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ABSTRACT

Objective: Clinical trials ensure that pharmaceutical treatments are safe, efficacious, and effective for public

consumption, but are extremely complex, taking up to 10 years and $2.6 billion to complete. One main source

of complexity arises from the collaboration between actors, and network science methodologies can be lever-

aged to explore that complexity. We aim to characterize collaborations between actors in the clinical trials con-

text and investigate trends of successful actors.

Materials and Methods: We constructed a temporal network of clinical trial collaborations between large and

small-size pharmaceutical companies, academic institutions, nonprofit organizations, hospital systems, and

government agencies from public and proprietary data and introduced metrics to quantify actors’ collaboration

network structure, organizational behavior, and partnership characteristics. A multivariable regression analysis

was conducted to determine the metrics’ relationship with success.

Results: We found a positive correlation between the number of successful approved trials and interdisciplinary

collaborations measured by a collaboration diversity metric (P< .01). Our results also showed a negative effect

of the local clustering coefficient (P< .01) on the success of clinical trials. Large pharmaceutical companies have

the lowest local clustering coefficient and more diversity in partnerships across biomedical specializations.

Conclusions: Large pharmaceutical companies are more likely to collaborate with a wider range of actors from

other specialties, especially smaller industry actors who are newcomers in clinical research, resulting in exclu-

sive access to smaller actors. Future investigations are needed to show how concentrations of influence and

resources might result in diminished gains in treatment development.
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INTRODUCTION

Background and Significance
Drug research and development (R&D) is a complex, expensive un-

dertaking that is prone to failure. Given that on average it may take

over 10 years and cost up to $2.6 billion to develop a single ap-

proved molecule,1 drug R&D has become a collaborative effort.

During a drug’s lifespan, it is common for a spectrum of actors in-

cluding government, academic, nonprofit organizations, pharma-

ceutical, and biotechnology companies to conduct phases of the

basic, preclinical, and clinical research, with each contributing to-

ward the development of a drug that is eventually approved by a

regulatory agency. Furthermore, these actors collaborate to increase

their research capabilities through access to key technologies or spe-

cialized knowledge developed or possessed by other actors.2–4 Col-

laboration can include vertical alliance networks in which each

actor performs a relatively distinct set of activities along the value

chain.5 Success or achievement in drug development is dependent

upon these collaboration networks.6 Examining collaboration net-

works and the actors involved can yield valuable insight into the

drug R&D process by identifying the behavior and patterns of suc-

cessful actors and capturing the emergence of the collective struc-

ture.

Network analysis is useful for studying the network externalities

of collaboration and transfer of knowledge and information be-

tween actors in the network. Some studies have examined collabora-

tive networks based on contractual alliances within the

pharmaceutical industry,7,8 while others have studied knowledge

networks by mapping the dissemination of knowledge via patent

citations.9–12 However, few studies have examined the collaboration

network of actors in a clinical trial context.

Previous research has vaguely defined network “cohesion” as a

basic property used to characterize the connectivity level of an entire

network (global) or around an actor (local). In some studies, they

found that cohesion impacts the speed and reach of knowledge

transfer among actors that facilitate research breakthroughs. It is

known that a weakly connected network with low cohesion usually

has a larger path length between each actor which is evident in

many network flow problems. Thus, on the one hand, in a weakly

connected network, knowledge transfer would be slow because the

information has to pass through more intermediate actors to reach

another actor. On the other hand, a highly cohesive network may

reach a point where excess connections lead to frequent transfers of

redundant knowledge, which eventually impedes research effi-

ciency.13–15 This theory is referred to as the echo chamber effect and

is supported by previous studies such as policy positions regarding

climate.16 Cohesion generally can be measured by the clustering co-

efficient.11,17,18 Guler and Nerkar19 used this metric to investigate

the relationship between innovation and network cohesion and

found that local cohesion was beneficial to innovation. This theory

implies that actors who have similar ideological positions make con-

nections to a similar set of actors resulting in a reinforcement of

ideals. We investigate this effect in the clinical research environment

and measure whether cohesion (social embeddedness) of an actor

impedes research efficiency.

In addition to cohesion, organizational characteristics of the

actors and their collaborators play an important role in knowledge

acquisition and creation that contributes to higher clinical research

output (ie, the number of drugs approved and research efficiency).

