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Abstract

Cancer immunotherapy using genetically modified immune cells such as those expressing 

chimeric antigen receptors has shown dramatic outcomes in patients with refractory and relapsed 

malignancies. NK cells as a member of the innate immune system, possessing both anti-cancer 

(cytotoxic) and proinflammatory (cytokine) responses to cancers rare off-target toxicities have 

great potential for a wide range of cancer therapeutic settings. Therefore, improving NK cell 

antitumor activity through genetic modification is of high interest in the field of cancer 

immunotherapy. However, gene manipulation in primary NK cells has been challenging because of 

broad resistance to many genetic modification methods that work well in T cells. Here we review 

recent successful approaches for genetic and epigenetic modification of NK cells including 

epigenetic remodeling, transposons, mRNA-mediated gene delivery, lentiviruses, and CRISPR 

gene targeting.

1. Viral transduction of NK cells

1.1 Retroviral vectors

Retroviral vectors are major tools to achieve stable cell transduction and, through the years, 

have become indispensable to study cell biology and develop cell therapy via cell 

engineering. However, unlike T cells or hematopoietic stem cells (HSC), NK cells are 

notoriously difficult to transduce.(1–3) As an example, Seillet et al. developed a transduction 

strategy using innate lymphoid cells (ILC) progenitors isolated from mouse bone marrow. To 

obtain transduced NK cells, they transduced ILCs and re-introduced them back into mice to 

differentiate into NK cells.(4) While this technique allowed them to study NK-cell biology 
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in a murine model, it was clearly not applicable to a human system or for therapeutic 

purpose. This example illustrates the high resistance of mature NK cells to transduction and 

the need for more efficient transduction methods to generate engineered NK cells for cell-

based therapy and/or human NK-cell biology study. Despite this difficulty, several 

advantages of CAR-NK have been suggested, including the duality of CAR-dependent and 

CAR-independent cytotoxicity of CAR-NK cells(5), and the reduced risk of graft versus 

host disease (GvHD) and cytokine release syndrome (CRS).

Retroviral vectors consist of simple retrovirus (Alpharetrovirus, Betaretrovirus, 
Gammaretrovirus) and complex retrovirus (Lentivirus). Simple retrovirus were the first 

vectors described for NK cell transduction, but with modest and very variable transduction 

rates.(6, 7) Because simple retroviruses need actively dividing cells to integrate the host cell 

genome, the use of an expansion system for NK cells is mandatory. While this limitation 

hampers the modification of freshly isolated NK, it is adaptable to the various NK 

amplification systems that are used in the context of cell-therapy.(8, 9) Moreover, these 

systems allow for multiple rounds of virus application to increase transduction rates. Indeed, 

Guven et al. have reported a NK-cell transduction rate averaging 50% with two rounds of 

gene delivery using retrovirus.(7) However, this strategy is toxic for NK cells and results in 

high mortality rates, thus limiting its applicability for large-scale clinical production of 

engineered-NK cells. This transduction rate is comparable with the best non-viral transient 

transfection rates achieved with electroporation in primary NK with small vector such as 

GFP.(10, 11) Enrichment of modified NK cells can alleviate this transfection rate constrain,

(11) but the transient nature of transfection, averaging 15 days at best,(10) limiting its 

clinical utility. Therefore, virus-based transduction is currently favored.

Interestingly, the first published CAR-NK to advance to clinical use was based on a 

gammaretrovirus transduction protocol and aimed at treating leukemia,(12, 13) for which 

RD114-based gammaretroviral particles were used to develop cord-blood derived CAR-NK-

cells.(12) Clinical responses reported for CAR-NK-cells produced by this approach are 

encouraging(12, 13) and advocates for the continued development NK-CAR therapies.

1.2 Genotoxicity and New Viral Vectors

Simple retroviral-based vectors were among the first to be used for cell engineering 

approved for clinical use,(14, 15) however, genotoxic issues have been associated with their 

use, especially for those based on the gammaretrovirus murine leukemia virus (MLV).(16, 

17) Indeed, gammaretroviruses are known to integrate in proto-oncogene regions of the 

genome. Recognition of this genotoxicity led to the use and development of lentiviral and 

self-inactivating vectors.(18)

Self-inactivating (SIN) alpharetroviral vectors transduction protocols have been developed 

for NK cells. Indeed, recently a GMP-compliant NK-cell engineering protocol was recently 

described with the vision to be used in clinic.(19) Although this protocol resulted in 

acceptable NK-cell purity, viability, and recovery after thawing, the transduction rate 

remained in the low range (between 5% and 10% for a chimeric antigen receptor (CAR) 

construct).(19) Those low transduction rates increase the difficulty and the cost of 
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production for therapeutic use, but this GMP-compliant protocol still represents a step 

towards a convenient use of engineered NK cells in clinic.

