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Abstract

Among the many brain abnormalities in schizophrenia are those related to mitochondrial functions 

such as oxidative stress, energy metabolism and synaptic efficacy. The aim of this paper is to 

provide a brief review of mitochondrial structure and function and then to present abnormalities in 

mitochondria in postmortem brain in schizophrenia with a focus on anatomy. Deficits in 

expression of various mitochondrial genes have been found in multiple schizophrenia cohorts. 

Decreased activity of complexes I and IV are prominent as well as abnormal levels of individual 

subunits that comprise the complexes of the electron transport chain. Ultrastructural studies have 

shown layer, input and cell specific decreases in mitochondria. In cortex, there are fewer 

mitochondria in axon terminals, neuronal somata of pyramidal neurons and oligodendrocytes in 

both grey and white matter. In the caudate and putamen mitochondrial number is linked with 

symptoms and symptom severity. While there is a decrease in the number of mitochondria in 

astrocytes, mitochondria are smaller in oligodendrocytes. In the nucleus accumbens and substantia 

nigra, mitochondria are similar in density, size and structural integrity in schizophrenia compared 

to controls. Mitochondrial production of ATP and calcium buffering are essential in maintaining 

synaptic strength and abnormalities in these processes could lead to decreased metabolism and 

defective synaptic activity. Abnormalities in mitochondria in oligodendrocytes might contribute to 

myelin pathology and underlie dysconnectivity in the brain. In schizophrenia, mitochondria are 

affected differentially depending on the brain region, cell type in which they reside, subcellular 

location, treatment status, treatment response and predominant symptoms.
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The aim of this paper is to provide a brief introduction to schizophrenia, to review 

mitochondrial structure as it relates to function and then to present abnormalities in 
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mitochondria that have been identified in postmortem brains of schizophrenia patients with a 

focus on anatomy and electron transport chain abnormalities.

Schizophrenia

Schizophrenia (SZ) is a biologically complex disease with several risk factors, a 

developmental and genetic basis, and neuropathology throughout the brain involving several 

transmitter systems. Briefly, SZ is a devastating mental illness that affects 1% of the world’s 

population (DSM). In spite of decades of research the causes, prevention and effective 

treatments remain elusive. SZ typically manifests itself in early adulthood with 

hallucinations, delusions and disorganized thought and behavior. In addition, most patients 

suffer from cognitive impairments and a subset present enduring negative symptoms (for 

example poverty of thought and speech, loss of motivation and affect). Cognitive and 

negative symptoms usually precede the first floridly psychotic episode and have no effective 

treatments, with the exception of clozapine. Antipsychotic drugs (APDs) are used to treat 

psychotic symptoms, but are not effective in approximately one third of patients; in 

treatment responders there is a gradient of response (Meltzer, 1997; Sheitman and 

Lieberman, 1998). Pharmacological evidence indicates that the efficacy of APDs is directly 

related to their ability to block dopamine D2 receptors, which are primarily located in the 

striatum (Creese 1976; Seeman et al., 1976). A preponderance of evidence shows that 

psychosis arises from an over-abundance of DA in the striatum, while cognitive and/or 

negative symptoms arise from an under-abundance of DA in the cortex (reviewed in Howes 

et al., 2012). Evidence from in vivo imaging, postmortem studies and animal models of 

schizophrenia implicate the glutamatergic system in schizophrenia as well (Coyle, 2006; 

Goff and Coyle, 2001; Javitt, 2004; Krystal, 2008), particularly in treatment resistant 

schizophrenia (Demjaha et al., 2014). The GABAergic system is impaired in schizophrenia, 

particularly in cortical and hippocampal interneurons (Lewis, 2014; Heckers and Konradi, 

2015). Mitochondria are also affected in the illness, and mitochondrial defects will be 

discussed after a short introduction on normal mitochondrial function and anatomy.

Mitochondrial function

Mitochondria produce 95% of cellular ATP through oxidative phosphorylation, a process 

performed by complexes I through IV of the electron transport chain (ETC) (Wong-Riley, 

1989; Huttemann et al., 2008). Mitochondria are also crucial for cellular functions such as 

calcium buffering (Gunter et al., 1994; Babcock and Hille, 1998; Duchen et al., 2008), 

modulation of synaptic activity (Li et al., 2004; Miller and Sheetz, 2004; Duchen et al., 

2008; Sheng and Cai, 2012), regulation of apoptosis (Susin et al., 1999), and production of 

reactive oxygen species (Chang and Reynolds, 2006). Mitochondria are dynamic organelles 

that change intracellular location in response to energy demands (Ligon and Steward, 2000; 

O’Toole et al., 2008; Niescier et al., 2016). They are essential for normal formation of 

dendritic cytoarchitecture and dendritic spines (Li et al., 2004; Sheng and Cai, 2012), and 

are in part regulated by DISC1 for this particular function (Norkett et al., 2016). At the 

synaptic level, mitochondria provide the vast majority of energy for ionic homeostasis in 

axon terminals, synaptogenesis, synaptic transmission, synaptic vesicle recycling, and long-

term potentiation (Mjaatvedt and Wong-Riley, 1988; Li et al., 2004; Change et al., 2006; Vos 
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et al., 2010; Sheng and Cai, 2012; Pathak et la., 2015). The production of ATP and calcium 

buffering are essential in maintaining synaptic strength and abnormalities in these processes 

could lead to decreased metabolism and defective synaptic activity (Ben-Shachar and 

Laifenfeld, 2004; Chang and Reynolds, 2006; Duchen et al., 2008).