These organizational characteristics include the type of organization

(eg, nonprofit, academic) and their research portfolio which reflects

their experience. Research indicates there are advantages to partner-

ing with a diverse network of collaborators.20–23 One reason is that

collaboration with a partner that has uniquely different knowledge

bases and research portfolios allows an actor to explore domains

that were previously outside their own expertise which are poten-

tially difficult or impossible to access without a knowledgeable part-

ner.3 Another reason that a diverse network may be useful is that a

wider knowledge base might help actors maintain alliance ties.24

Additionally, research indicates actors may seek to obtain or exploit

innovations developed by partners,4 but to truly innovate, an actor

must be able to combine preexisting knowledge with new knowl-

edge that was obtained through collaboration.10 Therefore, diverse

collaborations through networks comprised of heterogeneous actors

may serve to expand an actor’s knowledge base or portfolio, which

may be beneficial for drug research and development.

OBJECTIVE

In this study, we characterize actors’ roles within collaborations us-

ing network and diversity metrics to examine the extent to which

their collaborative behavior fosters the development of new drugs.

Figure 1 shows a selection of measures that we used to quantify each

actor (see Materials and Methods and Supplementary Appendix for

more details). Rather than consider the networks formed through

patents or contractual alliances, this is the first study to examine the

networks formed through collaborations on running clinical trials.

We focus our investigation on the local network structure of each

actor, research portfolio diversity, and collaborators’ characteristics

relative to the actor in question.

MATERIALS AND METHODS

Data sources and collaboration network construction
We focused our investigation on empirical data from 4494 organiza-

tions and 18 040 trials extracted from the Aggregate Analysis of

ClinicalTrials.gov25 and BioMedTracker Pharma Intelligence data-

bases (see Supplementary Appendix S1 for data collection and proc-

essing methods).26 Using these data, we were able to construct a 2-

mode affiliation network that included the actors (sponsors and

partners) and clinical trials (distinguished by the national clinical

trial [NCT] identifier number). We then transformed the 2-mode af-

filiation network using a bipartite projection into a one-mode col-

laboration network that ranged from January 2006 to January

2016. The 1-mode network defines nodes as a single actor, and a

link represents at least 1 instance of collaboration on a clinical trial

between a pair of actors. We conducted an egocentric analysis on a

dynamic, 1-mode collaboration network in which the focus is on the

organizations or actors over a period of time.

We accounted for temporal differences by generating multiple

time-dependent networks to capture the evolution of the network

structure over the considered time period. The network was gener-

ated for every month between January 2006 to January 2016, which

resulted in 121 monthly snapshots. A node or link is active at a given

snapshot if the respective actor and collaborator are involved in at

least 1 trial during the observed month. Based on this network, we

developed several metrics to measure organizational, collaboration,

and structural characteristics of each actor in the clinical trials col-

laboration network for each month.
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Network measures and actors’ attributes
In order to quantify the effects of the actor’s network and research

characteristics on research performance, we developed 2 metrics: cu-

mulative trial successes, CTSit (research output); and trial success

rate SRit (research efficiency). Cumulative trial successes is defined

as the cumulative number of clinical trials that an actor has been in-

volved in as a sponsor or collaborator that eventually led to an Food

and Drug Administration–approved drug. The trial success rate for

each actor is the cumulative trial successes divided by the overall

number of trials, which is the number of times that an actor has

been classified as either a sponsor or collaborator.

We classified the actors into 6 organization-types: academic,

government, nonprofit, industry, hospital system, and large pharma-

ceutical companies. determined the classifications based on addi-

tional data gathering efforts using publicly available sources and

other methods (see Supplementary Appendix S3.1 and Supplemen-

tary Table S2 for organization type classification definition). We dif-

ferentiated between large pharmaceutical companies and industry

actors by selecting the companies that were ranked as either the top

25 with the highest market capitalization in 2016, top 15 revenue in

2016, or top 15 R&D budgets in 2016. The complete listing for

large pharmaceutical companies is included in Supplementary Table

S3. This allowed us to stratify and add fixed effects to control for

the organization type in our regression.