Even though gammaretrovirus were more common, lentiviruses are now being used more in 

clinic. Three generations of lentiviral vectors that were incrementally safer were gradually 

developed. The third-generation lentiviral vectors used today lack accessory virulence 

factors and are coded on different plasmid to reduce the likelihood of creating recombinant 

virus. Deletion in the LTRs disrupting their enhancing/promoting capacity creates a self-

inactivating vector that further improve safety. Therefore, the third generation lentiviral 

vectors are safer than the first generation(16, 18, 20–22) in terms of risk of insertion in a 

proto-oncogene region(22) and systemic inflammation.(21) However, we must keep in mind 

that lentiviral vector still integrates in the genome and the number integrated copies is a 

considered a risk factor for oncogenesis. Therefore, the WHO and FDA (23) recommends an 

integration limit of 5 copies per cell. That being said, to date, no case of insertional 

oncogenesis has been reported with gene therapy using lentiviral vectors,(18) but follow-up 

of patients must be made diligently to assess the long-term risks. Lastly, lentiviruses also 

have the advantage that they do not require that the cell enters in an active division to 

successfully integrate the genome.(2) Third generation SIN lentiviral vectors (LV) have been 

successfully used in low to non-proliferative cells, such as CD34+ for gene therapy of 

thalassaemia (VSV-G pseudotype SNI-LV vector, PMID: 20844535), metachromatic 

leukodystrophy (3rd generation SNI VSV-G pseudotype vector),(24) and Wiskott-Aldrich 

syndrome (WAS)(3rd generation SNI VSV-G pseudotype vector (LV-w1.6W)).(25) 

Altogether, these lentiviral vectors become better alternatives than simple retroviruses for 

future clinical use.

1.3 Lentiviral vectors and the impact of pseudotypes on transduction

Tropism of lentiviral vectors can be broadened by using the envelope glycoprotein from 

other viruses, creating pseudotyped viruses. These pseudotypes are useful to engineer cells 

that are normally difficult to transduce due to the paucity of entry receptors. The most 

common pseudotyped lentiviral vectors (LVs) currently used in cell-engineering are the 

Vesicular Stomatitis Virus type-G (VSV-G)-pseudotyped, RD114-pseudotyped, and Measles 

Virus (MV)-pseudotyped LVs. VSV-G is the most common pseudotype used for 

hematopoietic stem cell (HSCT) and T cell transduction due to its ease of use and the 

ubiquitous expression of one of its virus entry receptor, the LDL-R.(18) However, despite 

the expression of the LDL-R and of other viral entry receptors such as VLDL-R, LRP1 and 

LRP8 on NK cells, VSV-G does not transduce NK cells efficiently.(26) The RD114 feline 

retrovirus envelope glycoprotein-LV was developed as an alternative to VSV-G pseudotype, 

as it uses a different viral entry receptor, the sodium-dependent neutral amino acid 

transporter 2 (ASCT-2),(27, 28) that is widely expressed in the hematopoietic cell lineage.

(29) Moreover, contrary to VSV-G, it is resistant to degradation by human complement, 

which is an advantage when used in vivo.(29) As mentioned above, RD114 betaretrovirus 

has been used to produce CAR-NK cells(12) although with a low transduction efficacy. 

Another member of the gammaretroviruses family is the baboon endogenous retrovirus.(30) 

Its envelope (baboon endogenous envelope - BaEV) can also be pseudotyped and used in a 

lentivector setting.(30) BaEV binds both the ASCT2 and ASCT1 proteins as viral entry 
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receptors (Figure 1b), hence broadening its tropism.(31) In the context of HSC transduction, 

the BaEV glycoprotein has been modified by the deletion of the fusion inhibitory R peptide 

(BaEVRLess glycoprotein) in order to increase viral production titers.(30) This improved-

pseudotype lentiviral vector resulted in increased HSC transduction efficiency.(30) Based on 

these results, our team has transduced freshly isolated and activated NK cells with BaEV-LV 

and compared its transduction performance to other lentiviral vectors.(26) In our hands, 

BaEV-LVs outperformed VSV-G-, RD114- and Measles Virus (MV)-pseudotyped LVs for 

both freshly isolated and activated NK cells, reaching a mean of 80% transduction efficiency 

in activated NK cells.(26) BaEV-LV transduction allowed for a robust and efficient 

transduction method, permissive to CAR constructs, resulting in a sustained transgene 

expression.(26) This technique was compatible with NK cells activated and expanded in 

multiple systems, including the IL15-feeder system(8), the IL21-feeder system(9) and a 

feeder-cell-free system (NK-MACS Medium, Miltenyi). In light of these new results, BaEV 

could have a major impact on both basic research of NK-cell biology, because of its capacity 

to transduce non-activated NK cells, and on NK-cell-based immunotherapy, because of its 

high transduction rates. In addition to generating CAR-NK cells, one could also engineer 

NK cells to enhance their function by manipulating their signaling pathway.(1) The next 

critical steps will be to bring these lentiviral vectors - especially the BaEV-pseudotype LVs - 

to GMP and clinical standards in order to test them in clinical trials using NK-cell based 

immunotherapy.

1.4 NK cell resistance to genetic modification

The very nature of NK cells - being innate immune cells - could explain their resistance to 

transduction. Their role as first responders to viral infections has likely led them to evolve 

mechanisms of high resistance to viral infection.(32) Indeed, foreign RNA viral present 

during the transduction process is known to activate pathogen-associated molecular patterns 

(PAMPs) in NK cells, triggering a cascade of intracellular signaling that results in apoptosis.

(3) Retroviruses and lentiviruses, with their double-stranded RNA, can activate TLR3, RIG-I 

and MDA-5 in NK cells, thus inducing toxicity in the NK cells. Interestingly, Sutlu et al. 
achieved a 3.8 fold boost of efficacy of NK-cell transduction by using BX795, an inhibitor 

of TBK1/IKKε, in their lentiviral transduction protocol.(2) The TBK1/IKKε complex is 

downstream of TLR3, RIG-I and MDA-5 activation cascade; hence BX795 abrogates the 

danger signal from the double stranded RNA present in retro- and lentivirus vectors. BX795 

is minimally toxic for NK cells and could be easily implemented in existing protocols using 

retrovirus or lentivirus. BaEVRLess pseudotype envelope could be used together with the 

BX795 for a further increase in transduction efficiency which, coupled to the safety aspect 

of the lentiviruses, could be favorable for bringing engineered NK cells into clinic.

