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Abstract

Many arboviral diseases are uncontrolled, and the viruses that cause them are globally emerging or 

reemerging pathogens that produce significant disease throughout the world. The increased spread 

and prevalence of disease are occurring during a period of substantial scientific growth in the 

vectorborne disease research community. This growth has been supported by advances in 

genomics and proteomics, and by the ability to genetically alter disease vectors. For the first time, 

researchers are elucidating the molecular details of vector host-seeking behavior, the susceptibility 

of disease vectors to arboviruses, the immunological control of infection in disease vectors, and 

the determinants that facilitate transmission of arboviruses from a vector to a host. These 

discoveries are facilitating the development of novel strategies to combat arboviral disease, 

including the release of transgenic mosquitoes harboring dominant lethal genes, the introduction 

of arbovirus-blocking microbes into mosquito populations, and the development of acquisition- 

and transmission-blocking therapeutics. Understanding the role of the vector in arbovirus 

transmission has provided critical practical and theoretical tools to control arboviral disease.
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INTRODUCTION

Arboviruses are defined as viruses that are transmitted to a mammalian host by an arthropod 

vector. In humans, relevant disease-spreading arthropods include mosquitoes and ticks, 

among others. This enzootic transmission cycle requires that virus, vector, and host spatially 

and temporally interact in a way that facilitates acquisition of a virus from an infected host 
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into a susceptible vector, dissemination of the virus throughout the vector to the salivary 

glands, and transmission of the virus to a host. Numerous complex factors play a role in this 

dynamic relationship, including vector capacity and host susceptibility. Vector capacity 

describes all aspects of a vector’s ability to acquire, maintain, and transmit a pathogen, 

including the feeding habits and life span of the vector species (1). Host susceptibility 

includes a complex interplay of genetic and immunological determinants.

Currently, the Centers for Disease Control and Prevention’s list of arboviruses and related 

zoonotic viruses encompasses more than 600 known arboviruses. Over 80 of these are 

known human pathogens. Our global survey of arboviruses is likely incomplete, and ongoing 

surveillance is necessary to understand how viruses spill over into the human population. 

Many arboviruses have evolved the ability to infect both arthropod and mammalian hosts, 

leading to widespread human infection and disease. Understanding the role of the vector in 

arbovirus transmission is critical to the development of novel strategies to control the spread 

of disease. Here we review features of vector mosquitoes that influence arbovirus 

transmission. We compile work from diverse research fields and identify novel targets for 

rational therapeutic and vaccine design based on vector rather than viral or host components.

DENGUE AND WEST NILE VIRUSES

Currently, dengue virus (DENV) is the most problematic arbovirus to the human population; 

globally, it infects 100–390 million individuals, causing up to 96 million symptomatic 

infections and leading to 12,500 deaths per year—mostly among young children (2, 3). 

DENV is considered a reemerging pathogen largely because of the increasing range of 

Aedes aegypti and Aedes albopictus vectors. These mosquito species are spreading around 

the world due to globalization, a warming climate, and other factors (4). Epidemics of 

DENV have primarily been restricted to resource-limited areas of the world, regions that 

include 2.5 billion individuals or 40% of the world population, making DENV a significant 

burden on these struggling economies (3).

Unpredictable outbreaks of arboviral disease, such as the introduction of West Nile virus 

(WNV) into the United States in 1999, highlight the need to control the spread of 

arboviruses and their disease vectors. WNV has become endemic to the Unites States and is 

responsible for unpredictable epidemics that result in hundreds to thousands of reported 

cases of neuroinvasive diseases each year (5). Dozens to a few hundred deaths occur each 

year from disease caused by WNV infection (5). Since the introduction of WNV in the 

United States, over 3 million people have been infected (6). The reason for the variability in 

epidemic severity is unclear, but it may be in part due to interactions between the vector 

mosquito and its environment, including temperature changes and availability of preferred 

hosts (7). There are no specific treatments or prophylactics available for either DENV or 

WNV, and treatments are limited for many other human disease-causing arboviruses.