For each actor on the network, we computed several node-

specific metrics that quantified expertise, structural, organizational,

and collaboration characteristics. Expertise is determined by desig-

nating each actor as having specialization in one particular thera-

peutic area (see Supplementary Appendix S3B). Structural

characteristics, such as betweenness centrality and local clustering

coefficient, are local network characteristics of the actor (see Supple-

mentary Appendix S3C). Organizational characteristics are based

on the clinical research experience of the actor (see Supplementary

Appendix S3D). Collaboration characteristics are based on the rela-

tive comparison of all collaborators vs the observed actor (see S3E

in Supplement).

Structural characteristics
Betweenness centrality is defined as

BTit ¼
X

j;k2V

rjk ið Þ
rjk

(1)

where the denominator rjk represents the shortest path between

nodes j and k in node set, V, which includes all possible pairwise

combination of nodes in the network, and the numerator rjk(i) rep-

resents the number of shortest paths from node j to node k that goes

through node i.27 This metric is useful for measuring the extent to

which a node acts as a “bridge” between 2 communities.

The local clustering coefficient, CCit, measures the extent to

which an actor’s neighbors are connected to each other for actor i at

time t. If an actor’s local neighborhood, which includes itself and its

neighbor, is fully connected as a clique (fully connected subgraph),

then the clustering coefficient would be 1, while a completely uncon-

nected local network would be 0. Formally, the local clustering coef-

ficient for an undirected graph is defined as

CCit ¼
2Lit

ditðdit � 1Þ (2)

where Lit represents the number of links between the neighbors of

actor i at time t, and dit represents the number of degrees of actor i

at time t.

Organizational characteristics
Research diversification, RDit, gives us an impression of the level of

interdisciplinary experience in an actor’s clinical trials portfolio. We

quantified RDit using an entropic measure that measures the hetero-

geneity of actor i’s knowledge mix vector xi.

Figure 1. Diagram of selected metrics that are used to characterize each actor in our analysis: local clustering coefficient (cohesion), research diversification, col-

laboration diversity, and knowledge distance. To illustrate the differences in the metric values, the top row represents high values of each metric, while the bot-

tom row represents the low values. The ovals represent the observed actor and their partners. Research portfolios are represented as stacked squares, with each

square symbolizing a trial in their portfolio. The fill color in each square symbolizes the therapeutic area of a clinical trial. Therefore, the more colors there are in

an actor’s research portfolio, the more diversity there is in an actor’s research portfolio. Likewise, the fill color in an oval designates the therapeutic area in which

an actor has expertise.
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RDit ¼
X

d2 D

xidt ln
1

xidt
(3)

We assumed that a company that has completed 0 trials will

have an entropy of 0.

Using RDit defined in equation 3, we can determine the mean

neighbor research diversification of all partnering organizations j

that collaborate with actor i at any given time period t. The mean re-

search diversification hRDiit is simply

RDh iit ¼
P

j2 E i;jð Þ RDjt

dit
(4)

where RDjt is the research diversification of actor i’s partner, actor j.

Knowledge is developed through an actor’s experience which

can be quantified as the number of trials conducted in each thera-

peutic area (eg, neurology). By stratifying knowledge by therapeutic

area, we can determine the relative competencies of each actor in the

network and measure the extent to which their knowledge is concen-

trated and distributed.

Collaboration characteristics
Vaccario et al28 defined the knowledge distance as the Euclidean dis-

tance between organizations i and j at time t. In other economic lit-

erature, this is known as the technological distance29 and is formally

defined as

KDijt ¼ kxit � xjtk ¼
X

d2D

xidt � xjdt

� �2
(5)

where xidt represents an element of the knowledge mix vector xit

(see equation 1 in Supplementary Appendix S3D.1) with element

xidt representing the fraction of clinical trials conducted in therapeu-

tic area d at time t.

We adopted KDijt as a metric to measure the research differences

between a pair of organizations’ portfolios (ie, the distribution of

trial experience in each therapeutic area). The knowledge distance is

at a maximum (KDijt ¼ �2) when actors are concentrated in 2 exclu-

sively, different therapeutic areas. When 2 firms are concentrated in

the same therapeutic area, the knowledge distance equals to 0 be-

cause they are identical in expertise. Therefore, a higher KD corre-

sponds with a larger difference between the 2 research portfolios.

In our analysis, we calculate the mean knowledge distance,

hKDiit, based on equation 3, for all incident links to actor i at time t

and used it as a variable in our regression. We can define this as

KDh iit ¼
P

j2 E i;jð Þ KDijt

dit
s:t: i 6¼ j (6)

where dit is the number of degrees for actor i at time t.