2. Engineering primary NK cells using transposons

DNA transposons are natural DNA transfer vehicles that can be used for DNA delivery in a 

manner similar to integrating viruses. In nature, they exist as well-defined elements in which 

the transposase gene is flanked by terminal inverted repeats (TIRs) that encode transposase 

binding sites. They can be used as a tool for stable genomic insertion by surrounding a gene-
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of-interest with TIRs and co-delivering the transposase enzyme via an expression plasmid or 

mRNA (Figure 1).

2.1 Transposon families

Several DNA transposons have been used in such a manner in mammalian cells. In 1997, the 

Sleeping Beauty (SB) transposon system was molecularly reconstructed by eliminating 

inactivating mutations found in members of the Tc1/mariner family of transposons isolated 

from fish(33). The reactivated transposon system has since been used for stable gene transfer 

and insertional mutagenesis in many vertebrate cell types including human cells. 

Subsequently, the piggyBac (PB) and Tol2 transposable elements were isolated from insects 

and fish, respectively, and have been optimized for enhanced activity in mammalian cells(34, 

35). SB, PB, and Tol2 can be used as efficient non-viral tools for stable gene delivery, and 

each of these has been used for gene delivery in primary human lymphocytes(36).

2.2 Advantages of transposons

Transposons have some meaningful advantages as an alternative to viral vectors for gene 

therapy. Several clinical gene therapy products have been developed using genetically 

modified CD34+ hematopoietic stem cells or T cells. The majority of these products rely on 

the transduction of target cells with recombinant viruses, namely γ-retroviruses, lentiviruses, 

and adeno-associated viruses (AAV)(37, 38). These delivery methods carry the risk of 

insertional mutagenesis via activation of proto-oncogenes or inactivation of tumor 

suppressor genes. In addition, large-scale manufacturing of these viral vectors for clinical 

use can be cost-prohibitive and impede progression through clinical trials. Thus, the use of 

transposon systems instead of viral vectors has been pursued as an alternative due to 

convenient and cost-effective production and a better safety profile (17, 22, 39). Any vector 

that integrates into chromosomes poses the risk of insertional mutagenesis. A comparative 

study of the target site selection properties of SB and PB transposons as well as 

gammaretroviral and lentiviral systems in primary human CD4+ T cells ranked their safety 

profiles based multiple criteria including distance from the 5’-end of any gene and distance 

from any cancer-related gene. This analysis established SB as having the most favorable 

integration profile suggesting SB might be a safer alternative to viral vectors. (40)

2.3 Plasmid-based transposon systems

The use of transposon systems for gene delivery in human lymphocytes has been most 

widely studied as a method for generating human T cells engineered to express chimeric 

antigen receptors (CARs)(41, 42). Clinically, the SB system has been used to introduce 

CD19-specific CARs to patient- and donor-derived T cells(43, 44). Many preclinical studies 

and clinical trials thus far have introduced SB transposase and CD19 CAR by 

electroporation of bulk peripheral blood mononuclear cells (PBMCs)(45–48). CAR-

expressing T cells were subsequently expanded over several weeks in culture using feeder 

cells engineered to express the CD19 antigen and co-stimulatory molecules(43). Efforts are 

now being made to shorten the culture time before patient infusion. One such trial is 

underway in which PBMCs are transferred into the patient within 2 days after 

electroporation with SB transposase, CD19-CAR, and membrane-bound IL15 
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(NCT03579888). Signaling through the CAR and mbIL15 gives genetically-modified T cells 

a selective advantage after transplant, ensuring their outgrowth(49).

2.4 Reduced-toxicity transposon approaches

Another approach for shortening culture time ex vivo is to electroporate T cells directly, 

rather than as bulk PBMCs from which T cells need to be selected. This has been 

challenging as transposon-based gene transfer negatively affects T cell viability due to DNA 

toxicity and the induction of a type I interferon (IFN) response(50, 51). Thus, mRNA and/or 

minicircle vectors encoding the transposase combined with minicircle transposon vectors 

encoding the transposon have been used to minimize the amount of DNA introduced to the T 

cell. Minicircle vectors are DNA delivery vehicles that do not carry a bacterial origin of 

replication or bacterial resistance genes, reducing the size of the vector to only that of the 

expression cassette (Figure 1a) (52). This approach has been used to achieve stable 

expression of transgenes in primary human T cells with efficiencies over 50 percent(50, 53, 

54).

2.5 NK cell modification with transposons

Thus far, the use of transposons for NK cells has been mostly applied to the NK-92 cell 

line(55). Recently, sleeping beauty transposon has been used to transduce a CAR into 

cytokine-induced killer cells for targeting CD33 on chemoresistant AML in patient-derived 

xenografts (56). However, lessons can be learned from T cells on the use of transposons for 

CAR delivery to primary NK cells. The initial approach of electroporating PBMCs with the 

transposon-based CAR suggests that NK cells could be selectively outgrown instead of T 

cells. Indeed, some reports have shown outgrowth of NK cells reaching 50% of the PBMC 

population after co-culture with feeder cells(46). Thus, this approach could be optimized for 

selection of CAR-expressing NK cells, or delivery of a mixed population of CAR-T and -

NK cells might be advantageous as NK cells have been shown to produce inflammatory 

cytokines to help shape the adaptive immune response(57).