MOSQUITO VECTORS

A number of mosquito species serve as vectors of arboviral disease in nature, and many 

more are competent vectors in a laboratory setting. We can expect fluctuations in time of the 
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predominant species involved in arbovirus transmission. At present, Aedes and Culex spp. 

are the major vectors of medically important arboviral diseases in humans (Table 1).

Aedes aegypti and Aedes albopictus

Aedes aegypti is a tropical mosquito that has recently become endemic to many novel 

geographic locations due to globalization, a warming climate, and the disuse of DDT 

(dichlorodiphenyltrichloroethane) as an insecticide. Aedes aegypti is the primary vector of 

DENV, chikungunya virus (CHIKV), and yellow fever virus (YFV) and has colonized 

southern regions of the United States including parts of Florida, California, and Texas (Table 

1) (8, 9). Aedes albopictus is also a competent vector for many arboviruses including DENV 

and CHIKV, although it typically leads to milder epidemics than Aedes aegypti does (10). 

Aedes albopictus has also been found in nature infected with WNV, eastern equine 

encephalitis virus (EEEV), and Japanese encephalitis virus (JEV)(11).

Aedes albopictus is a temperate mosquito that has colonized a major portion of the United 

States. In the north, Aedes albopictus has become endemic from New Jersey to the Midwest. 

In the south, it has become endemic from Florida to Texas (10). It does not appear that 

Aedes albopictus can overwinter north of Chicago; however, genetic and climatic variation 

can lead to enhanced survival of mosquito eggs during winter conditions (12–14).

At this point, it is unclear whether DENV can become established in the United States 

Aedes albopictus population (15). However, studies suggest that Aedes albopictus can 

maintain a pool of DENV that is utilized by Aedes aegypti (10). This possibility suggests 

that DENV can move between these two species. Currently, they overlap in multiple regions 

throughout the southern United States. Interestingly, when inhabiting the same geographical 

region, Aedes albopictus tends to displace Aedes aegypti from competing environments due 

to the one-directional insemination of Aedes aegypti females by Aedes albopictus males (16, 

17). It should be determined whether the competitive advantage of Aedes albopictus over 

Aedes aegypti can lead to the selection of DENV variants that are more effectively 

transmitted by Aedes albopictus. This scenario would facilitate the dissemination of DENV 

into the United States and other more temperate regions that are refractory to colonization by 

Aedes aegypti.

Culex Species

Several species of Culex have the ability to serve as vectors of arboviruses such as WNV, 

JEV, and St. Louis encephalitis virus (SLEV) (Table 1). Though Culex spp. typically obtain 

their blood meals from birds instead of mammals, their ability to harbor and transmit human 

pathogens during the occasional human blood meal can lead to severe and potentially fatal 

disease (18). WNV is maintained in an enzootic transmission cycle between Culex spp. and 

avian hosts. Humans, horses, and other animals are considered dead-end hosts and are 

usually targeted by Culex spp. when the preferred avian host is not available (18, 19). Avian 

hosts may not be available due to changes in climate or migration patterns, leading to 

increased human exposure to infected mosquitoes (18). The most important Culex spp. in 

terms of arbovirus exposure and human infection vary depending on the geographical region 

and may be subject to change depending on climate and host availability. Generally, Culex 
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pipiens, Culex tarsalis, and Culex quinquefasciatus are responsible for transmission of WNV 

in the United States. Different Culex spp. have been implicated in disease transmission in 

other countries.

VIRUS-VECTOR INTERACTIONS

Virus Acquisition

Mosquitoes become infected with arboviruses during feeding on an infected host. Virus 

travels into the mosquito midgut along with the blood meal. In order for the mosquito to 

acquire an arboviral infection, it is essential that the arbovirus has evolved a mechanism to 

breach the midgut barrier. This consists of both immunological and physical barriers 

including proteolytic enzyme upregulation, the RNA interference (RNAi) pathway, 

peritrophic matrix formation, antimicrobial molecule influx, and the physical barrier of 

midgut epithelial cells (20–22). The presence of normal bacterial flora in the insect midgut 

also negatively influences arbovirus acquisition. This antiviral state may be due to the 

production of reactive oxygen species by the vector to control bacterial growth, or perhaps to 

competition for metabolic resources (23).