We also classified each actor as an “expert” in one therapeutic

area, which corresponds to the therapeutic area that has the highest

number of trials. Once we designated each actor as an expert in a

particular therapeutic area, we measured collaboration diversity by

using an entropic measure of diversity,

CDit ¼
X

d2D

zidtln
1

zidt
(7)

The variable zidt is the number experts in therapeutic area d 2 D

that actor i is actively collaborating with at time T. The set D

includes all the therapeutic areas that were defined in the BioMed-

Tracker Pharma Intelligence database. This entropic measure is

commonly used to quantify diversity in many fields that range from

biology to production portfolios.30,31

MULTIVARIATE REGRESSION ANALYSIS

We conducted a regression analysis on 2 response variables that re-

late to research output and efficiency: cumulative trial successes and

trial success rate. We ran separate regressions on each response vari-

able with 1-, 2-, and 5-year lag to capture the delay of knowledge

adoption and implementation. Robustness of our regression analysis

was verified with 3 separate sets of regression: (1) regression with all

measures, (2) regression with selected measures based on statistical

significance and reduced collinearity, and (3) regression with only

control variables. This resulted in a total of 9 models (see Supple-

mentary Tables S5-S7 and S9-S11 for all regression results). The var-

iables Trialsi(t-k), PrevSucci(t-k), and PrevExpi(t-k) and the fixed

effects ct and ji are considered to be the control variables.

The lagged regression that examined cumulative trial successes

(CTSit) with respect to each actor i at time period t utilizes a negative

binomial generalized linear model. We chose a negative binomial

generalized linear model because the distribution of CTSit was over-

dispersed (see Supplementary Appendix S4 for details). The regres-

sion with selected variables is defined as

log CTSitð Þ ¼ b0 þ b1 PrevSucci t�kð Þ þ b2 Trialsi t�kð Þ
þ b3 CDi t�kð Þ þ b4 KDh ii t�kð Þ þ b5 CCi t�kð Þ
þ b6 BTi t�kð Þ þ b7 RDi t�kð Þ þ ct þ ji þ �it (8)

We add a control variable, PrevSucci(t-k), which takes on a value

of 1 if the actor has achieved at least 1 success before time t - k.

Additionally, time and actor-type are also controlled with fixed

effects, ct and ji. The response variable CTSit is lagged k years,

therefore all the covariates corresponding with each actor are at an

earlier time t - k.

Because the trial success rate, SR; ranges from 0 to 1, we used a

lagged beta regression. However, beta regressions are only used to

predict values in the (0,1) domain which excludes 0 and 1. We con-

ducted a mathematical transformation on SR (see section Supple-

mentary S4B in Supplement) to convert the 0 and 1 values to be

within the prescribed range. The trial success rate is defined as the

cumulative number of trial successes normalized against the cumula-

tive number of trials. The regression can be shown as

logit SRitð Þ ¼ b0 þ b1 PrevExpiðt � kÞ þ b2 KDh ii t�kð Þ
þ b3 CCi t�kð Þ þ b4 RDi t�kð Þ þ b5 RDh ii t�kð Þ
þ b6 BTi t�kð Þ þ b7 CDi t�kð Þ þ ct þ ji þ �it (9)

The dummy variable PrevExpi(t-k) takes on binary values and

represents whether the actor has conducted at least 6 trials (average

number of trials) before time t - k.

Robust checks include conducting regressions on control and all

measured variables for all 3 lag times. The results of these other

models are located in the Supplementary Tables S5-S7 and S9-S11.

RESULTS

The clinical trials collaboration network consisted of 4494 unique

nodes (actors). From January 2016 to January 2016, the number of

edges increased from 6287 to 16 821, and nodes increased from

1509 to 3108 (Figure 2A). In Figure 2A, we observed that the net-

work is becoming more cohesive over time by the global clustering

coefficient and average path length measures. The average degree of
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each node is 27.7 6 39.9. Consistent through all time periods, aca-

demic actors have the largest number of edges in the network com-

pared with other organization-types (Figure 2B). The descriptive

statistics for all network measures are summarized in Supplementary

Table S4.