Cellular function and proper energy generation requires the tricarboxylic acid (TCA) cycle, 

which is located in the mitochondrial matrix. The enzymes of the TCA cycle (also known as 

the citric acid cycle or the Krebs cycle) produce the reducing equivalents NADH and 

FADH2, which in turn deliver electrons to complexes of electron transport chain (ETC), 

which drives ATP production. Optimal cellular function requires proper functioning of the 

ETC, which is comprised of four enzymes located within the inner mitochondrial 

membrane. These enzymes create a proton gradient used to power the enzyme ATP synthase 

(sometimes referred to as Complex V), which produces ATP. Each complex of the ETC is 

comprised of several subunits encoded either by nuclear or mitochondrial DNA (70 and 13 

subunits, respectively). Abnormalities in a single enzyme of the electron transport chain are 

sufficient to cause disruption of cellular metabolism. Complexes I, II/III and IV of the 

electron transport chain can be measured to assess mitochondrial function (Wong-Riley, 

1989). The evidence that Complex IV (cytochrome c oxidase, COX) is coupled to neuronal 

energy demands is derived from studies in which changes in COX activity can be induced by 

experimental interventions that alter neuronal activity.

Mitochondrial function declines in the aging brain (Bornstein et al., 2020), due in part to the 

accumulation of oxidative damage (Shigenaga et al., 1994). In the aging nervous system, 

there are reports of fewer mitochondria, but they are larger in size (Shigenaga et al., 1994; 

Martinelli et al., 2006; Soghomonian et al., 2010). Functionally, bigger mitochondria are 

able to meet short energy demands, but sustained energy demands are not met (Shigenaga et. 

al., 1994; Soghomonian et al., 2010; Martinelli et al., 2006).

Mitochondrial structure

Mitochondria are structurally complex, dynamic organelles that fuse, divide, change shape 

and move around the cell (Isaacs et al., 1992; Hollenbeck, 1996; Legros et al., 2002; 

Hollenbeck and Saxton, 2005; MacAskill et al., 2010; Otera et al., 2010; Loson et al., 2013; 

Bertholet et al., 2016; Ploumi et al., 2017) (Figure 1A). Mitochondria can assume different 

shapes (Picard and McEwen, 2014), which in most cases have functional implications 

(Youle and van der Bliek, 2012; Ahmad et al., 2013) (Figure 1B). For example, round and 

rod shapes reflect healthy mitochondria, while blob and donut shapes indicate diseased 

states (Liu and Hajnóczky, 2011; Ahmad et al., 2013; Picard and McEwen, 2014; Hara et al., 

2014). Moreover, there is a relationship between the shape of mitochondria and the 

production of reactive oxygen species. In cell culture, mitochondrial stressors can induce the 

sequential conversion of mitochondria from rod-shaped to donut-shaped, to blob-shaped 

(Liu and Hajnóczky, 2011; Ahmad et al., 2013) (Figure 1C). Blob-shaped mitochondria 

generate the highest levels of reactive oxygen species, followed by donut shaped compared 

to straight mitochondria (Liu and Hajnóczky, 2011; Ahmad et al., 2013). While donut-

shaped mitochondria can revert to the straight configuration, blob-shaped mitochondria are 

unable to revert to healthier configurations. In axon terminals in the dorsolateral prefrontal 
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cortex of non-human primates, donut-shaped mitochondria are associated with shorter 

synapses, fewer docked vesicles and are correlated with poor delayed response memory 

(Hara et al., 2014). This finding could be relevant for schizophrenia pathophysiology as 

there is a robust decline in prefrontal cortical cognitive abilities in the illness (Goldman-

Rakic, 1999).

The morphology of the cristae, matrix and inner mitochondrial membrane correspond to the 

activity of the electron transport chain (Hackenbrock, 1968). The orthodox configuration of 

mitochondria, which is typically illustrated in electron micrographs (Figure 1A), 

corresponds to higher energy producing states (Hackenbrock, 1968). The condensed 

configuration corresponds to low energy producing states. The morphological features of the 

condensed configuration include a small and dense matrix, an irregularly organized inner 

membrane with few cristae, and an enlarged space between inner and outer membranes 

(Figure 1D). Thus, examining the size and shape of mitochondria can reveal important 

information about their functionality.

Mitochondrial abnormalities in schizophrenia

Among the many brain abnormalities in schizophrenia are those related to mitochondrial 

functions such as oxidative stress, energy metabolism and synaptic efficacy (see reviews by 

Shao et al., 2008; Clay et al., 2011; Martins-de-Souza et al., 2011; Anglin et al., 2012; Manji 

et al., 2012; Hjelm et al., 2015; Ni and Chung, 2020). Indeed, mitochondrial pathology is a 

frequent finding in schizophrenia, as shown by various techniques in patients, postmortem 

samples, cell lines and animal models. That said there are many non-replications in the 

literature, which is a common plague in schizophrenia research. Part of the problem in 

reconciling the literature on mitochondria in schizophrenia are the differences between 

studies in techniques, brain areas, and patient characteristics. In addition, it is difficult to 

compare many findings because different things were being studied, such as different 

subunits of a given complex. The present review will concentrate on findings, particularly 

anatomical, derived from postmortem studies (Tables II–IV).

Genetics

Deficits in expression of various mitochondrial genes have been found in multiple 

schizophrenia cohorts (Table II). Most of the brain regions studied have been cortical regions 

(Mulcrone et al., 1995; Whatley et al., 1996; Middleton et al., 2002; Prabakaran et al., 2004; 

Iwamoto et al., 2005; Rollins et al., 2009; Nagaoka et al., 2020) or the hippocampus (Altar 

et al., 2005). While not all studies of the same brain region identify similar genes, it is clear 

that mitochondrial genes are affected in the illness. A recent review (Hjelm et al., 2015) 

identified 57 mitochondrial genes that were found to be dysregulated (mostly 

downregulated) in at least two independent studies. Reductions in expression in genes 

include those involved in proline metabolism (Nagaoka et al., 2020), the mitochondrial 

malate shuttle system, the tricarboxylic acid cycle and the electron transport chain 

(Middleton et al., 2002; Altar et al., 2005). Proteomics studies showed decreases in gene 

expression involved in energy metabolism and oxidative stress in 90% of the schizophrenia 

cohort examined (Prabakaran et al., 2004). Mitochondrial gene expression is affected by pH, 
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with more genes affected in subjects with prolonged agonal status and low pH (Iwamoto et 

al., 2005; Vawter et al., 2006). Therefore, pH and agonal status are important considerations 

when evaluating or planning studies in schizophrenia, and inconsistencies in attention to 

these details may account for different reports in the literature.

