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Abstract Sepsis accounts for nearly 700 000 deaths in Europe annually and is caused by an overwhelming host response to
infection resulting in organ failure. The endothelium is an active contributor to sepsis and as such represents a ma-
jor target for therapy. During sepsis, endothelial cells amplify the immune response and activate the coagulation sys-
tem. They are both a target and source of inflammation and serve as a link between local and systemic immune
responses. In response to cytokines produced by immune cells, the endothelium expresses adhesion molecules and
produces vasoactive compounds, inflammatory cytokines, and chemoattractants, thus switching from an anticoagu-
lant to procoagulant state. These responses contribute to local control of infection, but systemic activation can lead
to microvascular thrombosis, capillary permeability, hypotension, tissue hypoxia, and ultimately tissue damage. This
review focuses on the role of the endothelium in leucocyte adhesion and transmigration as well as production of
reactive oxygen and nitrogen species, microRNAs and cytokines, formation of signalling microparticles, and dissemi-
nated intravascular coagulation. We also discuss alterations in endothelial permeability and apoptosis. Finally, we re-
view the diagnostic potential of endothelial markers and endothelial pathways as therapeutic targets for this devas-
tating disease.
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1. Introduction

Sepsis is a life-threatening organ dysfunction caused by a dysregulated
host response to infection1 associated with significant morbidity and
mortality. According to the latest reports, each year at least 1.7 million
adults in the USA develop sepsis and nearly 265 000 of them die. In
Europe, the incidence of sepsis is estimated to be more than 3.4 million
cases per year; 700 000 of these patients do not survive the hospitaliza-
tion and one-third of survivors die during the first year after hospitaliza-
tion.2 Due to the lack of a quick and specific diagnostic tool and fairly
non-specific clinical presentation, the definition of sepsis has undergone
few modifications in recent years.1 Clinical features of sepsis reflect the
body’s response to infection and include fever, tachycardia, hypotension,
and leucocytosis as well as end organ dysfunction, such as acute lung in-
jury, acute kidney injury, encephalopathy, and cardiomyopathy.3 As sep-
sis is a systemic condition, it affects virtually all organs and tissues, with
endothelium being one of the first cell types to encounter and respond
to the insult. During sepsis, the two most pronounced roles of endothe-
lial cells (ECs) are to amplify the immune response and to activate the
coagulation system. Endothelial activation and/or dysfunction ultimately
contribute to end organ damage during sepsis. Furthermore, the endo-
thelium provides a link between local and systemic immune responses,
as it is simultaneously a target and a source of inflammation.4 Upon stim-
ulation, ECs express adhesion molecules and produce vasoactive com-
pounds, inflammatory cytokines, and chemoattractants, thus switching
from an anticoagulant to procoagulant state.5 While endothelial activa-
tion locally aids in fighting the source of infection, systemic activation
may result in microvascular thrombosis, capillary permeability, hypoten-
sion, tissue hypoxia, and ultimately tissue damage.

2. Endothelium and the pathogen—
initial encounter

When there is a breach allowing a pathogen to enter the blood stream,
generalized inflammation from exposure to bacterial components and
tissue breakdown products occurs. While immune cells ensure an ade-
quate response to the insult, endothelium is also activated and is thought
to direct and modulate the inflammatory response.4 During severe in-
flammation, such as seen in sepsis, the activation of an inflammatory cas-
cade by the pathogen (Figure 1) can lead to auto-amplifying cytokine
production, the cytokine storm. Cytokines are a broad category of rela-
tively small proteins (<40 kDa) (interleukins, chemokines, interferons,
tumour necrosis factor, and growth factors6) produced and released
predominantly by immune cells.7 Infection leads to the activation of the
cytokine network, which is comprised of pro-inflammatory cytokines
and anti-inflammatory cytokines. The balance between these counter-
regulatory pathways eventually determines the net inflammatory activity
of the cytokine network.

NF-jB plays a crucial role in the cell (both inflammatory cells and
ECs) response to cytokines or bacterial cell wall components [i.e. lipo-
polysaccharide (LPS)] (Figure 2).8 LPS forms a complex with LPS-binding
protein, MD-2, toll-like receptor-4 (TLR-4), and CD14, further initiating
intracellular signalling.9 The downstream pathways can be crudely di-
vided in two competitive pathways: TLR4/TRIF/IRF3 and TLR4/MyD88/

NF-jB. The TLR4/TRIF/IRF3 pathway involves activation of TRIF, inter-
nalization of the TLR4/TRIF complex within endosomes with subsequent
activation of interferon regulatory transcription factor-3 (IRF3) and in-
terferon production. At the same time, activation of the TLR4/MyD88/
NF-jB pathway leads to phosphorylation of MyD88 and interleukin-1
receptor-associated kinases 1 and 4 (IRAK1 and IRAK4). IRAKs in turn
phosphorylate TNF receptor-associated factor 6 (TRAF6), which pro-
motes degradation of IjB and nuclear translocation of NF-jB. TRAF6 is
also thought to activate mitogen-activated protein kinases (MAPKs), ulti-
mately resulting in activation of activator protein-1 (AP-1).9

Inflammatory cytokines, such as TNF-a, can activate similar pathways
resulting in nuclear translocation of NF-jB, further increasing cytokine
production.10 Although immune cells are responsible for most cytokine
production during sepsis, ECs are not only the target of cytokines, but
are also, via similar pathways,11 able to secrete such cytokines as IL-1b,
IL-6 and interferon. While the exact role of endothelial-derived cyto-
kines is unclear, current thought is that ECs contribute to ramping up
and modulating the inflammatory cascade and play an important role in
activation and fine tuning of the local immune response.12

