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Summer weather conditions 
influence winter survival 
of honey bees (Apis mellifera) 
in the northeastern United States
Martina Calovi1*, Christina M. Grozinger2, Douglas A. Miller3,4 & Sarah C. Goslee5*

Honey bees are crucial pollinators for agricultural and natural ecosystems, but are experiencing heavy 
mortality in North America and Europe due to a complex suite of factors. Understanding the relative 
importance of each factor would enable beekeepers to make more informed decisions and improve 
assessment of local and regional habitat suitability. We used 3 years of Pennsylvania beekeepers’ 
survey data to assess the importance of weather, topography, land use, and management factors 
on overwintering mortality at both apiary and colony levels, and to predict survival given current 
weather conditions and projected climate changes. Random Forest, a tree-based machine learning 
approach suited to describing complex nonlinear relationships among factors, was used. A Random 
Forest model predicted overwintering survival with 73.3% accuracy for colonies and 65.7% for apiaries 
where Varroa mite populations were managed. Growing degree days and precipitation of the warmest 
quarter of the preceding year were the most important predictors at both levels. A weather-only 
model was used to predict colony survival probability, and to create a composite map of survival for 
1981–2019. Although 3 years data were likely not enough to adequately capture the range of possible 
climatic conditions, the model performed well within its constraints.

Abbreviations
USDA-NASS	� United States Department of Agriculture—National Agricultural Statistics Service
CDL	� Cropland data layer
FRI	� Forage resource index
ITL	� Insect toxic load
RF	� Random forest
OOB	� Out-of-bag

Honey bees (Apis mellifera) contribute more than $20 billion in pollination services to agriculture in the United 
States1, and contribute substantial economic value to downstream industrial sectors2. Honey production generates 
an additional $300 million annually for US beekeepers3. However, winter colony mortality has a strong negative 
effect on economic and ecosystem potentials, with approximately 53.5% overwintering mortality of US honey bee 
colonies estimated from survey data from 2016 to 20194. However, winter mortality is known to vary regionally in 
both the US and Europe, but the landscape or weather factors underlying this variation are poorly understood5,6.

Honey bee colonies are not dormant during the winter: they remain active and maintain the hive temperature 
between 24 and 34 °C by forming a thermoregulating cluster7. This enables them to survive long periods of cold 
temperatures8–10. During the winter, the colony ceases foraging for nectar and pollen and relies on its existing 
stores, collected during the plant growing season. Furthermore, brood rearing ceases, and the colony is depend-
ent on the survival of a long-lived cohort of bees that is produced in the autumn. These bees will live for several 
months, while worker bees produced in the summer only live for a few weeks. Thus, factors which undermine the 
ability of the bees to collect and store adequate amounts of food during the summer and fall, or to thermoregulate 
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effectively during the winter, or reduce the lifespan of winter bees, can contribute to colony mortality. These 
factors include: beekeeper management practices that affect parasite and pathogen loads, particularly control of 
Varroa mites11–13; forage quality and pesticide exposure due to the surrounding land use14; and weather factors 
which influence the availability of forage, the thermoregulatory ability of the bees in the winter, and the amount 
of time before bees are able to initiate brood rearing in the spring15. Modeling and predicting honey bee winter 
survival requires consideration of all of these factors.

Previous studies have evaluated how colony growth, honey production and survival correlates with particular 
land use practices, such as the percentage of agricultural land or the percentage of certain crops in the area sur-
rounding the hive16–19. However, while several studies have indicated that honey bees show reduced growth or 
higher mortality with increasing urban or agricultural land use16,17,20, others have found that agricultural land 
use is positively correlated with colony survival18. These measures of land use do not necessarily correlate directly 
with forage quality, as bees can collect substantial resources from wildflowers in both agricultural and urban 
areas, and crops can vary greatly in the resources they provide to bees or their pesticide regimes21–24. Indices of 
forage quality and of pesticide loading based on surrounding land cover have been developed that are intended 
to incorporate specific effects of crop and habitat types on a broad scale25–27, but thus far these have not been 
applied to studies of honey bee winter survival or health.