The mtDNA common deletion is a somatic 4,977 base pair deletion of the mitochondrial 

genome (Soong et al., 1992). Several findings regarding the common deletion are very well 

replicated in normal brains. The common deletion is found in adult but not fetal tissue 

suggesting that it accumulates with age. The amount of the common deletion varies greatly 

depending on the brain region. Levels o f the deletion are highest in dopamine containing 

nuclei and projection sites (Soong et al., 1992). There are several reports on the levels of the 

mtDNA common deletion in schizophrenia, but most of the results show no change. 

Sequeria et al., (2012) found an increase in the common deletion with age especially in the 

dopamine rich areas, such as the SN and dorsal striatum, but no change in schizophrenia. In 

addition, no changes were detected in the common deletion in several cortical areas, 

striatum, limbic system and thalamus (Sequeria et al., 2012). Others have also shown no 

changes in the common deletion in the frontal cortex or caudate nucleus (Cavelier et al., 

1995; Kakiuchi et al., 2005; Sabunciyan et al., 2007; Fuke et al., 2008; Shao et al., 2008). In 

contrast, Mamdani et al., (2014) reported a decrease in the common deletion in 

schizophrenia with the largest abnormalities in dopaminergic regions including the ventral 

midbrain. The common deletion contains genes encoding subunits of cytochrome oxidase, 

NADH dehydrogenase and ATP synthase (Samuels et al., 2004; Verge et al., 2011). 

Oxidative stress mechanisms related to dopamine metabolism might be involved in the 

accumulation of the common deletion suggesting that mitochondrial function is impaired in 

dopaminergic nuclei and projection sites. While these are key areas affected in 

schizophrenia, if the common deletion plays a role in the pathology of schizophrenia, one 

would expect an increase in accumulation of the common deletion in key brain areas already 

in late teens and young adulthood when the disease first manifests itself. Since there is no 

evidence that this happens, it appears that the common deletion does not play a role in the 

pathogenesis of schizophrenia.

Activity of the electron transport chain

Some of the most thoroughly studied metabolic abnormalities in schizophrenia indicate 

disruptions in oxidative phosphorylation in various cortical regions and the basal ganglia 

(Table III). The results in cortex are mixed. Some have found decreased activity of complex 

I (Cavelier et al., 1995; Maurer et al., 2001) and a decreased protein levels in complex I 

subunits (Holper et al., 2019), while Andreazza et al., (2010) found no change in activity of 

complex I or of complexes III and IV. In addition, decreases in COX subunit II mRNA were 

found (Whatley et al., 1996; Clark et al 1999; Maurer et al., 2001; Andreazza et al., 2010). 

Several studies have shown mitochondrial abnormalities in the striatum in subjects with 

schizophrenia such as decreases in complex I and III and IV activity, protein and/or mRNA 

levels (Cavelier et al., 1995; Prince et al., 1999, 2000; Maurer et al., 2001; Ben-Shachar and 

Karry, 2008; Ben-Shachar, 2017). The activity of the complexes do not necessarily change in 

the same direction in all nuclei. For instance, there is a decrease in COX (complex IV) 

activity in the caudate and an increase in COX and succinate dehydrogenase (complex II) in 
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the putamen and nucleus accumbens in postmortem tissue from schizophrenia patients 

(Prince, et al., 1999). Interestingly, COX and complex II have been shown to correlate with 

the severity of symptoms in the putamen (Prince et al., 2000), linking symptoms with 

mitochondrial dysfunction. Most of the changes to complex I appear to be caused by 

antipsychotic drugs (APDs) (Burkhardt et. al., 1993; Maurer and Moller, 1997; Prince et al., 

1997; Balijepalli et al., 1999, 2001; Karry et al., 2004; Streck et al., 2007; Rosenfeld et al., 

2011), while COX appears to be less affected (Whatley et al., 1996).

In one of our previous studies, COX activity and the protein expression of key subunits for 

its assembly were measured in postmortem substantia nigra/ventral tegmental area (SN/

VTA) (Rice et al., 2014). While overall COX activity was similar between schizophrenia 

patients and controls, there were decreases in the protein expression of two of the COX 

subunits (II and IV-I) in schizophrenia in samples containing rostral regions of the SN/VTA. 

These changes in the schizophrenia group probably were not caused by medication because 

samples containing only the middle to caudal portions of the SN/VTA were unaffected as 

were the SN/VTA from rats chronically treated with antipsychotic drugs (Rice et al., 2014).

Subunit IV of the COX enzyme is crucial for the proper functioning of the COX complex as 

a whole (Nijtmans et al., 1998; Clark et al., 1999; Rahman et al., 1999). COX subunit II is 

responsible for the binding of cytochrome c and the subsequent electron transfer to subunit I 

of the COX enzyme (Taanman, 1997). Interestingly, decreases in complex IV-II mRNA 

expression in the frontal cortex in schizophrenia have not resulted in significant changes in 

overall COX activity (Clark et al., 1999), suggesting that there might be some compensatory 

mechanisms involved that restores overall COX activity to normal in spite of a deficit in 

COX-II. However, suppression of subunit IV has been linked to a reduced function in overall 

COX activity and an increased susceptibility to apoptosis (Huttemann et al., 2001; Li et al., 

2006). Thus, deficits in COX-IV subunit protein expression may lead to a faulty assembly of 

the COX enzyme and a greater vulnerability to metabolic insult in a region specific manner 

in the SN/VTA.