The regression analysis shown in Table 1 suggests that more suc-

cessful actors have highly diversified research portfolios and collab-

orate with a diverse set of experts from a variety of specialties. In

the short term (1- and 2-year windows), actors that collaborate with

partners that have similar research portfolios have higher research

output. More research-efficient actors tend to have lower cohesion

in their local networks, higher research diversification, and collabo-

rators that also have highly diversified research portfolios. Not sur-

prisingly, we found that previous success and cumulative trials

conducted had the largest impact on cumulative trial successes

which represents research output, while the previous experience

dummy variable was the strongest predictor for trial success rate, a

measure of research efficiency.

Mean knowledge distance has a negative impact on cumulative

trial success for 1- and 2-year lags while having a slightly positive

impact 5-year lag, which suggests that collaborations with actors

collaborating with dissimilar actors in a longer time window have

some beneficial effects on research output. Mean knowledge dis-

tance has a positive and significant impact on research efficiency for

the 2-year lag.

Although the local clustering coefficient is statistically signifi-

cant—except for the trial success rate with a 5-year lag—we did not

observe a large effect on research output and efficiency. Neverthe-

less, the local clustering coefficient does have a negative trend be-

tween research efficiency and output which suggests there is some

sort of relationship. Also, the local clustering coefficient has a larger

and more significant effect when compared with the other structural

characteristic, betweenness centrality.

Based on our research question and regression analysis, we dove

deeper into the relationship between the local clustering coefficient

(network cohesion) and collaboration diversity. Figure 3A illustrates

a slight inverse relationship between collaboration diversity and lo-

cal clustering coefficient, which is indicated by the negative-sloped

linear trend line. This indicates that actors that collaborate more di-

versely are less embedded in the network. In Figure 3B, we observe

that most actors with lower local clustering coefficient and higher

collaboration diversity tend to be large pharmaceutical actors that

have achieved more research output.

Figure 4A shows the differences in collaboration diversity and

clustering coefficients between successful and unsuccessful actors.

Successful actors tend to have a lower clustering coefficient than

their unsuccessful counterparts while having more collaboration di-

versity. If we focus on organization types in Figure 4B, we will no-

tice that nonprofit organizations tend to have a higher clustering

coefficient. However, even the successful nonprofit vs unsuccessful

nonprofit organizations have observable differences in their level of

cohesion.

Figure 4B also shows that government and academic actors are

the ones with the highest collaboration diversity, with industry

actors being the least diverse in collaboration. This is expected be-

cause academic and government institutions are usually responsible

for leading and sponsoring many clinical trials across therapeutic

disciplines. Furthermore, industry actors tend to have lower collabo-

ration diversity because they collaborate with fewer partners, in gen-

eral (see Supplementary Figure S5). We also notice that successful

large pharmaceutical companies are more likely to collaborate with

a diverse set of actors.

Number of Edges

Number of Nodes

Average Path Length

Global Clustering Coefficient

2006 2008 2010 2012 2014 2016

0.27
0.28
0.29
0.30
0.31
0.32

3.30

3.35

3.40

1500

2000

2500

3000

6000

9000

12000

15000

18000

Year

A B

Figure 2. Global network characteristics. (A) Overall (global) characteristics of the network for each month from January 2006 to January 2016 for 4 measures: av-

erage path length, global clustering coefficient, number of edges, and number of nodes. (B) Chord diagram illustrates the number of collaboration links between

and within the 6 organization types in January 2015. The width of the links is scaled based on the volume of collaborations. Academic actors tend to have more

collaborative links across all organization types. This is not surprising since academic centers offer resources and infrastructure for clinical trials that are not avail-

able to other actor types. As a result, academic collaborations tend to dominate this collaboration network in terms of connections. Many principal investigators

on clinical trials also have an academic appointment, even if the trial is sponsored by industry, which explains the higher count of academic actors.
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DISCUSSION

We found that collaboration diversity is related to higher research

output and efficiency. The collaboration network shows signs of

preferential attachment that occurs when actors are attracted to

other actors that have a demonstrated record of successes, resulting

in a feedback loop known as the Matthew effect.2 Large pharmaceu-

tical companies that are historically successful benefit from preferen-

tial attachment when they attract a wide range of actors with

varying therapeutic expertise and experience, which would explain

the correlation between success and collaboration diversity. Figure 3

shows this effect, in which actors classified as large pharmaceutical

companies tend to have lower clustering coefficients with more col-

laboration diversity. Others have found that highly connected nodes

bridge the gap between disciplines in science.32 As the network

evolves, the preferential attachment to these large pharmaceutical

companies will create a more evident hub formation that decreases

the local clustering coefficient and increase their collaboration diver-

sity.