Seasonal weather conditions affect both forage availability and thermoregulatory success, and thereby directly 
and indirectly influence honey bee health28. During the growing season, weather conditions can affect the onset 
and decline of specific foraging resources, lengthen or shorten the time in which resources are available for 
bees, change the quality of these resources, and alter the span during which bees can actively forage29,30. Indeed, 
even small variations in temperature can dramatically change the numbers of available flowers and the amount 
of nectar they produce31. Winter temperature conditions influence the efficiency of maintaining hive internal 
temperatures. The optimal external temperatures that maximize efficiency of this thermoregulation are from 
− 5° to 10 °C32. When temperatures drop below 10 °C, the bees form a thermoregulating cluster8,10. In previous 
studies in Austria, warmer and drier climates have been associated with higher winter losses15.

Few studies have simultaneously evaluated the effects of multiple landscape and weather factors on honey 
bee colony winter survival. A study of honey bee winter survival in the Netherlands evaluated survival of 1106 
colonies across 2 years, using 24 variables in a generalized linear mixed model14. Overall, there were positive 
effects of forest and grassland, and negative effects of increased annual mean temperature, and no effect of 
predicted toxicity of insecticides applied to agricultural areas. Another study was conducted in Belgium, where 
the apiary-level winter colony survival rates were assessed for 147 apiaries across two years (encompassing 607 
colonies) using 26 variables using regression analyses33. In that study, Varroa infestation was by far the most 
correlated variable with winter mortality rates, followed by temperature conditions (in terms of frost days and 
flying hours), beekeeper practice (e.g., involvement in beekeeping organizations), potential pesticide exposure 
(calculated from surrounding agricultural lands), and landscape connectivity.

Evaluating how these complex factors influence honey bee winter survival requires large data sets that span 
multiple types of habitats, microclimates, and years. Collaborations with beekeepers through citizen science pro-
jects can provide the necessary large and varied data sets, and are becoming increasingly important for studying 
both managed honey bee and wild bee health33–35. The voluntary involvement of beekeepers as key collabora-
tors in the collection of data has the dual benefits of generating the necessary large data sets while also directly 
engaging stakeholders in scientific research, such that the outcomes are more likely to be translated to directly 
benefiting the stakeholders35. One example of this citizen science approach is the annual winter loss survey con-
ducted by the Pennsylvania State Beekeepers Association (PSBA) across the entire state. Voluntary survey data 
entails certain limitations, such as effective coverage of target populations, data accuracy, potential bias of the 
survey sample, the survey modes, missing data, and incomplete responses36, but nonetheless the PSBA survey 
provides the best available information, a geographically robust data set covering hundreds of apiaries and 3 years.

Using this unique data set, our objective was to develop a predictive model of the overwintering survival of 
honey bee colonies in Pennsylvania that incorporates weather, topographic variables that affect temperature and 
moisture, and the composition of the surrounding landscape as it determines foraging resources and potential 
pesticide load25–27 (Supplementary Table S2). Our goal was to understand relative contribution of these factors 
to honey bee winter losses in this region, and to develop a model predicting honey bee winter survival across 
Pennsylvania to support beekeeper management decisions and processes.

Methods
The complex nature of the factors influencing overwintering survival of European honey bees necessitated the 
integration of multiple datasets comprising weather and topographic variables that determine temperature and 
moisture conditions, and landscape variables that determine the availability of foraging resources and insecticide 
exposure risk. The analysis of these diverse datasets can best be addressed with randomization-based machine 
learning techniques that do not require the data to meet standard statistical assumptions or expect relationships 
between overwintering success and environment to follow any predetermined form. Thus, unlike previous studies 
which examined landscape and/or weather condition effects on winter survival using general linear mixed models 
or regression approaches14,32, we used a machine learning approach suitable for complex multivariate datasets.