Tricarboxylic acid cycle

A thorough discussion of all of the intricacies of the TCA cycle as it related to schizophrenia 

is outside of the scope of this review. Briefly, two recent meta-analyses of postmortem and 

imaging studies strongly suggest that schizophrenia is associated with increased lactate and 

decreased pH in the brain (Hagihara et al., 2018; Pruett and Meador-Woodruff, 2020). Pruett 

and Meador-Woodruff (2020) discuss that the consequence of this could lead to a shift away 

from the TCA cycle and oxidative phosphorylation toward increased glycolysis for energy 

production. Pyruvate dehydrogenase (PDH), the enzyme that converts pyruvate to acetyl-

CoA in order for it to enter the TCA cycle, is downregulated in the brain of schizophrenia 

patients (Dean et al., 2016; Prabakaran et al., 2004), supporting this hypothesis. 

Functionally, this indicates decreased energy production, increased lactate, and decreased 

pH, which is linked to cognitive and emotional impairments (Rae et al., 1996; Shioiri et al., 

1997; Rowland et al., 2016).
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Anatomy

Interestingly, much of the anatomical studies on mitochondria in schizophrenia have been 

performed at the electron microscopic level by my laboratory and Uranova’s group (Table 

IV). This is striking because ultrastructural studies, especially quantitative ultrastructural 

studies with or without combined immunohistochemistry, are rare in postmortem 

schizophrenia research due to practical issues such as needing brains with very short 

postmortem intervals. We have both published extensively on ultrastructural differences in 

multiple brain regions and for the most part our results are compatible when we have studied 

the same cell type or brain region.

Intracellular Abnormalities:

Mitochondria have structural appendages called mitochondria derived vesicles (MDVs) and 

mitochondria-associated endoplasmic reticulum membranes (MAMs) (Hayashi et al., 2009). 

MDVs are structures that bud off mitochondria and transport damaged cargo to peroxisomes 

or lysosomes (Neuspiel et al., 2080) (Figure 1A). MDVs are stimulated by various forms of 

stress, and the vesicles incorporate cargo, whose composition depends upon the type of 

stress (Soubannier et al., 2012). MDVs have not been studied in schizophrenia but could be a 

fertile field of study considering their function.

Mitochondria are connected to the endoplasmic reticulum via MAMs (Hayashi et al., 2009) 

(Figure 1A). MAMs are enriched in cholesterol, anionic phospholipids, (Hayashi and 

Fujimoto, 2010) and proteins related to the control of mitochondrial division (Friedman et 

al., 2011) and dynamics (Schon and Area-Gomez, 2013). MAMs are involved in a number 

of key metabolic functions, including phospholipid and cholesterol metabolism (Hayashi et 

al., 2009). Mitofusin 2 tethers mitochondria to the endoplasmic reticulum (de Brito and 

Scorrano, 2008). Mitochondria move within neurons along microtubules via kinesin and 

adaptors for anterograde transport and via dynein and adaptors for retrograde transport; they 

also can be anchored via actin and neurofilaments (reviewed by Lin and Sheng, 2015).

Disrupted in Schizophrenia 1 (DISC1) is a scaffold protein that is involved in intracellular 

functions and abnormalities in DISC1 are linked to cognitive and emotional deficits in 

schizophrenia (see review by Roberts, 2007 and references therein). DISC1 is predominantly 

localized to mitochondria (James et al., 2004) and in particular to MAMs (Park et al., 2017). 

At the MAM, DISC1 modulates the transfer of calcium from endoplasmic reticulum to the 

mitochondria. Disrupted DISC1 causes increased calcium transfer leading to increased 

calcium accumulation in mitochondria following oxidative stress, which impairs 

mitochondrial functions. (Park et al., 2017).

Cortex:

The anterior cingulate cortex, a structurally and functionally diverse region, is one of several 

brain regions that is abnormal in schizophrenia (Fornito et al., 2009). Mitofusion-2 is a 

mitochondrial fusion protein (Koshiba et al., 2004) that is also necessary for the 

maintenance and operation of the mitochondrial network (Bach et al., 2003) and transporting 

mitochondria to their proper location in axons and dendrites (Misko et al., 2010; Sheng and 
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Cai, 2012). Protein levels of mitofusin-2 were normal in schizophrenia cases; moreover, 

there were no effects of antipsychotic treatment or treatment response (Barksdale et al., 

2014). Normal protein levels suggest that mitochondrial fusion, maintenance and operation 

of the mitochondrial network may be intact. However, while protein levels of mitofusin 2 are 

unaffected, there are many other mitochondrial proteins involved in these functions that 

might be abnormal.

In an ultrastructural study, the numbers of mitochondria per neuronal somata and per axon 

terminal were decreased in a layer and input specific manner (Aganova and Uranova, 1992; 

Roberts et al., 2015). Excitatory synapses in superficial layers, likely arising from the medial 

dorsal thalamus and contralateral cortex (see Hoftman et al., 2016), had fewer mitochondria 

per axon terminal (Aganova and Uranova, 1992; Roberts et al., 2015). Synapses 

characteristically made by inhibitory interneurons and/or dopaminergic inputs (Kubota et al., 

2016) had fewer mitochondria per axon terminal in deep layers (Roberts et al., 2015). Fewer 

mitochondria in axon terminals suggest a decrease in efficacy of synaptic transmission 

(Brodin et al., 1999; Verstreken et al., 2005; Hall et al., 2012), and in the case of the anterior 

cingulate cortex this abnormality affects both excitatory and inhibitory connections. 

