leaves found in beaches. (A) Polyamide filaments 
trapped in aegagropilae (EG), and (B) beached EG and loose leaves along with plastic debris.
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inspected for plastic debris under a Nikon SMZ1000 stereo-microscope (10 ×–40 ×) coupled with a DS-Fi2 
camera in a clean laboratory. All extracted plastic particles were weighted and transferred to a 90 mm Petri dish 
containing a black and white background that enabled high contrast with plastic colors. The same procedure 
was applied to loose leaves.

Each Petri dish containing plastic particles was photographed with a Jai 3CCD High Speed Color Line Scan 
Camera with a 50 mm F2.8–22 lens and a resolution of 150 pixel cm−1 at the CORELAB Laboratory of the Uni-
versity of Barcelona using a fixed light temperature (4000 K) and lens aperture (f/11). High-resolution images 
were processed using the image-processing ImageJ software v1.50i (https​://image​j.net/), which allowed gathering 
information on size (i.e. the maximum distance between any two points calculated at various angles)40. Then 
plastics were classified into four size categories: microplastics (< 5 mm), mesoplastics (5–25 mm) and macro-
plastics (> 25 mm). Plastic items were also classified according to their nature and shape in fragments, filaments 
and fibers, films, pellets, sticks and foams. Finally, a subset of 124 particles were randomly selected and chemi-
cally identified using a Perkin Elmer Frontier FT-IR Spectrometer with a diamond crystal ATR accessory at the 
Scientific and Technological Centres of the University of Barcelona (CCiTUB). FT-IR spectroscopy allowed the 
identification of the polymer composition of each item based on IR absorption bands that represent the pres-
ence or absence of specific functional groups in the material. The spectral range analysed was between 4000 and 
220 cm−1 with a 4 cm−1 resolution and 16 accumulations. Each spectrum was compared with known spectrums of 
Bio-Rad Sadtler Raman Spectra databases (BioRad-KnowItAll Informatics System 2015, Raman ID Expert Inc.).

Samples, sieves and petri dishes were covered wherever possible to minimize periods of exposure. A clean 
workspace was maintained by keeping all surfaces and equipment clean using ethanol wipes, and cotton cloth-
ing was worn.

Pairwise comparisons were performed using the Mann–Whitney U test between unpaired groups. The chi-
square test was used to determine the significance between expected and observed frequencies. Furthermore, 
t tests were performed on the regression coefficients to establish statistical significance. All statistical tests was 
conducted in R (version 3.6.3) using packages dplyr, car, corrplot, qqplotr, gmodels and ggplot2. All values were 
considered significant when p ≤ 0.05.
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