Data sources.  Honey bee overwintering survival.  Our main dataset originates from the Pennsylvania State 
Beekeepers Association Winter Loss Survey (see sample questions in the Supplementary S1). The survey began 
to collect apiary locations information in 2017, resulting in data for three winters in our analysis: 2016–2017, 
2017–2018, and 2018–2019. Variables extracted from the survey were: beekeeper ID, spring year, colony number 
in November and in April, beekeepers’ years of experience, use of Varroa mite treatment. The ID that identifies 
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each beekeeper is randomly assigned each year to protect personally identifiable information. Unfortunately, 
as a result it is not possible to follow individual apiaries throughout the years of the survey, making historical 
tracking of the individual beekeepers and their apiaries impossible. Furthermore, detailed information is not 
available on the genetic background of the colonies, whether the colonies were newly established or persisted 
over the previous winter, the age or quality of the queens, or how and when the colonies were established (e.g., 
from packages or splits).

In the survey, beekeepers noted whether their operations were involved in migratory beekeeping practices 
(meaning they moved colonies to different sites for pollination services throughout the year). These operations 
were not used in this study. Beekeepers could only provide information on their total colony numbers and loca-
tion information for one apiary: thus, it is possible that some beekeepers combined information from multiple 
apiaries and this is a limitation of this data set. However, most of the non-migratory respondents reported fewer 
than ten hives: this suggests they were likely small-scale beekeepers with a single apiary, or a few nearby apiaries. 
After filtering, 342 apiaries with 1726 colonies had adequate data (Fig. 1).

Preliminary analysis of the dataset clearly demonstrated that treating for Varroa mites was a key factor in 
determining overwintering survival across all three years (Fig. 2). For each of the three winter years, difference in 
the survival of mite-treated and untreated honey bee colonies was evaluated using a one-sided t-test. For each of 
the 3 years the evidence is to reject the null hypothesis that means were equal; when the colonies are treated the 
average survival is higher (see Fig. 2). Only 17% of beekeepers did not treat their colony in some way. Because of 
the clear effect of the treatment and the small number of untreated colonies, we chose to model only the treated 
apiaries. Thus, the final dataset comprised 1429 colonies within 257 apiaries.

Weather and topographic variables.  For each reported apiary location, we generated annual and seasonal 
weather variables from 4-km gridded daily temperature and precipitation data37. The variables created include 
standard bioclimatic and agronomic indices such as BIOCLIM38 that have been used in previous modeling stud-
ies (e.g., Ref.39). Agronomic indices include consecutive dry days and growing degree days, a measure of heat 
accumulation over a base temperature of 5 °C. Only the variables most relevant for honey bees (rather than other 
taxa) have been included in the study (Table 1). Bee-specific weather indices relevant for overwintering include 
winter days within bee optimal thermoregulating temperature range (− 5° to 10 °C) and the number of winter 
days suitable for flight and foraging, with maximum temperature above 16  °C and total precipitation below 
3 mm (Table 1)9,38. Note that while there is little blooming in the winter months (December, January, February, 
in our analysis) some plants in Pennsylvania do bloom during these times (such as witch hazel), and bees in the 
northeastern United States begin brood rearing in late February9. Furthermore, bees take cleansing flight when 
the weather permits to void their intestines and prevent pathogen and parasite transmission in the colony40. 
Topographic variables were included in the analysis because they modify the local climate at finer scales than 

Figure 1.   Locations of Pennsylvania beekeeper survey respondents from 2016 to 2019, stratified by use of 
treatment for Varroa mites (257 treated and 85 untreated apiaries). Only treated apiaries were modeled. The 
map has been generated by the authors in R 3.6.250, using the sf72, the raster56, the ggplot273 and the cowplot74 
packages.
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can be represented by the gridded climate data39. These were calculated from 30-m resolution gridded elevation 
data41 using GRASS GIS42, and include slope, curvature, and the northerly and westerly components of aspect.