With growing evidence on the important role of the endothelium in
sepsis development, much attention has been devoted to its potential as
a target for therapeutic intervention. Initially, multiple studies focused on
quenching the bacterial components, thus preventing their deleterious
effect on the endothelium. Due to its well-described toxic effects,
quenching LPS from the membrane of the Gram-negative bacteria with
various lipophilic and amphiphilic cations as well as zwitterions has been
successfully explored in animal models of LPS-induced endotoxaemia
and Escherichia coli sepsis.13,14 However, due to the fact that most of
these compounds are cationic amphipaths and potentially can exhibit
membrane-perturbing activity, the implementation of most of these
quenchers in clinical practice is limited.13 Among drugs with known
safety profile that are already being used in clinical practice, colistin
showed promising anti-endotoxin effects in vitro15 as well as in a random-
ized clinical trial investigating its anti-inflammatory effect in LPS-induced
endotoxaemia in healthy volunteers.16

As noted above, LPS exerts its effect on endothelium via binding to
TLR4; thus, intervening in LPS binding to TLR4 as well as targeting the
downstream signalling pathways is another potential treatment for
Gram-negative sepsis.17 While designed to be protective by its nature, in
cases when the stimulus becomes overwhelming, the TLR4 pathway can
contribute to the pathologic downward spiral of sepsis. Therefore, sev-
eral approaches were suggested for intervening in this pathway. First, a
number of TLR4-antagonists were tested. For instance, Eritoran, a struc-
tural analogue of lipid A that does not exhibit TLR4-agonistic effects,
competitively binds to TLR4-MD2 and prevents LPS from initiating an in-
flammatory response (i.e. it was shown to block NF-jB activation and
TNF-a and IL-6 production in animal and human models of endotoxae-
mia).18 Another direct TLR4 antagonist, TAK-242, binds directly to
Cys747 in the intracellular TLR4 domain and disrupts TLR4 interactions
with TIRAP and TRAM.19 While showing promising results in animal
models of sepsis,20 it failed, however, to be effective in clinical trials.21

A number of existing agents were shown to alter the levels of TLR4 ex-
pression (i.e. chloroquine, ketamine, nicotine, opioids, statins, vitamin
D3, lidocaine, glycine, and proton pump inhibitors), with some of them
showing auspicious results in animal studies. Randomized controlled
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.trials are needed to evaluate the efficacy of these compounds in
clinical practice.22 Finally, an immune cell-derived protein that is
highly elevated in sepsis, resistin, was found also to prevent LPS
binding to the TLR4 receptor and was suggested as a potential ther-
apeutic modality, but further studies are needed to support this
possibility.23

Apart from blocking the TLR4 receptor itself, attempts were made
to intervene with various downstream targets. For example, ARF6, a
small ATPase activated by the MyD88–ARNO interaction, was
shown to induce vascular leak in septicaemia24 and blocking ARF6
with a peptide reversed this effect, improving survival in endotoxic
shock.25 Another study attempted to assess vascular permeability in
response to LPS after inhibition of either MyD88 or TRIF and demon-
strated that blocking TRIF, but not MyD88, had therapeutic poten-
tial.26 A number of compounds used in traditional Chinese medicine

(such as Houttuynia, tanshinones, Emodin, Ugonin M, LianQinJieDu,
Astragalus membranaceus, and Salvia miltiorrhiza) were shown to inter-
vene at various stages of TLR4 pathway and therefore were suggested
as potential adjunct therapies for the treatment of Gram-negative
sepsis; however, randomized clinical trials are needed to assess their
efficacy in clinical setting.17,27,28

3. Endothelium and leucocyte
adhesion and transmigration

In response to inflammatory cytokines (TNF-a and IL-1b in particu-
lar), the expression of adhesion molecules [selectins, integrins, and
members of an immunoglobulin superfamily known as intercellular
adhesion molecules (ICAMs) and vascular cell adhesion molecule-1

Figure 1 Inflammatory cascade in sepsis. Bacterial components activate both immune cells and endothelium inducing cytokine production, which is self-
perpetuating. Endothelial cells become activated and express adhesion molecules, to which immune cells bind. This initiates the process of transmigration of
immune cells to the site of injury. ROS secreted by immune cells and endothelium further augment the inflammatory response. The combination of these
insults leads to shedding of glycocalyx, induction of adhesion molecules, increased endothelial permeability, and endothelial apoptosis. Chemokines secreted
by immune cells and endothelium recruit immune cells from the bone marrow. The shift in the eNOS/iNOS balance results in excess NO synthesis and
vasodilation.
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.(VCAM-1)] on the surface of ECs increases dramatically (Figure 1).29

In the initial phase, the Sialyl-Lewis carbohydrate ligands found on
leucocytes loosely attach to E-selectin and P-selectin, which allows
them to roll on the endothelium. In the second phase, the rolling leu-
cocytes are activated by chemokines locally released by macrophages
and ECs to express integrins on their surface, which permits firmer
adhesion to ICAM-1 and VCAM-1 and initiates their transendothelial
migration into the injured tissues.30 Chemokines that are bound to
the endothelium via heparan sulphates form a chemotactic gradient
directing further migration of the leucocytes.31 Moreover, the gradi-
ent of chemokines (such as CXCL8, CXCL1, CXCL2, and CXCL5)
produced by the immune cells and ECs promotes recruitment of the
neutrophils from bone marrow reserves and enhances neutrophil
adhesion.31 P-selectin on ECs not only captures leucocytes and
promotes their rolling but also activates integrins through P-selectin
glycoprotein ligand-1 (PSGL-1) and induces further leucocyte activa-
tion.32 Other molecules that have been shown to be necessary for
transmigration of leucocytes across the endothelial lining are platelet
EC adhesion molecule-1 (PECAM-1) and CD99,33,34 with blockade of
PECAM-1 function severely impairing transendothelial migration.33