It is largely unknown how arboviruses evade the midgut barrier, although incoming arboviral 

populations do undergo a genetic bottleneck (24). Presumably, certain genotypes are 

maladapted to the midgut environment, and a strong selective pressure is exerted (25). If this 

is the case, it is not clear what phenotype the selected population has that makes it well 

adapted to the mosquito midgut environment. It is also possible that a nonselective reduction 

in the viral population leads to the genetic bottleneck and that infection of midgut epithelial 

cells simply requires a high titer of virus in the blood meal.

Vector Response to Infection

The acquisition of an arbovirus leads to transcriptomic and proteomic alterations in 

mosquito vectors. Many studies have been performed to evaluate the effect of arbovirus 

infection on mosquito gene expression, protein levels, and immune system responses, as 

well as the impacts these changes have on the vector’s life cycle (26–28). For many genes, it 

is unclear whether altered gene and protein expression is directed by the virus or the vector. 

Generally, microarray analysis has shown that flavivirus infection leads to the up regulation 

of many genes in Aedes aegypti, including transcription factors, ion-binding proteins, and 

many metabolic proteins, and leads to the downregulation of protease and pupal cuticle 

protein genes, among others (26). Transcriptomic analysis of Culex spp. during infection has 

revealed that many genes related to transport and metabolism are upregulated upon infection 

with WNV (29). The immune response of both Culex and Aedes spp. to arbovirus infection 

includes the RNAi pathway, the JAK-STAT pathway, and Toll signaling (30–32). Immune 

responses may also be triggered by factors in the blood such as insulin, which may stimulate 

the ERK pathway and lead to a broad antiviral response (33). It is likely that viral infection 

directs some alteration in gene expression and immune function in the mosquito, and these 

genes and proteins may represent ideal targets for blocking arbovirus infections in the 

vector.
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Dissemination to the Salivary Glands

For those arbovirus genotypes that do survive the midgut barrier, it takes several days to 

disseminate to distal tissues including the salivary gland (34, 35). It remains to be seen 

whether arboviruses undergo further selective pressure in the hemolymph or other distal 

tissues. However, after the midgut, a second bottleneck has been observed in the salivary 

glands, suggesting either that certain viral genotypes are maladapted to infect this organ or 

that a strong nonselective reduction in the viral population occurs at that site (24). While 

mutations can become fixed in viral populations after passage in insect cell culture or live 

mosquitoes, it is clear that alternating between vector and host constrains the rate of 

evolutionary change (36–38). These constraints may limit the interaction of viral and cellular 

components to evolutionarily conserved molecules that are present in both vector and host. 

However, selection and accumulation of vector-specific mutations may occur in a single 

round of infection. These mutations may impact transmission or pathogenesis in the host. 

For example, research on DENV replication kinetics in Aedes aegypti has shown that virus 

isolates that are more commonly associated with dengue hemorrhagic fever epidemics can 

outcompete virus isolates associated with dengue fever (39).

VIRUS-VECTOR-HOST INTERACTIONS

Establishment of an Enzootic Transmission Cycle

Mosquitoes as we know them have been on this planet for at least 50 million years (40). An 

increasing number of arboviruses have been classified as infecting only arthropods, raising 

the questions of where these viruses came from and which genetic changes were required for 

adaptation to their new arthropod hosts (41, 42). These viruses may have been introduced 

into arthropods from the environment or during a sugar or blood feeding event. Other 

arboviruses can infect both arthropods and mammals. Unknown genetic changes are 

required for the adaptation of arboviruses to mammalian hosts. At a minimum, the 

establishment of an enzootic transmission cycle would require the selection of viral proteins 

that can interact with diverse molecules including cell surface receptors and entry factors, 

immune components, protein translation machinery, and protein export machinery in both 

arthropod and mammalian cells. It is reasonable to hypothesize that many individual 

mutations are required for an arthropod-only virus to transition to an enzootic transmission 

cycle that includes a mammalian host. It is unclear how the selective environment in disease 

vectors influences this process, and it is possible that certain arthropods or environments 

more effectively select for viruses that can be transmitted to a mammalian host. 