Forage resource index and insecticide toxic load.  Two honey bee-specific distance-weighted landscape descrip-
tors were generated for each apiary using the 30 m resolution USDA-NASS Cropland Data Layer (CDL)43. The 
Forage Resource Index (FRI was calculated for each floral season. This index describes the quality and abun-
dance of floral resources available for both managed and wild bees for each land use category25,26,44. Following 
Koh et al. (2016), we generated the seasonal FRI at each apiary location using a weighted distance decay function 
that extends to the 5-km foraging radius of honey bees45. The Insect Toxic Load (ITL) characterized the amount 
of active ingredient used for each insecticide based on statewide records of per-hectare use by crop type, and 
converted this to an aggregated insect toxic load using honey bee LD50s27. The same CDL data and distance-
weighting function were used for the FRI and ITL to maintain consistency. Although CDL is an annual product, 
these indices integrate over large areas and are extremely highly correlated between years, so for simplicity we 
only used 2017 indices in the model.

Statistical analyses.  The survey data were extremely unbalanced, with 1429 colonies within 257 apiaries. 
The apiaries contained from 1 to 34 colonies, with a median value of 3. Our objective was to predict survival at 
the colony level, but we analyzed the data at both apiary and colony scales to ensure that results were consistent 
at both levels. We used a binary classification to model survival at the colony scale: 0 for mortality, and 1 for 
survival. Thus, if an apiary had 5 colonies in November and 3 of those colonies survived in April, each of the 
3 surviving colonies was assigned a score of 1, while each of the 2 dead colonies was assigned a score of 0. To 
provide comparable results, and because of the highly unbalanced dataset, we modeled survival at the apiary 
scale as a binary variable as well. Thus, if any colonies in an apiary died, the apiary was assigned a score of 0. If 
no colonies in an apiary died, the apiary was assigned a score of 1. A tenfold cross-validation across cutoff values 
from 50 to 100% showed that the highest accuracy was obtained by modelling the survival with this 100% cutoff.

A probability Random Forest (RF), a flexible tree-based machine learning approach, was used to analyze 
overwintering mortality in relation to environmental and landscape factors within the 1429 colonies that had 
been treated for Varroa mites. Random Forests develop a large number of decision trees using a random sampling 
of variables, then average across all trees to produce an ensemble (forest) fit39,46. The RF technique is very effi-
cient when working with datasets comprising a large number of predictors47, and when the relationships among 
variables are nonlinear or complex, because it is a flexible distribution-free method48. Given the complexity and 
nonlinearity of the dataset used in this study, RF was preferred to a linear regression method, and allowed the 
development of a reliable empirical model without prior knowledge of the relationship between the survival and 
the predictors49. Importantly for a study of this scope, RF models are robust to correlated predictors.

All analyses were conducted in R 3.6.250, using the ranger package 0.11.251 for RF models of survival prob-
ability and permutation-based variable importance, and the caret package 6.0-8452 for model evaluation. Vari-
able importance was calculated using the permutation-based method in the ranger package, which indicates the 
prediction accuracy lost if that variable is omitted53,54. The form of the relationship between survival probability 
and the major independent variables was assessed using partial dependence plots (pdp 0.7.0 package55). All maps 
presented in this manuscript were produced with the raster (3.0-1256) and sp (1.4-057) packages.

Our initial intent was to train the model with the first 2 years of data and test it on the third, but the weather 
was very different across the 3 years: 2016 was warm and dry, 2017 was warm and wet, and 2018 was very wet. 
Instead, to ensure that the data used to train the model spanned the greatest possible range of weather conditions, 

Figure 2.   Survival of mite-treated and untreated honey bee colonies by year. In each of the three years, 80 out 
of 375 (21%), 25 out of 377 (7%) and 192 out of 974 (20%) colonies were untreated (297 out of 1,726, or 17% 
overall). In the white boxes the p-values results of the one-sided t-test for each year. Evidence rejects H0 in favor 
of H1: the average survival is higher when the colonies are treated.
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we used cross-validation stratified by year to train and evaluate the model. Ten repetitions of a tenfold cross-
validation were used to tune the model on a gridded parameter search with the number of trees between 2000 
and 5000 on an increment of 500, and number of variables per tree (mtry) from 3 to 8. For both colony and api-
ary models, the best number of variables was 3, and best number of trees was 4000 and 4500 respectively; mtry 
was more influential than number of trees. An independent set of ten repetitions of a tenfold cross-validation 
using the tuned parameters was used to obtain the error estimates. The final model was fitted on the full dataset, 
in order to obtain the most reliable estimates of variable importance and the best model for prediction. Such a 
model overestimates accuracy, so cross-validation error estimates are given. These estimates show how the model 
is likely to perform when presented with new data. The same cross-validation and analysis methods were used 
at both the apiary and colony scales.