Meanwhile, as inflammatory responses progress, soluble isoforms of
the leucocyte recruitment adhesion molecules are shed from cell surfa-
ces and accumulate within the circulating blood plasma.35 Although still a
matter of controversy, increasing evidence suggests that shedding serves
regulatory roles to dampen inflammation (and specifically to reduce leu-
cocyte–endothelial interactions) and protect the host from excessive
collateral damage.35

Measurement of these soluble adhesion molecules has also been pro-
posed as a diagnostic tool for early detection of sepsis as well as severity
and outcome prediction. Serum concentrations of adhesion molecules
such as E-selectin, P-selectin, ICAM-1, and VCAM-1 increase during sep-
sis36 and correlate with sepsis severity (as assessed by the Simplified

Acute Physiology Score and the number of organ failures) and mortal-
ity.37 E-selectin levels rise significantly with the onset of sepsis-related or-
gan dysfunction and decrease after organ dysfunction has resolved.38 In
particular, E-selectin was elevated in patients with positive blood cul-
tures indicating that bacteraemia resulted in pronounced endothelial
damage and greater shedding of E-selectin.39 When compared to such
classical markers of bacterial infection as procalcitonin, measurement of
either circulating E- or P-selectin levels had higher sensitivity and specific-
ity for predicting future sepsis development in ICU patients.40 In con-
trast, while soluble ICAM-1 levels were significantly elevated in patients
with sepsis, they also rose (although to a lesser degree) in patients with
systemic inflammation without sepsis.41 Nevertheless, soluble ICAM-1
levels directly correlated with severity of sepsis and organ dysfunction.41

Moreover, in patients with multiple organ dysfunction who did not have
sepsis, elevation of soluble ICAM-1 levels was much less pronounced.42

While quite sensitive to organ dysfunction and severity of sepsis, a mod-
erate rise in levels of circulating adhesion molecules is also seen in other
conditions that are associated with vascular damage (such as trauma or
cardiopulmonary bypass), so their use as a biomarker must be inter-
preted with care.43,44

While adhesion molecule expression is crucial for recruiting immune
cells to battle the infection, targeting adhesion molecules in treatment of
sepsis remains controversial. Interestingly, one study demonstrated that
in a mouse model of polymicrobial sepsis, the use of antibodies against
ICAM resulted in an increased recruitment of neutrophils to the site of
infection with a concurrent decrease of infiltration in other organs (such
as lung, thymus, and spleen).45 Other studies explored the idea of fusing
compounds with antibodies against adhesion molecules for
endothelium-specific delivery of certain drugs.46,47 Finally, one of the
proposed mechanisms of the beneficial effect of inotropes in sepsis is
their ability to decrease adhesion molecule expression on the endothe-
lium,48 resulting in reduced transendothelial neutrophil migration.49

Figure 2 Examples of inflammatory pathways within endothelial cells during sepsis (TLR4 and TNF-a). LPS and cytokines trigger intracellular pathways
that ultimately lead to the activation of number of transcription factors (NF-jB, AP-1, and IRF3), resulting in increased cytokine production and adhesion
molecule expression. These pathways also likely contribute to mitochondrial dysfunction and ROS production (see text for details).
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Overall, despite the fact that the role of endothelial adhesion molecules
in sepsis is undeniable, surprisingly few studies have focused on targeting
them in treatment of sepsis.

4. Endothelial permeability in sepsis

A highly selective endothelial barrier is essential to maintain tissue fluid
homeostasis and to support normal organ function.50 A main feature of
the endothelium in sepsis is an increased permeability or loss of barrier
function, resulting in a shift of circulating elements and tissue oedema
(Figure 3).51

Vascular endothelial (VE)-cadherin is the major component of endo-
thelial adherens junctions—tightly regulated protein complexes that join
adjacent ECs and prevent leucocyte migration and vascular leak.
Inflammatory mediators suppress cAMP/Rac1 signalling, promote Rho
activity and activate kinases such as Src and Pyk2,52 which results in VE-
cadherin phosphorylation, dissociation from p120 catenin and induces its
endocytosis.53 Endocytosis of VE-cadherin by itself is sufficient to induce
gaps between ECs, resulting in increased permeability.54 Similarly to
adherens junctions, several studies reported disruption of endothelial
tight junctions in sepsis as well with reduction of protein levels of occlu-
din and zonula occludens-1.55,56 TNF-a, one of the main cytokines in

sepsis as noted above, was shown to cause disruption of claudin-5 at
cell–cell junctions of ECs through activation of the NF-jB pathway.57

Another important player in maintenance of the endothelial barrier is
gap junctions, formed by connexins, which allow cell–cell flux of small
molecules and solutes.58 Inhibition of connexins prevents the increase in
endothelial permeability observed in an experimental model of lung
injury.58

Several other mechanisms involved in maintenance of the endothelial
barrier have been suggested. For example, we showed that decreased
expression of DNA polymerase-d interacting protein 2 (Poldip2) main-
tains the endothelial barrier in sepsis,59,60 although more work needs to
be done to fully define the mechanism. One of the most commonly im-
plicated pathways in vascular permeability is the Ang/Tie2 pathway.
Angiopoetin2 (Ang2) is highly up-regulated in the serum of patients with
sepsis, correlating with disease severity.61 Current evidence suggests a
crucial role of Ang2 in vascular permeability in sepsis. Ang2 expression
by ECs is increased upon stimulation by inflammatory cytokines, result-
ing in disruption of Ang1–Ang2 equilibrium and increasing vascular per-
meability.62 Endothelial-specific Ang2 overexpression in mice leads to
the development of haemodynamic changes resembling sepsis.63 These
effects can be abrogated by shifting the Ang1/Ang2 balance
towards a normal ratio by injecting mice with Angpt1- or Pdgfb-encoding

Figure 3 Endothelial permeability in sepsis. ROS and bacterial components (i.e. LPS) damage the glycocalyx. LPS and inflammatory cytokines result in dis-
ruption of tight junctions (TJ), adherence junctions (AJ), and gap junctions (GJ) via activation of TNF-a and Ang2 pathways. The above effects increase endo-
thelial permeability (see text for details).