Understanding how this selective process leads to the evolution of pathogenic arboviruses is 

critical to control emerging arboviral diseases.

Factors Influencing Host Seeking

Mosquito species feed on either plant nectar, vertebrate blood, or both plant nectar and 

vertebrate blood (43–46). Mosquitoes use different visual, chemical, and sensory cues to 

seek out nectar and blood meals (47,48). Disease vectors sense various attractive cues to host 

seek including movement, body heat, CO2, and volatile compounds released from host skin 

and normal bacterial flora (48–52). Discrimination of hosts can be further stratified at the 

genus level. For instance, Culex spp. prefer to feed on American robins in some locations 
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and will feed on humans only if their preferred avian host is not available (18, 19). The 

genetic alterations required for host discrimination are largely unknown, although it is clear 

that insects detect attractive cues through several molecules including odorant receptors and 

an obligate coreceptor called orco (48). Importantly, genetic disruption of Aedes aegypti 
orco protein led to reduced discrimination between animal and human scent in the presence 

of CO2 and to reduced attraction to honey and human scent in the absence of CO2 (48). 

Detection of skin odor has been mapped to CO2-sensitive olfactory neurons, which suggests 

that orco is expressed in this cell type (53). Detection of CO2 appears to amplify scent 

signals in the mosquito. These data confirm that molecular evolution is key to host detection 

and discrimination.

Influence of Saliva on Transmission

When infected mosquitoes probe host skin for a source of blood, they inoculate virus-

infected saliva mostly into extravascular spaces in the dermis (54–56). The majority of in 

vivo arbovirus research uses laboratory techniques such as needle inoculation of virus that 

may alter or miss elements of the natural infectious process, which is typically modified by 

vector saliva (57). Accordingly, multiple reports have identified a role for mosquito saliva in 

the modulation of arbovirus infectivity and transmission both in vitro and in vivo (Table 2) 

(58–67).

Although a correlation between saliva-mediated infectivity enhancement and the modulation 

of interferon (IFN), tumor necrosis factor (TNF), and T helper 1/2 (Th1/Th2) immune 

responses has been shown, no study has directly tested whether modulation of the immune 

response is required for saliva-mediated infectivity enhancement or is just a consequence of 

exposure to saliva allergens (57, 59, 61, 62, 68). That said, most studies do show that saliva 

can suppress IFN expression in both in vitro and in vivo model systems (62, 69–74). 

Suppression of the host innate immune response would be expected to have an impact on 

virus transmission; however, there are no conclusive experimental data that implicate a 

specific saliva factor in immunomodulation. Further, saliva-mediated enhancement of DENV 

infectivity occurs in cells and mice lacking the type I IFN response, suggesting that 

enhancement in this context is not the result of modulation of the innate immune system 

(63). The role of the immune response in saliva-mediated infectivity enhancement is not 

clear. It is clear, however, that both mosquito saliva and virus must be inoculated at the same 

cutaneous site for infectivity enhancement to occur (61, 75), suggesting that a mosquito 

saliva component alters the local inoculation site in favor of virus transmission.

Complex Nature of Mosquito Saliva

Salivary gland transcriptomes (sialotranscriptomes) have been generated for multiple 

mosquito species, and these data suggest that over 100 proteins are expressed and secreted 

into saliva (76, 77). All hematophagous arthropods appear to express saliva proteins with 

antiplatelet, anticoagulation, and vasodilation activities, and many of these proteins have 

been characterized genetically and biochemically (76). There are many other proteins whose 

role in blood feeding and virus transmission remains largely uncharacterized, including D7 

proteins, odorant-binding proteins, antimicrobial proteins, serpins, nucleotidases, serine 

proteases, lectins, mucins, and various other antigens of unknown homology and function 
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(76). It will be important to determine whether any of these proteins play a role in arbovirus 

transmission.

Due to the complex nature of mosquito saliva, certain saliva factors may inhibit and others 

may enhance virus infectivity (63). In fact, a cecropin-like peptide that is expressed in the 

salivary glands of Aedes aegypti has been shown to lower DENV infectivity (28). 