Ethics declaration.  No humans or honey bees have been directly used.

Table 1.   Weather and topographic variables hypothesized to affect honey bee overwintering survival. Weather 
variables include both BIOCLIM38 and agronomic indices, as well as bee-specific variables developed for this 
study (BEE#). Permutation variable importance values are from the full colony model; larger values are more 
influential. The most important four variables are bold. Autumn: September, October, November. Winter: 
December, January, February.

Variable description Unit Variable importance

Weather

BEE1: Winter minimum temperature °C 0.0151

BEE2: Winter total precipitation mm 0.0164

BEE3: Winter days within the bee-optimal temperature range − 5 °C to + 10 °C D 0.0111

BEE4: Winter days with maximum temperature above 16 °C and precipitation below 3 mm D 0.0119

BEE5: Winter minimum temperature variation °C 0.0118

BEE6: Autumn total precipitation mm 0.0128

Growing degree days (base 5 C) °C 0.0252

Days between rain events > 0.25 mm mm 0.0127

BIOCLIM 2: Mean diurnal temperature range °C 0.0151

BIOCLIM 3: Temperature isothermality 0.0196

BIOCLIM 4: Temperature seasonality °C 0.0132

BIOCLIM 5: Maximum temperature of warmest month °C 0.0201

BIOCLIM 6: Minimum temperature of coldest month °C 0.0131

BIOCLIM 7: Temperature annual range °C 0.0130

BIOCLIM 8: Mean temperature of wettest quarter °C 0.0140

BIOCLIM 9: Mean temperature of driest quarter °C 0.0147

BIOCLIM 12: Annual precipitation mm 0.0148

BIOCLIM 16: Precipitation of wettest quarter mm 0.0202

BIOCLIM 17: Precipitation of driest quarter mm 0.0122

BIOCLIM 18: Precipitation of warmest quarter mm 0.0213

BIOCLIM 19: Precipitation of coldest quarter mm 0.0157

Topography

Elevation m 0.0154

Slope 0.0126

Potential incident solar radiation, 21 Dec Wh × m − 2 × d − 1 0.0156

Profile curvature m − 1 0.0111

Terrain curvature m − 1 0.0110

Topographic wetness index 0.0116

East/West orientation of slope 0.0102

North/South orientation of slope 0.0103

Landscape

Distance-weighted Insect Toxic Load 0.0112

Distance-weighted Forage Quality autumn 0.0104

Management

Beekeeper years of experience 0.0040

Number of colonies in November 0.0057
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Results

As described in the methods, we created models using data both at the apiary and individual colony level. The 
apiary model had cross-validated out-of-bag (OOB) error of 22% on the training data set, and a prediction 
accuracy of 65.7% on the test data (95% confidence interval 59.6–76.15%); the colony model had an OOB error 
of 19% and prediction accuracy of 73.3% (95% confidence interval 70.9–75.5%). More detailed assessments of 
model performance and variable importance are only presented for the colony model, since variable importance 
was similar for both models. Model accuracy was not notably related to geography within Pennsylvania (Fig. 3).

The four most important variables were: growing degree days, maximum temperature of the warmest quarter, 
precipitation of the warmest and of the wettest quarter (Table 1). Based on the sorted variable importance for 
all four models, growing degree days in the prior summer was the strongest predictor of overwintering survival; 
this agronomic index of heat accumulation may relate to floral resource availability. Landscape (FRI and ITL) 
and topographic factors did not contribute substantially to the colony survival model. The beekeeper’s years of 
experience had no relationship to colony survival, though it was identified as important in other studies58. The 
colony level model was nearly twice as likely to predict that colonies survived when they died than that they 
died when they actually survived (Table 2), suggesting that there is an additional source of mortality we have 
not considered.