64 E.V. Dolmatova et al.



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
adeno-associated virus. Moreover, Ang-2 neutralizing antibody
decreases LPS-induced mortality,63 and mice with heterozygous deletion
of Ang2 have reduced VCAM-1 expression, inflammatory cell infiltration,
and improved survival in sepsis.61

Both Ang1 and Ang2 are known to bind Tie2, a transmembrane endo-
thelial tyrosine kinase receptor.64 Ang1 acts as an agonist, phosphorylat-
ing Tie2, and, through Akt activation, inhibiting Foxo1,65 ultimately
promoting EC survival and migration and inhibiting vascular leakage.66

Ang2, on the other hand, acts as a Tie2 antagonist by blocking the stabi-
lizing action of Ang1.64 Ang2 exposure results in a formation of a com-
plex between Tie2, avb3 integrin, and focal adhesion kinase, leading to
focal adhesion kinase phosphorylation, avb3 integrin internalization67

and ultimately EC barrier destabilization. Ang2 was also shown to induce
VE-cadherin phosphorylation, causing disruption of adherence junctions,
although the exact molecular pathway remains unclear.68 Activation of
Tie2 with a specific ligand or introducing a stable Ang1 variant improves
survival in experimental models of sepsis.69,70 To date most work fo-
cused on the antagonistic effects of Ang2 on the Tie2 receptor; recent
studies, however, have shown that Ang2 also binds b1 integrin thus
destabilizing endothelium even further.71 Moreover, targeting b1 integrin
either by heterozygous deletion or inhibitory antibodies exhibited a pro-
tective effect on endotoxaemia-induced VE-cadherin redistribution and
endothelial permeability.72 These studies, taken together, indicate an im-
portant role of the Ang1/Ang2 balance in vascular permeability in sepsis
and point towards potential therapeutics to modulate this equilibrium,
preventing the downward spiral that is characteristic of sepsis.

Evaluating Ang1/Ang2 equilibrium by measuring levels of soluble Ang2
in the serum of patients with sepsis was investigated as a predictor of
outcomes. A satellite study of the ProCESS trial demonstrated signifi-
cantly higher levels of serum Ang-2 in patients who did not survive sep-
sis.73 Moreover, another study investigated the predictive value of
circulating levels of Ang-2 together with a few other factors (VEGF, TM,
vWF) for acute respiratory distress syndrome (ARDS) development in
sepsis, which further supported an important role of vascular permeabil-
ity in general, and Ang2 in particular, in sepsis-induced lung injury.74

Finally, higher levels of soluble Ang-2 were associated with higher likeli-
hood of disseminated intravascular coagulation (DIC), one of the most
morbid complications of sepsis.75

Despite the undeniable importance of Ang1/Ang2 equilibrium, only
a handful of studies is available focusing on altering this balance in
treatment of sepsis. Various compounds stimulating Tie2 (thus mim-
icking the effect of Ang1) were reported to improve mortality in mu-
rine models of sepsis.69,76 However, the short half-life and high rate
of non-specific binding of these compounds limits their use in sys-
temic disease like sepsis in larger organisms.77 On the other hand,
antibodies and small-interfering RNAs against Ang2 were also shown
to delay septic progression in experimental sepsis models; their effi-
cacy, however, was variable.78,79 Finally, a special Tie2-agonistic anti-
body that also oligomerized Ang2 was able to enhance the effects of
Tie2 stimulation by concomitant Ang2 inhibition in vitro and in sepsis
mouse model.80 While promising, these results also point towards
the need for further studies focusing on possible therapeutics altering
Ang1/Ang2 equilibrium in sepsis.

5. Glycocalyx in sepsis

The endothelial glycocalyx has been recognized as a critical regulator of
barrier integrity in the endothelium. In a unique position between the

blood and vessel wall, the endothelial glycocalyx consists of a
membrane-bound negatively charged network of proteoglycans, glyco-
proteins, glycolipids, glycosaminoglycans (i.e. heparan sulphate), and ad-
herent plasma proteins.81 It actively regulates barrier function via
mechanotransduction, and its alteration may lead to augmentation in en-
dothelial hydraulic conductivity and subsequent formation of pulmonary
oedema.82

Inflammation in general and sepsis in particular result in changes in the
glycocalyx, leading to endothelial damage and microvascular dysfunc-
tion.83 Thus, the glycocalyx is an intriguing candidate for assessment of
the degree of endothelial damage in sepsis. However, studies focusing on
the components of glycocalyx in sepsis remain limited. Syndecan-1, a
transmembrane (type I) heparan sulphate proteoglycan, for example
was shown to increase in conditions resulting in endothelial damage, in-
cluding sepsis.84 Plasma levels of heparan sulphate were significantly
higher in patients with septic shock85 with markedly higher levels in non-
survivors.86 However, heparan sulphate levels were also significantly ele-
vated in patients who underwent neurosurgery and did not have sep-
sis.86 One of the most promising glycocalyx markers in sepsis is endocan
(a soluble dermatan sulphate proteoglycan), which was shown to in-
crease after LPS administration in healthy volunteers,87 and in patients
with sepsis was predictive of later development of sepsis-induced lung in-
jury and mortality.88

Shedding of the glycocalyx exposes ECs for leucocyte and platelet
adhesion, augmenting inflammation and activating the clotting cas-
cade.89 Several studies focused on maintaining the integrity of glyco-
calyx during sepsis. The effect of fluid resuscitation, a mainstay
therapy in septic shock, on glycocalyx has been studied quite exten-
sively. It was suggested that hypervolemia can be associated with in-
creased glycocalyx degradation in sepsis;90 however, other groups
observed no difference in circulating glycocalyx components be-
tween patients receiving low or large volumes of fluid resuscitation.91