Alternatively, the use of minicircle vectors to deliver transposons directly to purified NK 

cells is an option. NK cells share many properties with T cells, and delivery of DNA to NK 

cells has been shown to induce similar toxicity(11). Thus, reducing the amount of DNA 

delivered by using mRNA-encoded transposase in combination with minicircle-encoded 

transposon may be ideal. Our group performed proof-of-principle experiments delivering 

mRNA encoding SB11 or SB100x in combination with minicircle DNA encoding a GFP 

expressing transposon to primary human NK cells (Figure 2). We show stable expression of 

GFP 21 days after electroporation, with 15% efficiency using SB100x, suggesting this is a 

viable approach for non-viral gene delivery to NK cells.

The use of transposons for engineering NK cells is not limited to the delivery of CARs. 

Other modifications have been proposed for enhancing aspects of NK cell activity including 

persistence, migration, and cytotoxicity. This includes the introduction of self-stimulating 

cytokine receptors(58), strong activating receptors or dominant negative versions of NK cell 

inhibitors(59). Such modifications could be used in combination to create an NK cell 
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expertly-equipped to kill a broad range of tumor types. Transposons provide a non-viral 

strategy to introduce these transgenes that could be scaled up for clinical use.

3. Modifying NK cell function with in vitro-transcribed mRNA

Viral methods are efficient to deliver genes to proliferating cells, but their safety, 

immunogenicity and manufacturing challenges hamper clinical progress. The development 

of efficient and safe non-viral methods will greatly facilitate clinical gene therapy studies 

and targeted cellular therapies(60, 61). In vitro transcribed (IVT) mRNA has great 

therapeutic potential to transiently express targeted proteins with limited toxicity and other 

advantages. For example, large quantities of RNA can be easily prepared by in vitro 
transcription, which makes it possible to expedite manufacturing and scaling to current 

Good Manufacturing Practices (cGMP) products 10, enabling rapid design and testing of 

new therapeutic strategies, such as designing new CAR constructs. IVT mRNA has been 

widely used for cancer immunotherapy, vaccination against infectious diseases, allergy 

tolerization, protein-replacement and supplementation therapies, genome engineering, and 

efficiently reprogramming adult cells to form induced pluripotent stem cells (iPSC) et al (62, 

63).

3.1 Optimal design of in vitro-transcribed mRNA

The template used for mRNA synthesis usually consists of: (i) the optimized cap structure, 

(ii) the optimized 5′ untranslated region (UTR), (iii) the codon optimized coding sequence, 

(iv) the optimized 3′ UTR and (v) 100–250 adenosine-containing region (3′-poly(A)-tail)

(64). The 5’ 7-methylguanosine triphosphate (m7G) cap plays an important role in RNA 

stability(64). Design of anti-reverse cap analogs (ARCAs) with only one 3’-OH group 

instead of two 3’-OH groups prevented the incorporation in reverse orientation, increased 

RNA transcription efficiency, and improved protein expression duration and levels (65). The 

poly-A tail has crucial importance for the translation efficacy and mRNA stability, while the 

UTR’s control the translation and half-life of the mRNA(66). The order of codons and 

codon context also influences the efficiency of translation. Replacement of rare codons for 

synonymous codons is one of the ways to optimize the sequence of the coding region in 

mRNA(64).

IVT mRNA is produced from a linear DNA template containing a bacteriophage promotor, 

the optimized UTR’s and the codon optimized sequence by using a RNA polymerase (T7, 

T3 or SP6) and a mix of the different nucleosides (67). The ARCAs cap structure and the 

poly A tail are incorporated during transcription to enhance mRNA stability and translation 

efficacy (68).

3.2 Electroporation of mRNA

One of the main challenges associated with engineering NK cells is the low gene transfer 

efficiency. Electroporation is one of the nonviral strategies to transfer genes to NK cells, 

which is based on the generation of an electric field to induce temporary permeabilization of 

the cell membrane(11). Cell damage due to irreversible electroporation has been a concern. 

A variety of electroporators or nucleofector such as GenePulser, BTX 830 square wave 
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electroporator, Amaxa nucleofector (Table 1), have been developed to facilitate transferring 

IVT mRNA to NK cells with less damage to the cells.

MaxCyte GT® Transfection System is a cGMP-compliant, scalable therapeutic system with 

unparalleled consistency, scalability, and cell loading efficiency, that is ideal for clinically-

oriented cell modification (69). The MaxCyte GT® Transfection System has been used to 

generate CAR mRNA modified T/NK cells for clinical trials in the USA (NCT01355965, 

NCT01837602, NCT01897415, NCT01974479). Recently, Miltenyi has developed a closed-

system CliniMACS® electroporator, which is powered and controlled by the CliniMACS 

Prodigy®. This closed tubing system can ensure an automated, large scale, sterile processing 

during the fully automated cell electroporation procedure and enables efficient delivery of 

DNA/mRNA to cells for clinical use (Figure 2) (70).

3.3 Introduction of CAR genes through mRNA

Anti-CD19 CAR or anti-CD20 CAR mRNA modified NK cells through electroporation or 

nucleofection have been investigated in preclinical settings in both B-cell Leukemia and 

Lymphoma (Table 1). Both Li et al and Shimasaki et al investigated the anti-CD19 CAR 

expression and functions in ex vivo expanded or purified unstimulated NK cells after 

electroporating anti-CD19-BB-z mRNA with MaxCyte GT® Transfection System (71, 72). 

Twenty-four hours after electroporation, the median cell viability was 90% and the anti-

CD19 CAR expression was 40.3% in freshly purified and 61.3% in expanded NK cells(72). 