The four most influential variables were further evaluated using partial dependence plots. These plots help 
understand how the variable affects the prediction, more specifically they show the dependence pattern between 
the probability of survival, and the variable investigated59,60, independent of all other variables in the model. 
This kind of visualization is able to provide a powerful interpretation on how the variables affect the probability 
of survival61.

Figure 3.   Prediction accuracy of the Random Forest model of overwintering survival probability from the 
colony model, averaged by apiary for mapping purposes. The dataset used to generate the accuracy map 
contained 1429 colonies within 257 apiaries. The color indicates the mean overall model accuracy at that apiary, 
and the circle size is proportional to the number of colonies in November. The map has been generated by the 
authors in R 3.6.250, using the sf72, the raster56, the ggplot273 and the cowplot74 packages.

Table 2.   Confusion matrix for model predictions of colony-level honey bee overwintering survival for the full 
Random Forest model.

Full model

Actual

Mortality Survival

Predicted

Mortality 337 (24%) 87 (6%)

Survival 192 (13%) 813 (57%)
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The partial dependence plot for growing degree days (Fig. 4a) shows a unimodal pattern: survival was high-
est at intermediate values. Maximum temperature of the warmest quarter also had a high importance value and 
showed a similar partial dependence pattern to growing degree days and thus is not shown. Both precipitation of 
the warmest quarter and of the wettest quarter were important, but the partial dependence plot is only presented 
for precipitation of the warmest quarter as this variable was more important, and the other was very similar 
(Fig. 4b). Precipitation also showed a unimodal relationship with survival; neither too dry nor too wet resulted 
in greatest survival.

Because the climatic variables were the most important overall, we also modeled colony survival using only 
weather variables, generating a prediction for each of the three winter years (Fig. 5) and over the PRISM period 
of record, 1981–2019 (Fig. 6). The weather-only model performed about as well as the full model, with an OOB 
error of 19% and 73% prediction accuracy (95% confidence interval 70.6–75.2%).

No part of Pennsylvania was always good or always bad for honey bee survival; there was substantial spatial 
and temporal variability. The maps of predicted honey bee survival for the three winters studied showed consid-
erable variability, both between years and across the state (Fig. 5). Winter 2016–2017 showed a predicted mean 
survival of 49.2% (range 5–97.6%); 2017–2018 had a predicted mean survival of 59.2%, (range 9.8–100%); and 
2018–2019 winter had a mean predicted survival of 59.7% (range 17–100%). Mean predicted long-term survival 
probability across Pennsylvania based on weather data from 1981 to 2019 (Fig. 6) was 59.5% (range 5.3–100%). 
The mean is consistent with values reported by the Bee Informed Team (53.5%)4.

Discussion
In colonies where beekeepers controlled for Varroa mite populations, weather factors, particularly summer 
temperatures and precipitation for the prior year, were the strongest predictors of overwintering survival in 
European honey bee colonies in Pennsylvania in our data set. Topographic factors and landscape quality factors 
(forage and insecticide toxic load) were not important, contrary to expectations.

In our initial analysis, we found that beekeepers who used management practices to control Varroa mite 
levels overall had higher winter survival. Winter mortality of honey bee colonies has been strongly correlated 
with uncontrolled Varroa mite populations in multiple studies11,12. Parasitized, virus-infected bees have reduced 
nutritional stores and a reduced lifespa62. Thus, high levels of Varroa reduce the probability of winter survival32. 
In our data set, we found the majority of responding beekeepers did use management practices to control Var-
roa mite populations (83%), and thus we focused on these beekeepers for the rest of the analysis. However, 
approximately 70% of new beekeepers (< 1 year of experience) treated for Varroa mites, while 77–89% of the 
beekeepers in the other categories treated for Varroa (data not shown): thus, encouragement of new beekeepers 
to implement Varroa management strategies could be beneficial.