Additionally, immunization with recombinant D7 protein, one of the most immunogenic 

proteins in saliva, led to enhanced WNV infection in mice, suggesting that the protein itself 

is directly or indirectly inhibitory to infection (78). A recombinant pupal cuticle protein that 

is expressed in Aedes aegypti salivary glands was also able to inhibit WNV infection in an 

encephalitic mouse model of infection (26). Interestingly, we found that certain fractions of 

high-performance liquid chromatography (HPLC)-fractionated Aedes aegypti salivary gland 

extract (SGE) increased and others decreased DENV infectivity in vitro, whereas 

transmission enhancement was observed using nonfractionated SGE in vivo (63). This 

suggested that enhancing factors may be dominant over inhibiting factors in vivo. The vast 

majority of studies using coinoculation of virus with SGE or live mosquitoes to deliver a 

virus inoculum suggest that whole saliva enhances rather than inhibits infectivity (Table 2).

Saliva-Induced Allergic Response and Transmission

Mosquito saliva contains potent allergens. The bite of a mosquito and subsequent injection 

of saliva into human skin almost always trigger an allergic reaction. Treatment of skin with 

irritants or allergens modulates the dermal environment and induces the migration of 

Langerhans cells to draining lymph nodes (79). Although the mechanistic details of how 

irritants and allergens induce Langerhans cell migration are not fully defined, it is correlated 

with the breakdown of integrinmediated interactions with the extracellular matrix and a 

fibroblast and interleukin 10 (IL-10)-dependent switch of Langerhans cells to a macrophage-

like phenotype (80, 81). Many allergens such as dust mite Der p proteins, Aspergillus spp. 

Asp proteins, certain pollens, and cockroach proteins are proteases that cleave tight-junction 

molecules and activate PAR2 (82). This results in increased epithelial permeability and 

production of chemokines. These proteases also cleave components of complement, CD40, 

CD25, and CD23, leading to various cellular effects ranging from recruiting innate immune 

cells to stimulating immunoglobulin E (IgE) production by B cells (82). Protease allergens 

also elicit a Th2 response, which has been suggested as the cause of saliva-mediated 

infectivity enhancement (59, 68, 83).

We identified that serine protease activity in mosquito saliva is responsible for transmission 

enhancement in vivo (63). Our mechanistic studies suggested that the salivary serine 

protease breaks down the extracellular matrix laid down by interstitial fibroblasts, which 

may lead to increased cell migration at the inoculation site. Blocking extracellular matrix 

breakdown with a chemical inhibitor completely inhibited saliva-mediated enhancement of 

viral RNA in draining lymph nodes (Figure 1) (63). Langerhans cells are targets of DENV 

infection in vivo (84), whereas macrophages may serve to control infection at this early time 

point (85). Given this context, we hypothesize that a mosquito saliva serine protease, like 

known protease allergens, disrupts the barrier function of skin and induces Langerhans cell 

migration to draining lymph nodes. Induction of Langerhans cell migration would increase 
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the probability of interaction with immobilized virions and dissemination to distal sites in 

the host (Figure 1).

TARGETING THE VECTOR: THE FUTURE OF ACQUISITION-AND 

TRANSMISSION-BLOCKING TECHNOLOGIES

The development of therapeutics that target either a pathogen or vector protein to prevent 

transmission to human hosts is essential to the eradication of many vector-borne diseases. 

Acquisitionblocking vaccines (ABVs) are currently being developed and have been 

successful at preventing malaria infection of Anopheles mosquitoes (86–88). One of these, 

an ABV developed against the Plasmodium protein Pfs25, was able to prevent the 

acquisition of malaria from infected mice by naive mosquitoes (86). Another group found 

that vaccinating mice with the mosquito protein serpin-2 prevented the acquisition of 

Plasmodium berghei by a naive group of mosquitoes (89). In addition, an arthropod-specific 

transmission-blocking vaccine (TBV) based on the outer surface protein A (OspA) of 

Borrelia burgdorferi, the causative agent of Lyme disease, has been shown to protect mice 

from spirochete infection. Proteins from sand fly saliva have also been used successfully as 

TBVs to prevent the transmission of Leishmania (90–92). The studies above suggest that it 

is theoretically possible to use mosquito proteins as TBVs to prevent the transmission of 

DENV and other arboviruses.