Our evidence suggests that there is potentially an echo chamber

effect in which actors that have a cohesive local collaboration net-

work with nondiverse partners perform poorly. In contrast, actors

do benefit from exposure to diverse ideas and knowledge through

clinical trial collaboration due to the knowledge exchanged with

partners on the peripheries of the network that have few collabora-

tors. Our work suggests that local network cohesion captured by the

local clustering coefficient is negatively correlated with collabora-

tion diversity, research output, and efficiency. This network metric

demonstrates the association of network position in relation to inno-

vation.

Academic institutions, government agencies, and large pharma-

ceutical companies are the ones with the lowest clustering coefficient

and highest collaboration diversity. Government and academic

actors provide resources and personnel to other actors, which

explains their network structure and higher diversity in collabora-

tion. We observed in our network that large pharmaceutical compa-

nies collaborate more often with several smaller industrial partners

than other actor types resulting in their higher collaboration diver-

sity. These private-sector actors, oftentimes, recognize the benefit of

knowledge diversity and are strategically motivated to collaborate

with diverse actors that complement their core expertise. Large

pharmaceutical companies collaborate with many smaller, new mar-

ket entrants that are not as embedded in the collaboration network,

like biotechnology startups.33 Furthermore, large pharmaceutical

companies are proficient at absorbing distinct knowledgebases of

more specialized actors that are newcomers which results in a lower

clustering coefficient. This is reflected in increased instances of

public-private partnerships.34 Given that large pharmaceutical com-

panies have resources to exploit comparative advantages of alli-

ances, they are more likely to partner with actors that are relatively

new players that complement their ability and are not yet embedded

in the system.35 Eventually, large pharmaceutical companies may

even acquire these companies because they would also acquire the

intellectual property that helps produce better therapeutic products.

Existing evidence of biotechnology companies searching for novel

knowledge from various scientific communities has been supported

by previous studies.36

Knowledge distance between actors and their partners tend to be

larger for more efficient actors, which indicates that actors that co-

operate with other actors that have a contrasting research portfolio

may result in a higher rate of success. Because smaller actors had

less output in the short run (1- and 2-year lags), these actors had

larger knowledge distance. However, as small actors become more

Table 1. Standardized coefficient estimates for cumulative trial successes and trial success rate

Cumulative Trial Successes (Research Output) Trial Success Rate (Research Efficiency)

Variable 1-y Lag 2-y Lag 5-y Lag 1-y Lag 2-y Lag 5-y Lag

Previous success 2.572c 2.029c 1.127c

(0.038) (0.035) (0.051)

Previous experience 0.238c 0.196c 0.055

(0.053) (0.061) (0.107)

Cumulative trials conducted 0.290c 0.251c 0.092c

(0.009) (0.010) (0.021)

Collaboration diversity 0.182c 0.213c 0.186c �0.020 �0.029 �0.040a

(0.017) (0.017) (0.022) (0.017) (0.018) (0.021)

Local clustering coef. �0.064c �0.074c �0.128c �0.041c �0.044c �0.041b

(0.014) (0.014) (0.019) (0.015) (0.015) (0.018)

Mean knowledge distance �0.248c �0.194c 0.092c 0.028b 0.038c 0.038b

(0.018) (0.018) (0.021) (0.014) (0.014) (0.018)

Mean neighbor research diversification 0.041c 0.056c 0.068c 0.102c 0.118c 0.113c

(0.013) (0.014) (0.018) (0.014) (0.014) (0.018)

Betweenness centrality 0.015 0.026b 0.125c 0.0003 0.006 0.033

(0.011) (0.013) (0.022) (0.018) (0.019) (0.024)

Research diversification 0.135c 0.128c 0.159c 0.097c 0.109c 0.100c

(0.015) (0.015) (0.022) (0.020) (0.021) (0.027)

Constant �2.460c �1.723c �0.743c �0.422c �0.658c �0.740c

(0.130) (0.112) (0.092) (0.147) (0.118) (0.089)

Standardized coefficient estimates with standard errors are shown for response variables, cumulative trial successes and trial success rate. The coefficients for

cumulative trial successes are estimated by the negative binomial regression, while the coefficient estimates of trial success rate are the result of a beta regression.