Based on lower circulating components of glycocalyx in animal
studies and a few clinical studies, albumin and fresh frozen plasma
were offered as glycocalyx-protective options for intravenous
solutions.92,93 Whether or not the observed effect can translate into
improved mortality in sepsis is yet to be determined,94 with crystal-
loids (such as normal saline or Ringer’s lactate solution) currently
remaining a preferred means for the resuscitation in septic shock.
Such widely used drugs as dexamethasone and doxycycline can ex-
hibit their beneficial effect through suppression of metalloproteinases
and decreased shedding of components of the glycocalyx.95 Heparin
is also postulated to protect the glycocalyx via inhibition of
heparanase, thus decreasing activity of metalloproteinases.96 Finally,
inhibition of Ang2 has also been suggested to maintain glycocalyx
integrity.80 While it is accepted that disruption of the glycocalyx
adds to the organism-wide insult in sepsis, it remains unclear if
maintaining or restoring the glycocalyx by itself would have mortality
benefit. The issue is complicated by the interconnection of the
cascades involved, and the challenge of designing a glycocalyx-specific
intervention.

6. Endothelium and the clotting
cascade in sepsis

Disseminated intravascular coagulation is one of the gravest complica-
tions of sepsis and is associated with extremely high mortality.97 While
the exact mechanism and the order of triggering events remains
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unknown, the endothelium is thought to play a major role in this process
(Figure 4). One of the suggested mechanisms is disruption of the EC
membrane by membrane attack complex,98 which further augments in-
flammation and activates the microthrombotic pathway. Activation of
the microthrombotic pathway mediates platelet activation and exocyto-
sis of unusually large von Willebrand factor multimers from ECs and ini-
tiates microthrombogenesis.98 Under normal conditions, these von
Willebrand factor multimers are rapidly cleaved to less active forms by a
disintegrin and metalloproteinase with a thrombospondin type 1 motif,
member 13 (ADAMTS-13). During overwhelming inflammation in sep-
sis, however, inflammatory mediators such as IL-6, plasma-free haemo-
globin, VWF proteolytic fragments, Shiga toxin, and neutralizing
autoantibodies can inactivate ADAMTS-13.99,100 ADAMTS-13 can also
be inhibited by plasmin, thrombin, products of activated coagulation,
granulocyte elastase released by activated neutrophils as well as
neutrophil-derived reactive oxygen species (ROS). Together, these
events lead to an acquired ADAMTS-13 deficiency and increased risk of
DIC. Finally, in sepsis the endothelium releases increased amounts of

plasminogen activator inhibitor-1 (PAI-1), thus suppressing the fibri-
nolytic pathway. All of this creates an imbalance between prothrom-
botic and antifibrinolytic pathways, leading to the dissemination of
fibrin-rich microvascular thrombi as observed in DIC.101 This results
in organism-wide microvascular thrombus formation, depletion of
the clotting factors, and bleeding as the most classical presentation
of DIC.

While ECs undoubtedly orchestrate the clotting cascade and platelet
activation and aggregation, platelets themselves can secrete a number of
cytokines upon activation.102 Most of these cytokines stimulate immune
cells and promote immune-cell adhesion to the endothelium.102 A few
of them, however, have very distinct effects on endothelium itself.
CD40L, for example interacts with CD40 on ECs and promotes chemo-
kine secretion and expression of adhesion molecules.103 Activated plate-
lets also release IL-1(a and/or b) and induce CCL2 (a chemokine)
secretion and ICAM-1 expression in ECs.104

Apart from classic tests, such as D-dimer and fibrinogen for establish-
ing a diagnosis of DIC, other players of the clotting cascade have been

Figure 4 Endothelium and coagulation cascade in sepsis. When endothelial integrity is compromised by membrane attack complexes and endothelial apo-
ptosis, a prothrombotic state ensues: endothelial cells express adhesion molecules and platelets become activated. Activated platelets release a number of
active compounds contributing to the inflammatory cascade. Bacterial components, ROS, and cytokines lead to acquired ADAMTS13 deficiency and accu-
mulation of vWF multimers that are secreted from the activated endothelium. Activated endothelium also secretes PAI-1, further contributing to a pro-
thrombotic state (see text for details).
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also suggested for prediction of sepsis severity, DIC development, and
mortality. For example, in the aforementioned satellite study of the
ProCESS trial, the levels of haemostasis factors, such as VEGF, thrombo-
modulin (TM), and tissue plasminogen activator, in sepsis were evaluated
and circulating levels of all three factors were significantly higher in non-
survivors.73 Higher PAI-1 levels were also associated with increased
mortality and higher rates of DIC and end organ failure.105

Due to the enormous mortality associated with DIC,97 attempts
were made to modulate coagulation in order to treat sepsis and pre-
vent sepsis-induced DIC. The possibility of heparin inducing further
bleeding in severe sepsis as well as negative results from a few animal
studies106 limited enthusiasm for its use in sepsis. Low-dose heparin,
however, showed promising results in a few randomized clinical tri-
als as well as after meta-analysis, with reduced 28-day mortality in se-
vere sepsis and no increase in bleeding rates.107 Inhibition of
thrombin (by thrombin inhibitors, decrease in thrombin generation,
binding thrombin with AT III, or thrombin degradation by protein C
or TM) has shown encouraging results in animal studies, indicating a
possible effect on both coagulation and inflammatory pathways
within the endothelium.108,109 Follow-up clinical studies, however,
showed variable results. Further studies are therefore needed to
fully evaluate their role in the treatment of sepsis. Tissue factor path-
way inhibitor (TFPI) suppresses the primary steps of thrombin gen-
eration and exhibits its anti-inflammatory effect through suppression
of thrombin binding to protease-activated receptor-1.110 Use of re-
combinant TFPI was suggested for treatment of sepsis; however, a
few large randomized clinical trials failed to show any improvement
in mortality.111,112 Another thrombin antagonist with anti-
inflammatory properties is ATIII, which apart from directly inhibiting
a number of serine proteases and binding thrombin, can also
induce release of prostacyclin, suppress P-selectin, and decrease the
expression of inflammatory cytokines.109,113,114 The results of
clinical trials with ATIII were overall positive, with most reporting
a decrease in 28-day mortality. The effect, however, varied with
different doses, concomitant heparin administration, and age of the
patient.115,116