Advances in techniques to biochemically, genetically, and physically manipulate mosquito 

vectors have resulted in an explosion of novel vector control strategies to combat arboviral 

disease. For instance, the adaptation of RNAi and transgenic techniques used in Drosophila 
and other species has facilitated experimentation with gene-altered mosquitoes. Genes can 

now be upregulated, downregulated, knocked in, and knocked out of disease-causing 

mosquitoes. Further, the annotation of disease vector genomes has facilitated the use of 

high-throughput technologies such as RNA Seq and proteomics. These technologies will 

become more refined in the near future, leading to tissue-targeted gene modulation and a 

global collection of transgenic mosquito colonies with various genetic alterations, as well as 

a detailed understanding of the molecular determinants that govern virus transmission. 

Novel strategies are already being developed and tested that could provide valuable tools to 

reduce arboviral disease (Figure 2). The following sections detail exciting progress in the 

development of various vector-based control measures and therapeutics.

Repellents and Attractants

Many stimuli attract mosquitoes, including movement, body heat, CO2, and skin volatiles. 

Recently, targeted mutations in an obligate coreceptor of the odorant-binding protein 

receptors, orco, led to the generation of orco knockouts (48). These mosquitoes lost their 

host-seeking preference for humans and were refractory to the effects of DEET (N,N-

diethyl-meta-toluamide). Importantly, high-throughput screening identified orco agonists 

that interfere with its function and that may interfere with host seeking thousands of times 

more effectively than DEET (93, 94). Another high-throughput screen discovered both 

agonists and antagonists of cpA, a mosquito neuron that is critical for detection of human 

skin odor (53). Antagonists blocked mosquito attraction to human stimuli. Agonists 
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increased attraction, suggesting that they could be used as bait to trap and control local 

mosquito populations. Field studies of the above chemicals in addition to structural analysis 

of orco and other olfactory proteins from vector mosquitoes will help in the design of more 

effective, targeted repellents that are less toxic to the human population and are 

environmentally friendly.

The identification of powerful attractants and the development of effective traps also provide 

opportunities for control of vector-borne disease. Mosquito traps have been developed that 

utilize CO2, octenol, and human skin volatiles to attract and remove disease vectors from the 

environment. Detailed molecular and structural analysis of odorant-binding proteins and 

their preferred ligands will provide important information for the design of powerful 

attractants. High-throughput assays will need to be developed using recombinant odorant-

binding proteins and insect cell culture to probe interactions between vector sensory proteins 

and candidate attractant molecules.

Wolbachia—The use of biological control as a method to reduce mosquito numbers as well 

as to reduce the transmission of arboviruses by mosquito vectors is a relatively novel and 

creative intervention technique. Mosquitoes infected with the obligate intracellular bacteria 

Wolbachia are unable to successfully reproduce due to the phenomenon known as 

cytoplasmic incompatibility. Wolbachia is naturally present in several mosquito species, 

including Aedes albopictus and Culex pipiens, though it is not present in Aedes aegypti. The 

release of Wolbachia-infected males can reduce Culex spp. mosquito populations in nature, 

and new models predict that population replacement strategies could successfully establish 

dominant Wolbachia-infected mosquitoes (95, 96).

Naturally occurring strains of Wolbachia can also restrict salivary gland infection of Aedes 
albopictus with DENV and limit transmission, because the number of infectious particles is 

greatly reduced in the saliva of mosquitoes infected with Wolbachia (97). In addition, Culex 
quinquefasciatus mosquitoes are less susceptible to WNV when they are infected with 

Wolbachia and are less able to transmit the virus (98). Anon-native Wolbachia infection of 

Aedes albopictus has also been shown to inhibit CHIKV infection (99). Although Aedes 
aegypti is not naturally infected with Wolbachia, several groups have successfully generated 

mosquitoes with stable, inheritable infections (100, 101) and have shown that these infected 

mosquitoes are resistant to DENV and CHIKV infection (102–104). Field trials have already 

been initiated to test whether Wolbachia-infected Aedes aegypti will be less prone to DENV 

infection in nature; these trials are based on the release and establishment of infected 

mosquitoes in Australian populations and follow-up to assess whether the endosymbiont 

remains in the local mosquito population over time. Trials with Wolbachia suggest that 

biological control of arboviral disease may play a key role in disease mitigation (102, 105). 

