Skip to main content
. 2021 Jan 14;4:65. doi: 10.1038/s42003-020-01559-z

Table 2.

Examined types of autoencoder neural networks.

Autoencoder architecture Unit activation function Regularization constraints on parameters Number of latent layers Units per latent layer Tied weights
Baseline Identity None 1 15 No
Baseline + l1 Identity l1 penalty 1 15 No
Baseline + l2 Identity l2 penalty 1 15 No
Baseline + covariance Identity Covariance 1 15 No
Tied non-linear Relu None 1 15 Yes
3-layer non-linear Relu None 3 25-15-25 No
5-layer non-linear Relu None 5 25-20-15-20-25 No

Summary of the different types of artificial neural network classes that were explored to discover structural dependencies between social brain regions.