Activated protein C inactivates factors Va and VIIIa, thus limiting
thrombin generation, and is involved in lysis of the thrombin–TM
complex. It also has been shown to have anti-inflammatory qualities
by suppressing pro-inflammatory cytokines in activated leucocytes,
exhibiting antioxidant properties, displaying antiapoptotic activity,
and stabilizing the endothelial barrier.117 The results of the random-
ized clinical trials with recombinant activated protein C, however,
were inconsistent, with some studies showing no improvement in
mortality.118,119 While the consensus regarding its efficacy has not
been reached, the production of recombinant activated protein C
was nevertheless stopped.

Thrombomodulin binds to thrombin and activated protein C. It
also has some anti-inflammatory effect by interfering with comple-
ment activation and inhibition of leucocyte–endothelial interac-
tion.120 Initial clinical studies of recombinant TM showed improved
outcomes in patients with DIC and larger studies are currently under-
way.121,122 Thus, intervening at various stages of thrombin synthesis
and degradation harbours promising potential in treatment of sepsis
and sepsis-induced DIC. One has to realize, however, that while the
results of many of the clinical trials investigating thrombin inhibitors
in sepsis are optimistic, differences in inclusion criteria and reported
bleeding events should be noted, which might account for some of
the inconsistencies in results.

7. Endothelium and ROS in sepsis

During sepsis, activated immune cells release reactive molecules that are
designed to fight pathogens, but on the other hand can cause tissue dam-
age.123 ROS can directly attack ECs, resulting in increased vascular per-
meability, worsening hypotension, and decreased colloid osmotic
pressure of the plasma. Furthermore, they alter oxygen consumption by
the tissues, accelerating organ failure.124 Published studies provide sub-
stantial evidence that ROS can damage the EC glycocalyx125 and have
profound negative effects on endothelial barrier function,126 thereby
promoting neutrophil recruitment and trafficking. Both in vitro and in vivo
exposure of ECs to ROS results in EC cytoskeletal remodelling and an
up-regulated expression of ICAM-1, PECAM-1, VCAM-1, and P-selectin
and a subsequent increase of neutrophil adhesion to ECs.127 Alterations
in calcium homeostasis and activation of protein kinase C, p38MAPK,
and phosphodiesterases have been proposed as mediators of the ROS-
induced increase in endothelial permeability.126,128,129 ROS have also
been implicated in disruption of tight junction proteins: H2O2 caused re-
distribution of occludin on the cell surface, limiting its association with
zonula occludens-1 and leading to an increase in endothelial
permeability.130

ECs themselves also can produce ROS mediated by the mitochondrial
electron transport chain, nicotinamide adenine dinucleotide phosphate
hydrogen oxidases (NOXs), especially NOX2 and NOX4, uncoupled
endothelial nitric oxide synthase (eNOS), and xanthine oxidase.131 At
physiological levels, ROS-induced signalling is necessary for maintaining
vascular tone by the endothelium and also facilitates angiogenesis and
acute inflammatory responses to fight the invading pathogens.132 In path-
ological settings like sepsis, however, when the ROS response is over-
whelming, reduction of ROS production by inhibition of NOX2, for
example was shown to be protective against sepsis-induced organ dam-
age.133–135

A main endogenous vasodilator and antiproliferative agent is nitric ox-
ide (NO), which is synthesized in ECs by eNOS. NO stimulates soluble
guanylate cyclase to increase the level of cyclic GMP in smooth muscle
cells.136 During sepsis, some of the essential cofactors necessary for
eNOS activity, such as tetrahydrobiopterin, are depleted via oxidation,
resulting in uncoupling of the enzyme, superoxide anion generation, and
reduced NO production by eNOS.125 At the same time, iNOS in im-
mune cells and endothelium becomes activated, providing a large
amount of NO (Figure 1). The reaction between NO and superoxide an-
ion results in formation of reactive nitrogen species (RNS), such as per-
oxynitrite (ONOO-), nitrogen dioxide (•NO2), and dinitrogen trioxide
(N2O3), which also contribute to endothelial dysfunction.137

Deleterious cellular effects of both ROS and RNS have been attributed
to their role in the oxidation of proteins, lipids, and oxidant-induced
DNA damage.

Despite the overwhelming ROS production during sepsis, the utility
of ROS measurement in diagnosis of sepsis and mortality prediction
remains limited. This may be partly due to the instability of ROS, which
reduces our ability to accurately measure them in a clinical setting, and
the relative non-specificity of the ROS response. Despite those limita-
tions, one study identified a ROS-specific gene expression signature that
was able to predict mortality in patients with sepsis.138 Another study in-
vestigated ROS-activatable nanoprobes for early diagnosis and sepsis se-
verity prediction in mouse model of sepsis.139

Multiple approaches, however, have been suggested to halt the
chain reaction of ROS production. Indeed, both catalase and super-
oxide dismutase prevented shedding of the glycocalyx and preserved
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.
the endothelial barrier in response to hydrogen peroxide in vitro.140

Interestingly, to date there are no trials investigating the
therapeutic potential of these molecules. This might be partly due to
the challenges with cell-specific delivery of these relatively large
proteins. Those challenges are being addressed in animal studies
with the use of SOD conjugated with antibodies targeted to
endothelial endosomes141 and the mitochondria-targeted antioxi-
dant, MitoTEMPO.142 Positive results of these studies in animal mod-
els of endotoxaemia would need, however, further evaluation before
their potential use in clinical practice due to the universal role of ROS
in normal physiology.