There are several explanations as to why the landscape quality factors included in our analysis were not sig-
nificant predictors of winter survival. The foraging index is based on expert opinion, and the insecticide toxic 
load index does not account for variation in local crop management practices or exposure rates of bees25–27,44,45; 
thus, there is clearly room for improvement in methods for assessing the suitability of surrounding land use for 
pollinator use. Moreover, supplementary feeding from the beekeeper (which was not included in the survey data) 
may have mitigated impacts of floral resource availability, while insecticide exposure can have complex effects 
on bees which may not be captured by winter survival rates24.

Figure 4.   Partial dependence plot for the two variables that most explain overwintering survival in the 
prediction analysis at the apiary level. Plot (a) describes the relationship between the growing degree days (along 
the x axis) and the probability of overwintering survival (y axis), given all the other variables in the model. Plot 
(b) describes the relationship between the precipitation during the warmest quarter (along the x axis) and the 
probability of overwintering survival (y axis), given all the other variables in the model. In both the plots, the 
black line represents the modeled relationship between survival and the variables, while the blue line shows a 
spline-smoothed fit.



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1553  | https://doi.org/10.1038/s41598-021-81051-8

www.nature.com/scientificreports/

Figure 5.   Weather-based prediction maps of the probability of honey bee colony survival from the weather-only colony 
model for the most recent 3 years of PRISM data. Contour lines show the 0.5 probability level. The three maps show the 
survival probability for Pennsylvania, based on the results of the weather-based model. The map (a) represents results from 
year 2016, which had a mean annual temperature of 10.4 °C and a mean annual precipitation of 1007 mm across the state. 
Map (b) represents results from year 2017, which had a mean temperature of 10.2 °C and a mean annual precipitation of 
1205 mm. Map (c) represents results from year 2018, which had a mean annual temperature of 9.7 °C and mean annual 
precipitation of 1653 mm. For the whole period of record, from 1981 to 2018, the mean annual temperature was 9.4 °C, with 
a mean annual precipitation of 1082 mm. The maps have been generated by the authors in R 3.6.250, using the sf72, the raster56, 
the ggplot273 and the cowplo74 packages.
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It is important to note that there are many factors that can contribute to winter survival which were not 
possible to assess, due to limited information about the colonies used in this analysis. In Europe, for example, 
the genotype of the colony influences its survival rates, and colonies from local stock perform better63. In our 
previous studies, however, we did not find an effect of colony genotype on winter survival in Pennsylvania: rather, 
colony size was a major factor64. Colony size can be influenced by the surrounding landscape conditions, but 
may also be influenced by beekeeper practices and the origin of the colony—for example, if a colony is initiated 
earlier in the growing season, it reaches a larger size in the fall and is more likely to survive the winter9. Queen 
age and quality can also influence winter survival11 Moreover, the methods used for controlling Varroa popula-
tions, the timing of application and the conditions of application (including weather conditions) can influence 
winter survival65. Even the relative distribution of the colonies within the apiary can influence survival, likely 
by influencing disease dynamics: colonies in “low density” apiaries had higher winter survival than colonies in 
“high density” apiaries66. Finally, the survey did not include information about levels of or evidence for parasites 
or pathogens, and thus we could not evaluate whether these parameters correlated with survival. While citizen 
science data is a powerful tool to generate the necessary large and varied data sets needed for studies of the effects 
of landscape and weather conditions on bee health, there are limitations in the extent of the data that can be 
collected36. Future surveys can seek to collect additional information to address these issues.