These anti-CD19 CAR NK secreted interferon (IFN)-γ in response to CD19-positive target 

cells and had increased cytotoxicity in vitro and in xenograft models of B-cell leukemia (71, 

72). We investigated the functional activities of expanded peripheral blood NK (PBNK) cells 

modified by with anti-CD20 CAR mRNA using Amaxa nucleofector or MaxCyte GT® 

Transfection System against CD20+ B-NHL in vitro and in xenografted non-obese diabetic 

severe combined immunodeficiency gamma (NSG) mice (73, 74). We demonstrated that 

anti-CD20 CAR mRNA modified expanded NK cells (CAR+ exPBNK) had significantly 

enhanced in vitro cytotoxicity against rituximab-sensitive and -resistant Burkitt Lymphoma 

(BL) cells and extended human BL xenografted NSG survival compared to mock transfected 

exPBNK cells (73). Notably, CAR+ exPBNK limited BL tumour metastasis compared to 

mock transfected exPBNK cells (73). Consistent with previous reports that NK cells do not 

persist after adoptive transfer and they were detectable in the circulation for only 1–2 weeks 

without cytokine support (8), the administered CAR+ exPBNK cells survived around 2 

weeks in NSG mice (73). Additionally, the combination therapy of anti-CD20-CAR mRNA 

electroporated PBNK cells and romidepsin was shown to induce synergistic anti-tumor 

effects both in vitro and in vivo using a semi-disseminated BL Raji xenografted NSG mouse 

model (74). The short lifespan/persistence of adoptively transferred CAR mRNA modified 

NK cells would require the repeated infusions to elicit the anti-tumor effect in the clinical.

In addition to modification of primary and expanded NK cells, the NK-92 cell line 

efficiently expressed anti-CD19 CAR or anti-CD20 CAR after CAR mRNA electroporation 

using GenePulser II electroporator to target acute lymphoblastic leukemia, lymphoma and 

chronic lymphocytic leukemia (CLL) cells (75). To determine if CAR engineering is 

influenced by the intrinsically heterogeneous functional potential in the NK-cell repertoire, 
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Oei et al electroporated primary activated human NK with anti-CD19 CAR mRNA using a 

BTX 830 Square Wave Electroporator (76). They found that the redirected primary NK cells 

with anti-CD19 CAR mRNA were insensitive to inhibition through NKG2A/HLA-E 

interactions but remained sensitive to inhibition through KIR depending on the amount of 

HLA class I expressed on CD19+ target cells, suggesting a need to consider NK-cell 

diversity when optimizing efficacy of cancer immunotherapy based on CAR expressing NK 

cells (76).

3.4 Using mRNA transfer for rapid testing of CAR designs

The outcomes of adoptive NK cell therapies into patients with solid tumors have been dismal 

and extensive studies have been done to investigate different strategies to improve the NK 

cell function, trafficking and tumor targeting (77). We have developed anti-ROR1 CAR 

engineered expanded primary NK cells through CAR mRNA electroporation technology 

using Amaxa nucleofector II and MaxCyte GT® Transfection System to target ROR1+ solid 

tumors with promising in vitro anti-tumor effects (78, 79). Besides designing a CAR based 

on the single chain variable fragment (scFv) of a mAb again an antigen on tumor cell 

surface, CAR can also be formed from a NK activating receptor such as NKG2D followed 

by transmembrane domain and signal transduction domains (77). Chang et al designed a 

CAR termed NKG2D-DAP10-CD3ζ that was composed of the NK cell activating molecule 

NKG2D plus 2 key signaling molecules, DAP10 and CD3ζ (80). These NKG2D CAR 

mRNA engineered primary NK cells through electroporation showed significantly enhanced 

in vitro cytotoxicity against osteosarcoma cells that expressed NKG2D ligands MICA/B 

(80). Similarly, a group from China fused the extracellular domain of NKG2D to DAP12, to 

improve NK cell tumor responses (81). The expression of NKG2D-DAP12 CAR after 

NKG2D-DAP12 CAR mRNA electroporation significantly augmented the cytolytic activity 

of NK cells against several solid tumor cell lines in vitro and delayed disease progression in 

colorectal cancer-bearing mice (81).

3.5 Redirecting NK cell homing with mRNA

To improve NK cells homing to tumors, Carlsten et al enigineered ex vivo expanded NK 

cells to express high surface levels of CCR7 utilizing CCR7 mRNA electroporation with the 

MaxCyte system (69). CCR7 mRNA-electroporated NK cells showed marked enhanced in 
vitro migration capacity toward tumors cells that secreted CCL19 and CCL21 ligands, 

whereas non-electroporated NK cells remained incapable of migrating toward these ligands 

(69). The cGMP-compliant MaxCyte electroporation platform offers a method to efficiently 

genetically modify NK cells with chemokine receptors to enhance NK homing to tumor cells 

(69). To enhance antibody-dependent NK cell-mediated cytotoxicity (ADCC), NK cells 

obtained from CD16–158F/F donors were electroporated with mRNA coding for the high-

affinity Fc receptor CD16–158V receptor (69). These CD16–158V mRNA-electroporated 

NK cells acquired an enhanced ADCC when cocultured with rituximab-coated EBV-

transformed B-cell lymphoma cells compared to controls (69). Additionally, CD38low NK 

cells electroporated with CD16–158V receptor mRNA effectively killed low or high CD38 

expressing multiple myeloma (MM) cells in combination therapy with daratumumab with 

enhanced IFNγ production, indicating CD38low CD16158V NK cells can be administered as 
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an “off-the-shelf” cell therapy product to target both CD38low and CD38high expressing MM 

cells in combination with daratumumab(82).