NO, particularly due to dysregulated iNOS activity, has been impli-
cated in organism-wide vasodilatation and increased vascular perme-
ability in sepsis. Pharmacological blockade of NO production
mitigates sepsis-induced hypotension in animal models.143,144

Unfortunately, these studies failed to translate into clinical practice
after a large-scale multi-centre randomized clinical trial demon-
strated that treatment with NG-monomethyl-L-arginine (L-NMMA)
(a non-specific NOS inhibitor) increased mortality in sepsis while
raising mean blood pressure and decreasing the vasopressor require-
ment.145 More targeted approaches by attempting to act more specif-
ically on the eNOS/iNOS balance were suggested. One of the most
recent suggestions is BH4, which is a crucial co-factor of NOS. The
data on exact function of BH4 in sepsis, however, are conflicting, with
some studies showing improved mortality with inhibition of BH4 pro-
duction146 while others show that addition of BH4 improves micro-
circulation in sepsis.147 Moreover, tetrahydrobiopterin analogues
such as sepiapterin, which reduce superoxide generation via uncou-
pling of eNOS, were shown to protect the endothelium and organ
function.148 Therefore, more detailed studies, focusing particularly
on the eNOS/iNOS balance in sepsis, are needed.

Finally, vitamin C, due to its recognized antioxidant effect, has been
suggested as an adjunctive therapy in sepsis. Vitamin C scavenges ROS
and RNS, and as a result becomes oxidized to ascorbate-free radical,
which then dismutates to form dehydroascorbic acid.149 Besides the di-
rect effect on ROS and RNS, ascorbate reduces production of ROS and
RNS by preventing NOX activation, decreasing expression of iNOS and
increasing NO bioavailability.150,151 By decreasing ROS, vitamin C
decreases endothelial permeability.149,152 There are also reports from
in vitro studies that vitamin C can bind to alpha-adrenergic receptors and
augment the effect of vasopressors.153 In animal models of vascular injury
due to endotoxaemia, reperfusion injury, ARDS, and burns, vitamin C
administration preserved lung barrier function, prevented oedema for-
mation in burns and decreased ROS production.154,155 These promising
experimental data combined with the fact that the levels of vitamin C in
critically ill patients are markedly decreased,156 made it a compelling can-
didate for adjunctive therapy in sepsis to supplement the nutrient that
has been lost due to increased demand by tissues suffering from oxida-
tive stress. A small phase I trial including 24 ICU patients with severe sep-
sis showed that administration of vitamin C decreased the extent of the
organ failure.157 Other studies used vitamin C in conjunction with either
vitamin E158 or thiamine and hydrocortisone159 and demonstrated de-
creased vasopressor requirement and mortality. A recent large random-
ized trial focusing on the effects of vitamin C in septic patients with
ARDS showed no improvement in organ dysfunction or inflammatory
marker levels. While in that study, the 28-day mortality was significantly
lower in vitamin C group compared to the placebo group, the authors
point out that per study design, mortality was a secondary outcome, and
some internal biases could not be excluded.160 Thus, large randomized

multi-centre studies are still needed to establish the utility of vitamin C in
treatment of sepsis. The relative safety (apart from possible worsening
of kidney failure159) and low cost of this drug make it a very attractive
therapy.

8. Endothelial cell apoptosis and
regeneration in sepsis

Endothelial cell apoptosis is a highly regulated process.161 LPS from
Gram-negative bacteria was shown to induce apoptosis in ECs in vitro;
however, the effect appeared to depend on experimental conditions.162

Interestingly, no apoptotic effect on human umbilical vein ECs was ob-
served in vitro at concentrations of LPS matching those in patients’ serum
during sepsis.162 Besides the direct effect of pathogen-derived substances
and particles, ROS and RNS accumulating during sepsis are also toxic
and proapoptotic for the endothelium.123 Endothelial apoptosis results
in a loss of normal anticoagulant properties of endothelium. The surface
of the apoptotic cell exhibits increased tissue factor procoagulant activ-
ity, as well as reduced surface TM, heparan sulphate, and TFPI expres-
sion.163 This leads to increased thrombin formation by both adherent
and detached apoptotic ECs164 and further augments the inflammatory
and clotting cascade. Regeneration of ECs in sepsis is an important com-
ponent of recovery from sepsis and is regulated via HIF-1a and its down-
stream target Sox17.165 Thus, both EC apoptosis and regeneration play
important roles in pathophysiology of sepsis and targeting them might
provide future insights into the development of novel therapeutics. For
example, a few small studies have shown that both circulating ECs and
circulating endothelial progenitor cells were increased during sepsis,
with higher numbers of progenitor cells and lower number of ECs asso-
ciated with improved survival.166 The relatively low number of both cir-
culating ECs and progenitor cells, however, limits their utility as a
diagnostic test.