Pyramidal neurons in the deep layers, which project to the striatum, brainstem, or thalamus 

(Goldman and Nauta, 1977), had fewer mitochondria per soma, suggesting compromised 

metabolism in one or more of those pathways (Roberts et al., 2015). There were no 

structural differences and no obvious blob or donut shaped mitochondria. This is somewhat 

surprising considering the observed increase in reactive oxygen species in schizophrenia 

(Wang et al., 2009; Madireddy and Madireddy, 2020) that are produced at a higher rates in 

mitochondria with those shapes (Liu and Hajnóczky, 2011; Ahmad et al., 2013). However, it 

is possible that upstream biochemical pathways, such as the pentose phosphate shuttle, may 

be responsible for the increase in reactive oxygen species (Koo et al., 2018). The layer 

specific location of the mitochondrial abnormalities suggests multiple connections are 

affected that might impact the cortex as well as several downstream pathways. Madireddy

Fewer mitochondria may be a primary deficit of the disease, or mitochondria may die as an 

epiphenomenon of the disease. Alternatively, mitochondria may be sequestered in neuronal 

somata located either extrinsic to the region studied. An inability of mitochondria to move 

into axon terminals or dendrites could account for a decreased number of mitochondria in 

these structures. Since mitochondria move around the neuron along microtubules between 

the soma and processes, damage to cytoskeletal elements might lead to a failure of proper 

mitochondrial movement. In the cingulum bundle, but not the arcuate fasciculus or the 

corpus callosum, we found abnormally high protein levels of αlpha-tubulin, a component of 

microtubules, in off drug schizophrenia, which was normalized by APD treatment 

(Schoonover et al., 2018). Moreover, in the schizophrenia cohort correlations between alpha-

tubulin and other markers of white matter integrity (neurofilament heavy, myelin basic 

protein, and the autophagosome marker LC3) were opposite to controls in the cingulum 

bundle. These data suggest there is a dysregulation of the relationship between α-tubulin and 

the other markers of white matter integrity in the cingulum bundle in schizophrenia. Taken 

together, cytoskeletal abnormalities that could lead to faulty transport of mitochondria in a 

regionally specific manner.
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Striatum:

Previous ultrastructural studies of striatal neuropil in schizophrenia have shown similar 

numbers (Somerville et al., 2011a) and size (Kung and Roberts, 1999) of mitochondria. 

However, decreases in the number of mitochondria per synapse were detected in both the 

caudate and putamen in schizophrenia. Since the majority of mitochondria are in dendrites, 

fewer mitochondria in axon terminals might have been overlooked in overall neuropil 

counts. Further analysis showed that subjects divided by treatment status into off drug, 

atypical APD or typical APD, all showed significant decreases in the putamen compared to 

controls (Somerville et al., 2011a). Since the patients on APD had similar decreases in 

mitochondrial number compared to the off-drug subjects, this result may not be an APD 

effect. Moreover, it seems unlikely that APDs would affect the putamen but not the caudate. 

However, haloperidol, a typical APD, does reduce the number of mitochondria in striatal 

neuropil of chronically treated rats (Roberts et al., 1995).

Mitochondrial pathology is linked with symptoms and symptom severity.—
Symptoms of schizophrenia can vary markedly between patients, and similar symptoms may 

be related to shared pathophysiology. For example, a relationship between symptoms and 

mitochondrial pathology is evident in blood. Lymphocytes analyzed from paranoid 

schizophrenia patients showed less mitochondrial volume than in controls (Uranova et al., 

2007). Moreover, the severity of the mitochondrial deficit was positively correlated with 

symptom severity, linking the severity of paranoid symptoms with mitochondrial 

impairment, albeit in blood (Uranova et al., 2007). Also, lower levels of COX and complex 

II activity correlate with increased severity of emotional and cognitive impairment in the 

putamen, but not other basal ganglia regions (Prince et al., 2000), again linking symptoms 

with mitochondrial dysfunction in a region specific way.

In an ultrastructural study of the striatum, decreases in the density of mitochondria were 

observed in the neuropil in chronic paranoid subjects compared to both controls and the 

chronic undifferentiated group (Somerville et al., 2012). In addition, the number of 

mitochondria in axon terminals in the putamen was decreased selectively in chronic 

paranoid subjects compared to controls and chronic undifferentiated patients. The number of 

mitochondria per synapse showed similar decreases compared to controls in both subgroups 

in the putamen, and a similar albeit insignificant pattern in the caudate. These deficits were 

found only in the matrix compartment, and not in the striosomes; cognition and memory are 

processed through the matrix, while limbic information is processed through the patches 

(Graybiel and Ragsdale, 1978; Flaherty and Graybiel, 1993; Eblen and Graybiel, 1995; 

Goldman-Rakic, 1999). Thus, it could be expected that decreased numbers of mitochondria 

in the striatal matrix in schizophrenia could impact cognitive skills.

Given the period of sample collection, the schizophrenia subjects in that study were 

diagnosed in accordance with the DSM-III and DSM-IV criteria, which define prominent 

symptomology at the time of death (Deep-Soboslay et al., 2005). In contrast, the DSM-V 

recognizes that predominant symptoms may fluctuate over the course of the illness, and that 

the diagnosis initially given may not reflect symptomology at the time of death. Importantly, 

in this study, all paranoid schizophrenia subjects were given a lifetime diagnosis of chronic 
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paranoid schizophrenia with no history of formal thought disorder. Taken together, fewer 

mitochondria than normal in blood and the striatum could be associated with the symptoms 

of paranoia and/or could represent a protective mechanism against some of the symptoms 

that are less pronounced in this subtype than in the undifferentiated subgroup, such as formal 

though disorder.

One third of patients with schizophrenia do not respond to medication and remain psychotic 

(Meltzer, 1997). The patients that do respond, do so on a continuum, but only respond to 

positive symptoms. Cognitive and negative symptoms are poorly treated in all people with 

schizophrenia. Although treatment response and resistance have a biological basis (Sheitman 

and Lieberman, 1998), all studies conducted outside of our own work have been imaging 

live people. In a cohort of subjects rated for treatment response or resistance, treatment-

responsive schizophrenia subjects had a large decrease in the number of mitochondria per 

synapse in the caudate nucleus and putamen compared to controls. In the putamen, 

treatment-responsive subjects also had decreases in this measure compared to treatment-

resistant subjects (Somerville et al., 2011b). These results provide further support for a 

biological distinction between treatment response and treatment resistance in schizophrenia. 