Overall, the increasing variety and number of preclinical investigations with mRNA 

engineered NK cells provides a new strategy to improve the outcome of cancer 

immunotherapy (Table 1). With GMP-compliant electroporation equipment available, IVT 

mRNA becomes attractive for enabling rapid development of clinical-scale, safe, “off-the-

shelf” CAR NK cells for allogeneic cell therapy.

CRISPR gene editing in primary human NK cells

The clustered regularly interspaced short palindromic repeats (CRISPR) gene editing 

technique has revolutionized medical science. Its ease and precision have exploded its use in 

basic and translational sciences. The CRISPR system contains three components: first, a 

crisprRNA (crRNA), which is ~20 nucleotides complementary to the gene of interest and 

follows by a Protospacer Adjacent Motif (PAM); Second, a tracerRNA as the backbone for 

gRNA and finally a Cas endonucleases protein to introduce a genomic double-stranded 

break (DSB). Cas9 is the most frequently used Cas endonuclease protein for genome editing. 

This protein uses NGG as the PAM sequence at the 3’ site of crRNA which is easy to find in 

target loci of the human genome. Following DSB introduced by Cas9, the cellular DNA 

repair machinery tries to repair the break. There are two possible DNA repair pathways that 

ensue-non-homologues end joining (NHEJ) which is an error-prone mechanism that 

typically results in nonfunctional mutations of loss of gene expression (knock-out), or 

homology directed repair (HDR) that restores integrity or can be manipulated for gene 

insertion in the presence of a DNA template encoding a gene of interest contained within 

homology arms for the regions flanking the DSB(83).

3.1 Hurdles in applying CRISPR to NK cells

With the precision of CRISPR and its low off-target effects on the genome, the FDA has 

approved several clinical trials applying CRISPR approaches to cell therapy, such as T cells 

with PD1 deleted to bypass checkpoint inhibition (NCT03399448). In a similar manner, 

CRISPR engineering of NK cells has the potential to improve their efficacy in cancer 

immunotherapy, but despite successful gene editing in several hard-to-modify cell types(84), 

gene modification in primary human NK cells was challenging. Bacterial transductions as 

viral transductions had shown poor efficiency and high toxicity in NK cells. This may be due 

to their response to viral and bacterial DNA through pathways such as RIG-I and TBK1/
IKKɛ. To overcome this toxicity to cells and low efficiency, we adopted a DNA-free method 

of gene editing for primary and expanded NK cells. In this method, NK cells were 

electroporated with pre-translated Cas9 endonuclease protein and preassembled guide 

RNA(s) - as Cas9/RNP complexes (Figure 1c) - into human primary and expanded NK cells 

and showed successful gene knock-out. The Cas9/RNP as a fully-functional complex allows 

this approach to bypass cellular transcription/translation machinery and DNA sensing 

mechanisms (85). The use of pre-translated Cas9 protein is more favorable to mRNA 

delivery due to its rapid action and quick degradation, which also decreases the frequency of 

off-target effects (86). Using this method, we successfully targeted several genes which play 
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a crucial role in the suppression of NK cell cytotoxicity, including transforming growth 
factor beta receptor 2 (TGFBR2) and suppressor of cytokine signaling-3 (SOCS3). We also 

demonstrated efficient gene editing and higher cytotoxicity of CRISPR modified NK cells 

against cancers (85, 87). In a similar approach, we demonstrated that CD38 can be deleted in 

NK cells to reduce fratricide and increase cytotoxicity for use in combination with 

daratumamab for multiple myeloma (88).

3.2 Alternative approaches for delivering CRISPR components

Del’Guidice et al. described an alternative approach to electroporation for introducing 

CRIPSR Cas9/Cpf1 RNP complexes into human primary NK cells by using membrane 

permeabilizing amphiphilic peptide (89). Successful gene knock-out in NK cells using the 

Cas9/RNP approach has also been demonstrated by electroporating pre-transcribed gRNA 

and mRNA-encoding Cas9 protein, which was successful in targeting PD1, CISH, and 

ADAM17 in NK cells (90). Electroporation of Cas9/RNP in to NK cells was also used to 

delete NKp46 and CIS in primary human NK cells to validate their role in antitumor activity 

(91).

3.3 Using CRISPR for site-directed gene knock-in

Targeted gene knock-in using a combination of Cas9/RNP and AAV vectors has been 

successfully tested in several cell types, including T-cells to express CAR genes(92, 93). In 

this approach, HDR is used for integration of DNA-encoded gene of interest at the targeted 

site. The DNA templates should be designed with optimal-length homology arms for the 

flanking region of DSB and are commonly delivered to the cells by AAV vectors to provide 

sufficient copy number to ensure HDR occurs (Figure 1d) (92). Using this approach, we 

were able to integrate reporter genes into the genome of human NK cells, and showed stable 

gene expression in these cells, providing proof of concept for generating CRISPR-directed 

CAR-NK cells ((94) and (90)). Since designing homology arms for HDR-directed gene 

knock-in is time-consuming approach and needs exptensive optimization, CRISPaint 

(CRISPR-assisted insertion tagging) is a homology-independent gene insertion approach 

that may also be useful for gene insertion into NK cells. This method allows for the insertion 

or tagging of a gene of interest into a user-defined locus with no need for designing 

homology arms ((95) and (94)).

It is important to recognize that the efficiency of CRISPR gene editing varies with different 

genomic sites and donor vectors (91). Therefore, designing the best gRNAs with highest on-

target and lowest off-target effect is important to ensure adequate efficiency of CRISPR gene 

editing. Overall, progress in CRISPR modification of NK cells has opened a new era in 

cancer immunotherapy by facilitating the generation of gene-edited NK cells.