9. Novel directions

9.1 Endothelium, sepsis, and microRNAs
MicroRNAs (miRs) are non-coding endogenous RNAs that target mes-
senger RNA (mRNA) resulting in translational repression.167 miRs have
been implicated in various stages of sepsis development (Table 1). For
example, miR-146 has been shown to prevent endothelial activation by
inhibiting several inflammatory pathways, such as those regulated by NF-
jB, MAPK, and AP-1. miR-146 also targets the RNA-binding protein, hu-
man antigen R, thus dampening the pro-inflammatory response.169 In ad-
dition to miR-146, the NF-jB pathway in the endothelium is regulated
by miR-181b via inhibition of importin-a3, which is essential for NF-jB
nuclear translocation. miR-181b also reduces the expression of VCAM-
1 and E-selectin in ECs.170 Similar to miR-146 and -181 b, miR-155 was
shown to suppress endothelial inflammation by down-regulating NF-jB
p65 and adhesion molecule expression in TNFa-stimulated ECs.171 In
addition, miR-130b appears to inhibit inflammatory gene expression by
down-regulating LPS-induced aberrant activation of ERK signalling.172

A possible role of miRs in maintenance of endothelial barrier via regula-
tion of tight junctions has also recently been suggested.179 For instance,
ECs from miR-150 deficient mice demonstrated a persistent increase in
Ang2 levels, thus resulting in an irreversible increase in vascular perme-
ability. Restoring miR-150 expression in miR-150 knockout mice pre-
vented the production of Ang2 and preserved vascular barrier function,
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..ultimately reducing mortality from sepsis.173 miR-147b was also associ-
ated with maintenance of the endothelial barrier after treatment with
LPS via targeting the 30-UTR of the metalloproteinase ADAM15, which
favours the increased endothelial permeability during inflammation and
sepsis.174

PAI-1 inhibits fibrinolysis and sustains DIC in septic patients, lead-
ing to multiple organ failure.180 PAI-1 levels are elevated in the endo-
thelium during severe sepsis and their levels correlate with disease
severity.181 Several miRs, such as miR-30b, miR-181b, and miR-143/
145 clusters, were shown to regulate PAI-1 levels.175–177 Moreover,
miR-96 and miR-330 have been found to contribute to lung injury in
LPS-induced DIC in rat models.178 This growing body of evidence
pointing towards the importance of miRs in sepsis can provide
insights for the development of novel therapeutic targets for mainte-
nance of endothelial barrier and prevention of inflammatory response
dysregulation.

9.2 Microparticles and endothelium in
sepsis
The endothelium is not only a victim in sepsis but also an active partici-
pant that, via its interaction with other cells and tissues, is capable of
modulating the inflammation. Well-orchestrated interactions between
immune cells and endothelium ensure appropriate responses at times of
infection and inflammation. One mechanism of cell–cell communication
that has received a significant amount of attention in recent years is
microparticles (MPs).182 MPs are 0.2–2lm cell membrane-derived par-
ticles harbouring phosphatidylserine and tissue factor on the outer leaflet
and proteins, mRNAs, and miRNAs on the inside that are capable of pro-
moting coagulation and inflammation. Sepsis-induced microvascular in-
jury during sepsis leads to the release of MPs from ECs, red blood cells,
monocytes, and platelets into the systemic circulation.183 Specific recep-
tors (such as Annexin I or CD36) are required for the interaction be-
tween MPs and target cells;184,185 however, there may be other
receptors that have not yet been described. Apart from their role in pro-
moting coagulation and inflammation, MPs may also have some anti-
inflammatory effect, with several studies showing decreased immune-cell
activation after incubation with platelet-derived MPs.186

Other investigators have reported an increased number of MPs in
patients with septic shock187 as well as in animal models of sepsis.188

Endothelium and leucocyte-derived MPs were one of the first markers
to be elevated in DIC, with endothelium-derived CD105-MPs and
CD31-MPs strongly associated with early DIC in multivariate analysis.189

Overall, the relative stability of the MPs in the blood stream as well as
their signalling potential make them a compelling target for developing
novel diagnostic tools and therapeutic agents.

10. Conclusions

The body of evidence supporting a crucial role of the endothelium
in sepsis is continuously growing. It is clear now that endothelium is
involved in both physiologic and pathologic responses in sepsis and
targeting those responses has great potential for developing thera-
peutics for management of this condition. Significant efforts have
been already made to investigate the utility of targeting various en-
dothelial pathways activated in sepsis for diagnosis and treatment
of sepsis; more detailed studies are needed, however, to unravel
the exact mechanisms as well as to further explore potential clinical
applications. While some aspects of endothelial activation in sepsis
have received much attention and have even been tested in large
randomized clinical trials, the knowledge of other pathways lags
behind. Translating experimental data from animal models into
clinical practice has been particularly challenging, which might
be a reflection of the limitations of animal models or the high vari-
ability of clinical scenarios underlying sepsis that are difficult to
account for during the design of a randomized clinical trial. Overall,
the endothelium undergoes dramatic changes during sepsis and
remains one of the most compelling targets for therapeutic
development. The modalities currently recommended for
management of sepsis, however, do little to protect the endothe-
lium or restore endothelial function, leaving much room for future
drug development.

Conflict of interest: None of the authors have any financial interests
or connections, direct or indirect, or other situations that might raise the
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Table 1 MicroRNAs with potential roles in the endothelium in sepsis

Potential therapeutic implication MicroRNA Pathway affected Observed effect in sepsis models

Anti-inflammatory effect miR-146 NF-jB, MAPK, and AP-1168 human antigen R169 Decreases inflammatory response

miR-181b Importin-a3170 Inhibits nuclear translocation of NF-jB;

reduces the expression of VCAM-1 and

E-selectin

miR-155 NF-jB p65171 Decreased expression of ICAM and VCAM

miR-130b Tpl2172 Decreased IL-6 and TNF-a expression

Inhibition of endothelial permeability miR-150 Angiopoetin2173 Decreased vascular permeability

miR-147b ADAM15174 Preservation of endothelial barrier

DIC miR-30b PAI-1175 Unknown

miR-181b PAI-1176 Unknown

miR-143/145 PAI-1177 Unknown

miR-96 Aquaporin-5178 Unknown

miR-330 Aquaporin-5178 Unknown

Sepsis and endothelium 69



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
question of bias in the work reported or the conclusions, implications or
opinions stated.
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