Because treatment-resistant subjects had normal levels of mitochondria per synapse, but 

treatment responders had fewer mitochondria per synapse than controls, fewer mitochondria 

per synapse may be related to treatment response.

Fewer mitochondria per synapse were observed in a combined cohort of subjects and does 

not appear to be caused by APDs. This change was confined to treatment responders, and 

was not observed in treatment resistant subjects. A decrease in mitochondrial density in the 

neuropil distinguishes the paranoid from the undifferentiated schizophrenia subgroup. Fewer 

mitochondria may contribute to the pathophysiology of the illness, may be a medication 

effect, or an adaptive response to normalize overactive neurotransmission that may occur 

from the higher than normal number of excitatory striatal synapses previously found 

(Roberts et al., 2005a,b, 2008, 2012).

Nucleus Accumbens:

Given the report of increased COX and succinate dehydrogenase activity in the nucleus 

accumbens in schizophrenia compared to controls (Prince, et al., 1999), the observation that 

the structural integrity and general appearance of mitochondria were normal in the 

schizophrenia group in this same structure was surprising (McCollum et al., 2015). 

Moreover, the density of mitochondria in the neuropil, the average diameter, and the number 

of calcium deposits per mitochondrion were similar between controls and schizophrenia in 

both the core and shell. Taken together, alterations in mitochondrial function may not be 

detected with morphology.

Substantia Nigra:

In spite of the fact that the substantia nigra (SN) and ventral tegmental area (VTA) house the 

largest proportion of dopamine neurons in the brain and that antipsychotic medication works 

by blocking dopamine receptors (Creese et al., 1976), there have been very few studies of 

the SN/VTA in schizophrenia. At the ultrastructural level, mitochondrial hyperplasia has 
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been observed within axon terminals that synapse onto dopamine neurons in a qualitative 

study of a small cohort of schizophrenia subjects (Kolomeets and Uranova, 1999); however, 

there were no comments on the number of mitochondria per terminal. In one of our recent 

studies, we quantified the number of mitochondria per terminal and found no difference in 

the number of mitochondria in all terminals or in subsets of excitatory or inhibitory 

terminals (Mabry et al., 2019); qualitatively, we did not observe any differences in the size 

of the mitochondria, so we did not measure them. Moreover, we found that mitochondria in 

dopamine neuronal somata were similar in size, density and structural integrity between 

schizophrenia patients and controls (Walker et al., 2018). From a structural standpoint, 

mitochondria do not appear to be affected in the substantia nigra in schizophrenia.

Medication effects:

The effects of antipsychotic drugs (APDs) on mitochondrial function is a vast topic beyond 

the scope of this review. However, an excellent recent review (Chan et al., 2020) addresses 

this complex issue. The authors conclude a complicated relationship between APDs and 

mitochondrial function with several scenarios: 1) mitochondrial damage precedes the onset 

of schizophrenia, 2) can be reversed by APDs, but 3) can also be caused by APD treatment. 

The general consensus is that antipsychotic drugs can alter mitochondrial function, number 

and size (for reviews see Carboni and Domenici, 2016; Roberts 2017; Chan et al., 2020). 

Antipsychotic drugs have differential effects on mitochondrial structure and function 

depending on brain location, type of antipsychotic drug, length of use, length of withdrawal 

period, dose and route of administration (for some examples see Takeichi and Sato, 1987; 

Uranova et al., 1991; Roberts et al., 1995; Prince et al., 1999; Streck et al., 2007). For 

instance, there are more striatal mitochondria after 3 weeks of haloperidol treatment 

(Uranova et al., 1991), but less after 6 months (Roberts et al., 1995). The majority of 

evidence is in agreement that complex I and succinate dehydrogenase appear to be adversely 

affected by antipsychotic drugs, however COX may not be as vulnerable (Burkhardt, et al., 

1993; Balijepalli et al., 1999, 2001; Karry et al., 2004; Rosenfeld et al., 2011; Maurer and 

Moller, 1997; Prince et al., 1997; Streck et al., 2007).

Mitochondrial abnormalities in glial cells:

Mitochondrial abnormalities have been observed in glial cells in various brain regions. In the 

cortex, Uranova and colleagues have found fewer and smaller mitochondria in 

oligodendrocytes in both gray and white matter (Uranova et al., 2007; Vikhreva et al., 2016), 

suggesting that oligodendrocytes have less available energy, which may have an impact on 

proper myelination. In recent studies, Uranova and colleagues found a decrease in the 

number and size of mitochondria in oligodendrocytes adjacent to microglia in both grey 

(Uranova et al., 2020) and white matter (Uranova et al., 2018) in the prefrontal cortex. They 

concluded that oligodendrocyte dystrophy is not associated with microglial activation in 

white matter, but that microglial dystrophy might contribute to oligodendrocyte dystrophy in 

grey matter.

In the caudate nucleus, there are fewer mitochondria in astrocytes (Uranova et. al. 1996), and 

mitochondria are smaller in oligodendrocytes (Uranova et al., 2001). Either of these results 

could compromise the function of these cell types as discussed above.
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Conclusions:

In the brains of subjects with schizophrenia, mitochondria are differentially affected 

depending on the brain region, cell type, and subcellular location in which they are located. 