4. Epigenetic modulation of NK cells during ex vivo cultivation

NK cells are frequently low in number and function in cancer patients, resulting in 

suppressed antitumor immune responses. Ex vivo expansion can produce large numbers of 

NK cells with restored function, empowering weakened NK cells with enhanced antitumor 

repertoire of cytokines and receptor expression. In recent years, genetically-modified feeder 
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cells have been developed, such as K562 expressing 41BBL and membrane-bound (mb) 

cytokines that support sustained NK cell proliferation, such as mbIL-15 (8) or mbIL-21 (96). 

In recursive stimulation of NK cells by these feeder cells, the intracellular domain of the 

IL-15 and IL-21R leads to the recruitment and phosphorylation of members of the signal 

transducer and activator of transcription (STAT) family that transduce signals for cellular 

events that are critical for NK cell expansion and activation. The direct impact of STAT 

signaling on NK cell growth, development, and function have been well-described, including 

cytotoxic capacity, cytokine-mediated effects and interaction with other immune effector 

cells (Figure 3a) (97–101). For example, NK cell cytokine production and cytotoxicity are 

directly affected by expression of activating and inhibitory receptors that are regulated by 

STAT3 (102, 103).

4.1 Impact of epigenetic state on transcriptional profiles

In contrast to gene transfer or gene editing, epigenetic remodeling refers to functionally 

relevant modifications to the genome that impact gene expression programs to effect cellular 

phenotype and function, but do not involve a change in the nucleotide sequence (viz. 

acetylation, methylation, phosphorylation, and ubiquitylation). In addition to direct actions 

of transcriptional regulators such as STATs, chromatin state also has impact on regulating 

gene expression, thus influencing the biological processes in context of development and 

cellular response to environment. Chromatin is organized into large compartments, 

comprised of topologically-associated domains containing DNA segments that are highly 

transcriptionally active when open, and less transcribed when closed. These DNA domains 

are organized by nuclear architectural proteins (histones) that regulate transcription by 

tightly controlling intra- and/or inter-DNA interactions. De novo synthesis and post-

translational modifications of histones during cell growth and proliferation are thought to 

modulate gene expression by recruiting key regulators (104). As described below, 

manipulating these chromatin dynamics during NK cell expansion opens a window to 

modulating chromatin architecture during ex vivo expansion to shape NK cell antitumor 

activity (105–107).

4.2 Histone acetylation modifiers

Conceptually, lysine acetylation neutralizes histone proteins enhancing the mobility of 

nucleosome on the DNA thus increasing the accessibility of promoter for transcription 

machinery, whereas deacetylation restores the positive charge of lysine and decreasing 

access of transcription factors to regulatory regions (108). The addition of acetyl groups to 

histones is regulated by histone acetyl transferases (HATs), while removal of acetyl groups 

is catalyzed by histone deacetylases (HDACs) (Figure 3c). By reversing the histone 

acetylation status, HDACs mostly inhibit gene expression. NK cells from AML patients 

treated with valproic acid (VPA) showed enhanced NK-mediated cell killing through 

upregulation of NKG2D, the immunoreceptor that binds with MICA and MICB (109). 

Similarly, entinostat, a narrow-spectrum HDAC inhibitor, also induced an increase in 

expression of NKG2D on NK cells in vitro (110). The application of histone deacetylase 

inhibitors during ex vivo propagation of NK cells may be used to modulate phenotype and 

function of therapeutic NK cells.
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4.3 Histone methylation modifiers

In contrast to histone acetylation, histone methylation regulates gene expression, including 

tissue-specific transcriptional repression, depending on the modified residues and the 

number of methyl groups. Methylation status is regulated by histone methyltransferases and 

demethylases. The histone H3 methyltransferase enhancer of zeste homolog 2 (EZH2) is a 

subunit of Polycomb PRC2 multiprotein complexes that bind to chromatin and repress 

transcription through deposition of the H3K27me3 mark (Figure 3d) (111). EZH2 is 

essential for many biological processes, including the regulation of immune responses, 

making it an interesting target for future immunotherapies. A recent study by Yin and 

coworkers has highlighted the role of EZH2 in NK cell development (112). The authors have 

shown that in the absence of EZH2 both human and murine hematopoietic progenitors 

resulted in an increased commitment to the NK cell lineage. Furthermore, NK cells with 

EZH2−/− phenotype expressed higher levels of activating receptor NKG2D, IL2Rα, and also 

have increased synthesis of granzyme A and B, indicating their highly cytotoxic nature. The 

pharmacological inhibition of EZH2 resulted in a similar phenotype when compared to 

EZH2−/− NK cells. Similar findings have also been reported by other researchers (113), 

suggesting that EZH2 inhibitors can potentially augment NK cell growth and function by 

modulating the expression of various genes involved in immunosurveillance. Inhibition of 

methyltransferases such as EZH2 during the ex vivo NK cell expansion may lead to an 

increase in cell number and augment the activity of NK cells.

4.4 Histone ubiquitination modifiers

In addition to the more common histone modifications discussed above, histones can also be 

monoubiquitylated. Unlike polyubiquitination which promotes proteasomal degradation, 

attachment of a single ubiquitin moiety significantly affects the nucleosomal dynamics and 

serves as an epigenetic mark that regulates gene expression, DNA replication, and chromatin 

segregation (114), and modulates chromatin by influencing acetylation and methylation. For 

example, the inactivation of X chromosome is correlated with monoubiquitination of H2A 

that in turn affects histone methylation, thus suppressing gene transcription (115). 