Despite the limitations in the data set, the importance of weather conditions in predicting winter bee sur-
vival are quite clear from our analysis, and consistent with results from previous studies in other countries. In 
Austria, Switanek et al.15 found that hot, dry summers reduced overwintering survival. Similarly, studies in the 
Netherlands found reduced survival with increased annual mean temperatures14. In colonies in Belgium, more 
frost free days were associated with positive survival outcomes, while more flying days were associated with 
negative outcomes33. Our approach allowed for a more nuanced analysis of climatic variables, and we found 
adverse effects of both too-cool and too-hot summers. This could be the result of effects on plant flowering 
patterns (flowering could be reduced in both cool and hot conditions), which could negatively effect colony 
growth. Periods of drought can dramatically decrease weight gain in colonies in the summer67. Alternatively, 
mismatches between colony behavior (in terms of timing of brood rearing, which is triggered by temperature 
conditions) and local flowering patterns can also influence colony growth, by reducing nectar collection and 
honey production68. Smaller colonies are less likely to survive the winter64. Additionally, altered colony behavior 
as a result of environmental conditions can result in increased disease levels. In a study in Germany, bee colonies 
relocated to warmer or cooler regions exhibit differences in brood rearing, and colonies with longer period of 
brood rearing had higher levels of Varroa68. Thus, longer summers could result in high Varroa levels in the fall, 
which could negatively affect winter survival. Evaluation of colony growth patterns throughout the season using 
automated hive scales may provide insights into how weather conditions during the summer are influencing fall 
colony size and winter mortality21,69.

Interestingly, topographical features were not important variables in predicting bee winter survival. While 
topographical features should influence the microclimate surrounding the colony, it is possible that the forag-
ing range of honey bees (which can span several kilometers from the colony70) reduce any observed influence 
of microclimate on forage or habitat conditions. Additionally, colony thermoregulatory behavior may have 
mitigated the effects of microclimate8,10.

Figure 6.   Mean probability of colony survival for 1981–2019 from the weather-only colony model. Contour 
lines show the 0.5 probability level. The map has been generated by the authors in R 3.6.250, using the sf72, the 
raster56, the ggplot273 and the cowplot74 packages.
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The 3 years of data that we had available undoubtedly does not represent the full range of weather conditions 
possible in Pennsylvania. Thus, as additional years of data become available and are included in the model, the 
ability to predict outcomes will be improved. Nonetheless, this model worked well in the 3 years for which it 
was developed, with an acceptable accuracy given the extreme variability within the dataset, and the multitude 
of factors that affect overwintering survival.

Because the important variables were all weather-related, we were able to develop a predictive RF model 
created without landscape or topographic variables that was equally as accurate as the full model. Doing so 
reduced the data needs for the predictive model, and simplified analysis and mapping. Because it does not rely 
on landscape or management factors, this model can be used to characterize changes in overwintering survival 
with the changing climate independent of other factors. With slight modifications to use current data, this model 
has been used to develop a real-time tool to predict honey bee survival probability as a function of GDD71. The 
tool (BeeWinterWise) has been incorporated into the Beescape decision support system (https​://beesc​ape.org/), 
used by beekeepers and technical advisors. As apparent from Fig. 5, there is substantial variation across different 
regions of Pennsylvania and among years, and thus it is critical to develop site-specific decision support tools.

The presented model can be used to predict the probability of overwintering success, both for the current 
year and as a function of projected future climate change scenarios. The modeling framework used allows for 
the quantification of variable importance. Thus, modeling results can be used to develop decision support tools 
for overwintering survival, to better understand the roles of weather and landscape on honey bee success, and 
to characterize the effects of climate change on honey bee survival in the future. To the best of our knowledge 
this is the first study on honey bee overwintering survival that combines weather, topography, and derived land 
use factors. Our results, within the study limitations presented above, demonstrate both the predictive power 
of weather variables on analyses of honey bee overwintering survival, and the efficacy of addressing this type 
of question with machine learning methods such as Random Forest that are capable of identifying complex 
nonlinear relationships with correlated predictors.

Data availability
The anonymized survey data with corresponding weather and topographic data (geographic information is 
missing for privacy concerns) are being submitted as Supplementary Material (Supplementary Table S2). The 
columns’ names in Supplementary Table S2 correspond to the variables described in Table 1. Spring year and 
binary survival variables have been included in Supplementary Table S2.
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