Moreover, mitochondrial abnormalities differ depending on treatment status, treatment 

response and symptoms. While certain morphological configurations definitely correspond 

to energy capacity and other functions, it appears that mitochondria can appear intact, while 

being functionally compromised. Decreases in functional measures may be reflected by 

decreased number of mitochondria rather than decreased size or structural configuration.
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Figure 1. 
A) Electron micrograph of human striatum. Mitochondria (m) are indicated in various 

subcellular locations. In the dendrite (den) at the top of the field, a mitochondrial associated 

ER (MAM) is shown (curved black arrow) with ER (short black arrows) connecting to the 

adjacent mitochondrion. Axon terminal (AT1) forms an excitatory synapse on a spine in the 

lower part of the field; mitochondrial derived vesicles (MDVs) are shown (white arrow with 

black outline) budding off of a mitochondrion in the terminal. Axon terminal AT2 forms an 

inhibitory synapse on the dendrite (den). Scale bar = 0.5 µm. Figure is modified from Figure 

2a in Somerville et al., 2011b and Figure 1 in Roberts, 2017). B) Drawings of different 

shaped mitochondria. C) Transformation of a mitochondrion from round/rod to curved to 

donut to blob shape and the corresponding amount of reactive oxygen species each 

produces. Arrows are bidirectional between round and curved and donut shaped 

mitochondria indicating the ability to change shape in either direction. Once a 
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mitochondrion has assumed a blob shape, it cannot recover healthier configurations, thus the 

unidirectional arrow. D) Depiction of the orthodox and condensed form of mitochondria. 

Orthodox configuration is high energy producing, while condensed configuration is low 

energy producing, indicated by the directionality of the arrows.
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Table I.

List of abbreviations

Abbreviations and aliases

ALDH4A1 aldehyde dehydrogenase 4 family, member A1

APD antipsychotic drugs

ATP adenosine triphosphate

Complex I NADH-CoQ oxidoreductase

Complex II succinate dehydrogenase

Complex III cytochrome bc complex

Complex IV cytochrome c oxidase (COX)

Complex V ATP synthase

DLPFC dorsal lateral prefrontal cortex

DOI duration of illness

ETC electron transport chain

mtDNA mitochondrial DNA

NAcc nucleus accumbens

NADH nicotinamide adenine dinucleotide

NDUFS7 a subunit of complex I

OFC olfactory cortex

OxPhos oxidative phosphorylation

PFC prefrontal cortex

ROS reactive oxygen species

SN substantia nigra

TCA cycle tricarboxylic acid cycle

VTA ventral tegmental area
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Table II:

Genetics

finding Brain area comments reference

↓ in four mitochondrial rRNA three encode 
parts of the 16s rRNA

PFC Mulcrone, et al., 1995 
Whatley, et al., 1996

↓ in malate shuttle & TCA genes PFC Middleton et al., 2002

↓ mitochondrial genes related to energy 
metabolism and oxidative stress

DLPFC ↓ transcript levels of pyruvate 
dehydrogenase APD effects ruled 
out

Prabakaran et al., 2004

Δ expression of 11% of mitochondria-related 
genes 82% of those were ↓

DLPFC Findings held up when controlled 
for pH, might be APD effect

Iwamoto et al., 2005

synonymous base pair substitutions in the 
coding regions of the mtDNA genome was 
22% higher in SZ

DLPFC pH sensitive, PMI independent Rollins et al, 2009

Genetic polymorphisms in molecules 
associated with proline metabolism

BA10 & superior 
temporal gyrus

Genetic data showing abnormal 
metabolism of proline.

Nagaoka et al., 2020

↓ in mitochondrial genes mitochondrial 
oxidative energy metabolism (isocitrate, 
lactate, malate, NADH, complexes II, IV, ATP 
synthase)

Hippocampus, laser 
captured granule cells

Data derived from multiple cohorts Altar et al., 2005

Review cites 57 mitochondrial genes changed 
in SZ in at least 2 studies

data support that SZ has many 
dysregulated mitochondrial genes

Hjelm et al., 2015

↓ in mitochondrial genes with QPCR 
confirmation

DLPFC Layer 3 pyramidal neurons, 
controlled for APD effects

Arion et al., 2015

No Δ mtDNA common deletion Frontal cortex Cavelier et al.,, 1995; 
Kakiuchi et al., 2005; 
Sabunciyan et al., 2007; 
Fuke et al., 2008; Shao et 
al.,2008

No Δ mtDNA common deletion in 
schizophrenia
↑mtDNA common deletion with age, not 
diagnosis
mtDNA common deletion very variable across 
brain areas

DLPFC ACC, OFC, 
amygdala 
hippocampus caudate, 
NAcc putamen, SN, 
thalamus, cerebellum

↑mtDNA common deletion in 
striatum, NAcc and amygdala with 
age
↑mtDNA common deletion SN> 
putamen, NAcc & Caudate vs other 
brain areas

Sequeria et al., 2012

↓ brain mtDNA common deletion in DA rich 
areas when corrected for age, sex, PMI and pH

DLPFC, ACC, OFC, 
amygdala 
hippocampus caudate, 
NAcc putamen, SN, 
thalamus

Common deletion has genes 
encoding sub-units of COX, 
NADH-d and ATP synthase, 
affecting mitochondrial function in 
DA areas.

Mamdani et al., 2014

The table is organized by the brain area from cortex to subcortical regions. Abbreviations are in Table I.

Mitochondrion. Author manuscript; available in PMC 2022 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Roberts Page 25

Table III:

Mitochondrial enzymes and proteins

finding Brain area comments reference

↓ COX subunit II mRNA expression but 
no Δ in COX activity

Frontal cortex This can happen without any changes in 
COX activity.

Whatley et al., 1996; 
Clark et al., 1999

↓ complex IV activity frontal & temporal 
cortex, basal ganglia

Deficit in OxPhos in cortex may contribute 
to deficits in energy generation

Maurer et al., 2001

↓ complex I, III activity temporal cortex, 
basal ganglia

No Δ in levels of NDUFS7, a subunit of 
complex I, & complex I activity

prefrontal cortex Complex I in PFC is unaffected Andreazza et al., 2010

Δ in enzymes of TCA cycle DLPFC Abnormalities in energy metabolism could 
contribute to brain pathology in SZ.