Time will tell whether the Wolbachia technique will continue to suppress arboviral 

pathogens. It is possible that the targeted viruses will evolve resistance or that the effect of 

Wolbachia on the vector will wane.
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Other Viruses

Attempts have also been made to utilize arboviruses as a biological control measure, either 

to inhibit the replication of pathogenic arboviruses or to limit the life span of vector 

mosquitoes (106, 107). A genetically altered mosquito virus could also be used as a means 

to deliver a lethal or inhibitory gene (108). The focus has been on densoviruses, but a rapid 

increase in the discovery of insect-only flaviviruses may lead to the identification of viruses 

that effectively compete with the DENV life cycle yet do not cause disease in humans (42, 

106). Use of viruses as a biological control agent may benefit from their inherent high 

mutation rate, which may compete with adaptation of pathogenic arboviruses, and their 

ability to rapidly spread through a local mosquito population. Mutations may also be 

selected or engineered that facilitate effective competition with pathogenic arboviruses. 

However, recombination events between insect-only and pathogenic arboviruses must be 

taken into account, which could theoretically lead to the development of novel human 

pathogens. Comprehensive studies should first be performed to elucidate the genetic changes 

that are required for insect-only arboviruses to adapt to a mammalian host.

Transgenic Mosquitoes

Another biological intervention to control mosquito populations and reduce their capacity 

for arbovirus infection is genetic modification. One method, called release of insects with 

dominant lethality (RIDL), has successfully created insects that carry a dominant-lethal 

gene; this technique involves males delivering female-acting transgenes to the mosquito 

population. Transgenes currently in use include those to reduce flight (109) and to induce 

mortality with age (110, 111), and the RIDL method is now being implemented in Brazil 

and Malaysia (112). Another use of genetic control is to create mosquitoes with enhanced 

viral resistance. An example is the recent creation of mosquitoes expressing RNAi against 

DENV RNA, which reduced infection in expressing mosquitoes (113). Finally, transgenic 

mosquitoes containing bacterial homing endonuclease gene (HEG) elements have been 

created by using simulation modeling; these have lowered vector competence and have been 

predicted to eliminate mosquito populations (114, 115).

Transmission-Blocking Therapeutics

Arthropod saliva can modulate the infectivity of a number of arboviruses in vitro and in vivo 

(60, 63). Currently, little is known about the molecular components in mosquito saliva that 

are responsible for infectivity enhancement, and it is unclear whether this phenomenon 

occurs in the human host. Our data suggest that a saliva serine protease is responsible for 

enhancing dissemination of DENV to draining lymph nodes in a mouse model of infection. 

A serine protease inhibitor was able to completely block saliva-mediated enhanced 

dissemination, suggesting that prophylactic intervention with a chemical inhibitor or vaccine 

could significantly reduce the probability that DENV would disseminate beyond the 

inoculation site (63). Further research is required to conclusively identify the molecular 

components in vector saliva responsible for infectivity enhancement before vector saliva-

based TBVs can be developed.

Importantly, no saliva-mediated transmission enhancement experiments have been 

performed using human subjects or tissues. Therefore, it is unknown whether saliva-
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mediated infectivity or transmission enhancement is relevant to human disease. These 

experiments would be difficult to perform considering the danger of human infection with 

most arboviruses and would be further complicated by preexisting memory responses 

against multiple arthropod saliva proteins. Further, clinical trials testing the efficacy of saliva 

proteins as TBVs should take into account experimental data suggesting that immunization 

with certain saliva proteins can enhance virus transmission and disease (63, 78). 

Establishment of human explant models of saliva-mediated infectivity enhancement will be 

critical for understanding how mosquito saliva proteins alter the epithelium and induce 

migration of target immune cells, and for developing novel therapeutics and vaccines to 

block transmission enhancement.