We show the coefficients of each response variable for 3 lag lengths (1 year, 2 years, and 5 years) to account for the dynamic effects. Refer to Supplementary

Tables S6-S8 and S10-S12 for fit statistics.
aP< .1. bP< .05. cP< .01.
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Figure 3. Relating cumulative trial success with local clustering coefficient and collaboration diversity. (A) Scatterplot of collaboration diversity vs local clustering

coefficient in January 2015. This distribution is similar for 2006 to 2016 (see Supplementary Figure S11). For all time periods, large pharmaceutical companies

that have more success are distinguished as triangles. The black dashed trend line shows a linear negative correlation between the clustering coefficient and col-

laboration diversity. The color gradient represents cumulative trial successes. This plot highlights the research performance relative to collaboration diversity

and the local clustering coefficient. The gray points represent actors that are active during January 2015 but have not subsequently participated in a successful

clinical trial. (B) Scatterplot showing the relationships of cumulative trial successes with respect to local clustering coefficient and collaboration for January 2015.

Each organization type is distinguished by color.
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successful in the long run (5-year lag), we see that knowledge dis-

tance begins to benefit them because the larger knowledge distances

are associated with more collaborations with smaller actors that

have only 1 specialization. In our case, knowledge distance supports

the notion of comparative advantage in partnerships. Research indi-

cates that collaborating with experts in different fields increases the

actor’s knowledge base and ability to innovate by combining vary-

ing knowledge; this phenomenon is known as knowledge absorp-

tion, which has been studied extensively within the pharmaceutical

industry.37,38 However, our study contributes to the body of knowl-

edge by observing this phenomenon within the clinical R&D con-

text. Links in our network embodied the knowledge, resource, and

data exchange via clinical trial collaboration between partners.

It should be noted that an approved drug may not necessarily be

indicative of novel knowledge creation, since it may be a marginal

improvement on an existing drug; many drugs are considered “me-

too drugs”’ which are not breakthroughs in therapeutic effective-

ness.39 Given the availability of data, we found it difficult to find a

quantitative indication of true innovation. Although some studies

use patents as indicators for innovation, the pharmaceutical industry

files multiple patents for any compound that may have higher mar-

keting potential to protect them from generic drug competition.40

Nevertheless, we argue that a company is developing knowledge by

accumulating clinical research data, personnel, and patient base.

The findings of our study suggest that the system is moving to-

ward more influence of larger actors over pharmaceutical R&D,

such as large pharmaceutical companies. As these select groups of

actors become loci of innovation, future research needs to investi-

gate how disproportional concentration of institutionalized knowl-

edge, resource, and expertise might result in diminished efficiency

and productivity for the pharmaceutical industry overall. Further-

more, more investigations into the role of diversity within these bio-

medical specialties will shed light on how subdiscipline diversity

within these biomedical specialties impact the productivity and effi-

ciency of treatment development.

Limitations
One issue with our study included the existence of actors that have

no successes, which may introduce zero inflation in the regression

analysis. Although the 0-1 inflation distribution may have been a

better fit to our data, we decided that it was more appropriate to

employ the Smithson and Verkuilen41 transformed beta distribution

for our research question because we were not dealing with actors

that were perpetually unsuccessful or successful. Furthermore, we

attempted to rectify this issue by introducing fixed effect variables

for previous successes and previous experience to predict cumulative

trial successes and trial success rate.

Because many actors exist in multiple snapshots, serial correla-

tion is present within each actor between time periods, which may

magnify certain actor’s behaviors in our regression analysis, espe-

cially if they are active in for many years. However, we have many

actors who were active throughout the entire duration of our analy-

sis, thus minimizing the unbalance in our panel dataset.

CONCLUSION

Our study showed that large pharmaceutical companies and other

successful organizations tend to have lower cohesion in their local

network. Large pharmaceutical companies are productive at absorb-

ing novel knowledge by searching for diverse partners. The role of

outsiders and new actors such as startup biotechnology or life sci-

ence companies will be crucial because the system is moving toward

more cohesion, thus saturating the existing distribution of knowl-

edge.
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