Bubber et al., 2011

↑ ALDH4A1 detected with IHC Genetic 
polymorphisms in molecules associated 
with proline metabolism. ALDH4A1 is 
step in the metabolism of proline to 
glutamate, which occurs in mitochondria.

frontal cortex (BA10) 
& superior temporal 
gyrus

Genetic and anatomical data shows 
abnormal metabolism of proline, which may 
affect glutamate neurotransmission.

Nagaoka et al., 2020

↑ levels of a marker of oxidative stress anterior cingulate 
cortex

Oxidative damage may contribute in part to 
brain pathology in SZ.

Wang et al., 2009

No Δ in protein levels of mitofusin2 anterior cingulate 
cortex

No difference in SZ, no effect of treatment, 
or treatment response.

Barksdale et al., 2014

↓ in mitochodrial proteins in 
synaptosomes

Primary auditory 
cortex

MacDonald et al., 2019

↓ COX activity frontal cortex 
caudate,

Could lead to abnormalities in energy 
metabolism

Cavelier et al., 1995

Meta analysis: variable Δ in complex I 
subunits; ↓ COX activity in cortex, but ↑ 
in striatum

frontal cortex, 
striatum

Holper et al., 2019

↓ protein levels of pyruvate 
dehydrogenase

frontal cortex shift away from the TCA cycle toward 
glycolysis

Prabakaran et al., 2004

↓ β subunit of pyruvate dehydrogenase; ↑ 
pyruvate, glucose, lactate

striatum Impaired glucose metabolism; shift away 
from the TCA cycle toward glycolysis

Dean et al., 2016

↓ COX activity caudate ↓ COX activity can lead to ↑ susceptibility 
to apoptosis

Prince et al., 1999

↑ COX complex II activity putamen Negative correlation with the severity of 
symptoms

Prince et al, 1999

↓ protein levels of ARF1, a mitochondrial 
protein, in synaptosomes

ventromedial caudate ↓ ARF1 especially in glutamatergic 
synapses may compromise excitatory 
synaptic function

Ramos-Miguel et al., 
2019

No Δ in COX activity ↓protein levels of 
COX subunits II and IV-I

rostral substantia 
nigra ventral 
tegmental area

Faulty assembly of COX enzyme could lead 
to greater vulnerability to metabolic insult.

Rice et al., 2014

No Δ in complex I, III or IV cerebellum Cerebellum is not affected. Maurer et al., 2001

The table is organized by the brain area from cortex to subcortical regions. Abbreviations are in Table I.
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Table IV:

Mitochondrial number, structure, and localization

finding brain area comments reference

↓ # mitochondria in axon terminals ACC ↓ synaptic efficacy Aganova & 
Uranova 1992

Layer III: ↓#mitochondria at excitatory 
synapses Layer V/VI: ↓#mitochondria at 
inhibitory synapses and in soma. 
Structure & size normal.

ACC ↓ synaptic efficacy of thalamic inputs
↓ synaptic efficacy of DA input and/or interneuron 
connections
↓ energy capacity in projection neurons

Roberts et al., 2015

↓ # and size of mitochondria in 
oligodendrocytes

Prefrontal cortex Abnormalities in oligodendrocyte energy might 
disturb myelin, axonal integrity and thus circuitry.

Uranova et al., 2007

↓ # and size of mitochondria in 
oligodendrocytes

Frontal cortex 
white matter

Vikhreva et al., 
2016

↓ # and size of mitochondria in 
oligodendrocytes adjacent to microglia

Frontal cortex 
white matter

oligodendrocyte dystrophy is not associated with 
microglial activation

Uranova et al., 2018

↓ # and size of mitochondria in 
oligodendrocytes adjacent to microglia

Frontal cortex 
grey matter

Microglial dystrophy might contribute to 
oligodendrocyte dystrophy in SZ during relapse of 
positive symptoms

Uranova et al., 2020

↓ # and area of mitochondria in 
astrocytes in SZ with DOI >20 years vs 
NCs and SZ with DOI<20yrs

hippocampus Decreased energy of astrocytes with DOI Kolomeets et al., 
2010

↓ # mitochondria in astrocytes caudate Decreased energy available in astrocytes Uranova et al., 1996

↓ size mitochondria in oligodendrocytes caudate Compromised function in oligodendrocytes Uranova et al., 2001

No Δ in mitochondrial size in the 
neuropil

caudate putamen No obvious morphological abnormalities Kung & Roberts 
1999

↓ # mitochondria in neuropil caudate putamen Treatment responders and paranoid SZ may be able 
to decrease number of mitochondria and thus lower 
energy capabilities in the hyperactive glutamate 
system. This could translate into better outcomes 
than in treatment resistant or CUT SZ.

Somerville et al., 
2012a

↓ # mitochondria in axon terminals in 
treatment responders, but not treatment 
resistant SZ

caudate putamen Somerville et al., 
2011

↓ # mitochondria in axon terminals in 
chronic paranoid SZ, but not chronic 
undifferentiated SZ

putamen Somerville et al., 
2012b

mitochondria appearance, density, and 
size are normal in dopaminergic axon 
terminals

nucleus 
accumbens

Normal number and morphology of mitochondria in 
dopaminergic inputs to the nucleus accumbens.

McCollum et al., 
2015

Hyperplasia of mitochondria in axon 
terminals synapsing onto dopamine 
neurons

substantia nigra Unmet energy requirements in terminals synapsing 
onto dopamine neurons

Kolomeets et al., 
1999

= density, size & structure of 
mitochondria in dopamine neurons

substantia nigra Normal number and morphology of mitochondria in 
dopaminergic neurons and in axon terminals in the 
substantia nigra

Walker et al., 2018

= density, size & structure of 
mitochondria in axon terminals

substantia nigra Mabry et al., 2019

The table is organized by the brain area from cortex to subcortical regions. Abbreviations are in Table I.
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