Ubiquitination is a reversible reaction tightly controlled by the opposing actions of ubiquitin 

ligases and deubiquitinases. Enzymes involved in deubiquitination of histones play critical 

role in regulating innate immunity (116). Nandakumar and coworkers have shown that NK 

cell development is severely impaired in mice deficient in the histone H2A deubiquitinase 

Mysm1 (Myb-like, SWIRM, and MPN domains 1), (117). MYSM1 is involved in 

maintaining an active chromatin at the ID2 locus, a critical transcription factor for NK cell 

development and intrinsically controls NK cell maturation (Figure 3e).

Additionally, it has been shown that pre-activation of NK cells in vitro with IL-12/15/18 can 

maintain long-term antitumor activity by epigenetic imprinting(118). We also have 

demonstrated that TGFβ imprinting can reprogram epigenetic status of expanded NK cells 

through SMAD3 signaling pathway (Figure 3b). This results in generation of less sensitive 

NK to TGFβ as a suppressive molecule(119). Over the past decade, tremendous progress has 

been made in the field of immunotherapy and chromatin regulation. The systematic and 

integrative pursuit of epigenetic approaches to sculpt adoptive cell therapy promises a bright 

future for new immunotherapeutic avenues in cancer.
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Summary

NK cells have broad potential for adoptive cellular immunotherapy of cancer and infectious 

diseases in their natural state, but recent advances in methods of gene transfer may allow for 

the enhanced survival, trafficking, recognition, and function that may be necessary to 

overcome the clever escape mechanisms of viruses and malignant transformation.
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Figure 1. 
Methods for genetic modification. a) Transposase-mediated genetic modification. b) Viral 

transduction. c) DNA-free engineering by electroporation of Cas9/RNP. d) Combination of 

Cas9/RNP and AAV for targeted gene insertion.
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Figure 2. 
Generation of CAR-NK cells by electroporation of mRNA.
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Figure 3. 
Epigenetic modification of NK cells. a) Cytokine expansion utilizing soluble and feeder 

cell-presented cytokines lead to epigenetic changes in the primary NK cell – such as the 

depicted activation of JAK and STAT by binding of the common-gamma chain cytokines 

IL-21 and IL-2 – to drive NK cell expansion as well as functional and phenotypic shifts 

making them an optimized adoptive immunotherapeutic; b) The addition of TGF beta to 

feeder cell expansion leads to epigenetic downregulation of the SMAD pathway, imprinting 

the NK cells to be resistant to further TGF-beta exposure; c) Histone deacetylase inhibitors 

such as valproic acid can alter chromatin conformation, maintaining accessibility of genes 

favorable to NK cell activation, like NKG2D; d) Modification of histone methylation as with 

inhibition of EZH2, can similarly enhance expression of activating receptors such as 
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NKG2D and the high-affinity IL-2 receptor; e) Alteration of histone ubiquitination, such as 

through gene products of the Mysm1 gene, have been shown to have a critical role in 

activation of loci crucial for NK cell maturation, and could thus be a target of epigenetic NK 

cell modification favorable for immunotherapy.
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Table.

List of Reported Works Utilizing IVT mRNA CAR for adoptive NK cell Immunotherapy

CAR NK resource CAR 
signaling 
domains

Electroporation/
Nucleofection 
system

Diseases Study Stage Report 
Year

Ref.

Anti-CD19 
CAR

Ex vivo expanded 
human NK or 
unstimulated NK

4-1BB-
CD3ζ

MaxCyte GT system CD19+ B-lineage 
ALL CD19+ B-
CLL

Preclinical 2010, 
2012

(71, 
72)

Anti-CD20 
CAR

Ex vivo expanded 
human NK

4-1BB-
CD3ζ

Amaxa nucleofector 
II

CD20+ BL Preclinical 2015 (73)

Anti-CD20 
CAR

Ex vivo expanded 
human NK

4-1BB-
CD3ζ

MaxCyte GT system CD20+ BL Preclinical 2017 (74)

Anti-CD19 or 
anti-CD20 
CAR

NK92 CD3ζ GenePulser II CD19+ CLL Preclinical 2012 (75)

Anti-CD19 
CAR

IL-15 stimulated 
primary human NK

CD28-
OX40-
CD3ζ 
4-1BB-
CD3ζ

BTX 830 Square 
Wave Electroporator

CD19+ target Preclinical 2018 (76)

Anti-ROR1 
CAR

Ex vivo expanded 
human NK

4-1BB-
CD3ζ

Amaxa nucleofector 
II

Neuroblastoma 
Sarcoma

Preclinical 2017 (78)

Anti-ROR1 
CAR

Ex vivo expanded 
human NK

4-1BB-
CD3ζ

MaxCyte system GT Neuroblastoma Preclinical 2019 (79)

NKG2D CAR Ex vivo expanded 
human NK

DAP10-
CD3ζ

MaxCyte system GT Osteosarcoma Preclinical 2013 (80)

NKG2D CAR Autologous or 
allogeneic 
haploidentical NK 
cells

DAP12 or 
CD3ζ

NEPA21 
electroporator BTX 
electroporator

metastatic 
colorectal cancer

Preclinical and 
Clinical Phase I 
(NCT03415100)

2019 (81)

CCR7 
CD16F158V

Ex vivo expanded 
human NK

N/A MaxCyte system GT lymph node-
associated 
chemokine 
CCL19 
Lymphoma

Preclinical 2016 (69)

CD16F158V CD38 low NK cell 
line

N/A Electroporation MM Preclinical 2018 (82)

B-CLL: B cell Chronic Lymphocytic Leukemia; BL: Burkitt Lymphoma; MM: Multiple Myeloma.
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