Acquisition-Blocking Therapeutics

Multiple components are likely required for successful acquisition of an arboviral infection 

in the vector midgut. As an example, recent research identified both a soluble C-type lectin 

coreceptor and a human CD45 homolog receptor that facilitate WNV acquisition into 

midgut cells (116). It is theoretically possible to develop chemical inhibitors or vaccines that 

would prevent the acquisition of arboviruses by uninfected vector populations. Although this 

strategy would not help the infected host, it would reduce the number of infected vectors 

within a population, mitigating the total number of human infections. This would be of huge 

importance from a public health perspective. Future research is required to identify target 

molecules that are required for acquisition of arboviruses in the mosquito midgut, and to 

develop chemical or biological interventions.

CONCLUSIONS

The impact of arboviral diseases is global in scope and has become a great concern due to 

the expanding geographical range of many mosquito species. Many arboviral diseases occur 

during unpredictable epidemics that increase the difficulty of controlling these infections. 

Further, after decades of research, a traditional vaccine is not available for DENV, which is 

arguably the most important arbovirus causing disease in the world today. Novel targets are 

desperately needed to combat arboviral diseases. In recent years, there has been a shift in the 

fight against arboviral disease toward a focus on vector-based instead of host- or virus-based 

therapies. These therapies span a wide range of technologies, some of which are being tested 

in the field and some of which are still in their infancy in the molecular biology lab. In the 

near future, we can expect to see a new arsenal of technologies available to combat arboviral 

disease, including transgenics, biological control agents, second-generation repellents, and 

transmission- and acquisition-blocking vaccines, among other possibilities.
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Figure 1. 
Model of saliva-mediated infectivity enhancement. ❶ Infected mosquitoes inoculate virus-

laden saliva mostly into host dermal tissue during probing for a blood meal. ❷ Saliva serine 

proteases break down dermal extracellular matrix, which modulates the immune response. 

❸ Langerhans cell migration is induced, which increases the probability of interaction with 

immobilized virions. ❹ Infected Langerhans cells migrate to draining lymph nodes, thereby 

enhancing the dissemination of virus into the host.
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Figure 2. 
Available (black) and theoretical (red) interventions to combat arboviral disease. Physical 

barriers, pesticides, repellants, and attractants/traps are the only methods available to prevent 

arboviral diseases. Supportive care is the only treatment option available in most cases. The 

development of a traditional vaccine for dengue virus has been problematic due to antibody-

dependent enhancement. New research has paved the way for vector-based interventions 

including acquisition- and transmission-blocking vaccines and therapeutics, biological 

control agents, and the release of genetically altered, sterile mosquitoes.
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Table 1

Mosquito-borne arboviruses that cause disease in humans

Arbovirus Main vector(s)
a Main reservoir(s) Endemic region(s)

Dengue virus Aedes Primates, humans Africa, Asia, South America, Pacific

West Nile virus Culex Birds Europe, North America, Africa, Asia

Yellow fever virus Aedes Primates, humans Africa, South America

Japanese encephalitis virus Culex Birds, pigs Asia

St. Louis encephalitis virus Culex Birds Americas

Chikungunya virus Aedes Primates, bats, rodents Africa, Asia

Venezuelan equine encephalitis virus Culex, Aedes Rodents Americas

Ross River virus Culex, Aedes Mosquitoes Australia, New Zealand

Eastern equine encephalitis virus Culex, Aedes Birds, rodents Americas

Western equine encephalitis virus Culex Birds Americas

O’nyong-nyong virus Anopheles Mosquitoes
b East Africa

Rift Valley fever virus Culex, Aedes Sheep, cattle Africa, Asia

Murray Valley encephalitis virus Culex Birds Australia, New Guinea

Orungo virus Anopheles, Aedes Mosquitoes
b Africa

La Crosse encephalitis virus Aedes Squirrels, chipmunks North America

Sindbis virus Culex Birds Europe, Africa, Asia

Vesicular stomatitis virus Widespread
c

Widespread
c Americas

a
Only the genus of each main vector is listed.

b
Other reservoirs may exist.

c
More than three vectors or reservoirs have been identified.
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