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Abstract

Colorectal cancer screening modalities, such as optical colonoscopy (OC) and virtual colonoscopy 

(VC), are critical for diagnosing and ultimately removing polyps (precursors of colon cancer). The 

non-invasive VC is normally used to inspect a 3D reconstructed colon (from CT scans) for polyps 

and if found, the OC procedure is performed to physically traverse the colon via endoscope and 

remove these polyps. In this paper, we present a deep learning framework, Extended and 

Directional CycleGAN, for lossy unpaired image-to-image translation between OC and VC to 

augment OC video sequences with scale-consistent depth information from VC, and augment VC 

with patient-specific textures, color and specular highlights from OC (e.g, for realistic polyp 

synthesis). Both OC and VC contain structural information, but it is obscured in OC by additional 

patient-specific texture and specular highlights, hence making the translation from OC to VC 

lossy. The existing CycleGAN approaches do not handle lossy transformations. To address this 

shortcoming, we introduce an extended cycle consistency loss, which compares the geometric 

structures from OC in the VC domain. This loss removes the need for the CycleGAN to embed 

OC information in the VC domain. To handle a stronger removal of the textures and lighting, a 

Directional Discriminator is introduced to differentiate the direction of translation (by creating 

paired information for the discriminator), as opposed to the standard CycleGAN which is 

direction-agnostic. Combining the extended cycle consistency loss and the Directional 

Discriminator, we show state-of-the-art results on scale-consistent depth inference for phantom, 

textured VC and for real polyp and normal colon video sequences. We also present results for 

realistic pendunculated and flat polyp synthesis from bumps introduced in 3D VC models.

1. Introduction

Colon cancer is one of the most commonly diagnosed cancers with 1.8 million new cases 

(and subsequent 750,000 deaths) reported worldwide every year [1]. Optical colonoscopy 

(OC) is the most prevalent colon cancer screening procedure. In this invasive procedure, 

polyps (precursors of colon cancer) can be found and removed using an endoscope. In 

contrast, virtual colonoscopy (VC) is a non-invasive screening procedure where the colon is 
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3D reconstructed from computed tomography (CT) scans and inspected for polyps with a 

virtual flythrough (simulating the OC endoscope traversal). Due to its non-invasive, 

inexpensive, and low-risk (no sedation required) nature, VC is becoming a commonplace 

tool for colon cancer screening. In fact, the US Multi-Society Task Force on Colorectal 

Cancer recommends VC screenings every 5 years and OC every 10 years for average-risk 

patients above the age of 50 [22].

Both VC and OC provide complementary information. OC endoscope videos are comprised 

of individual frames capturing complex real-time dynamics of the colon with important 

texture information (e.g., veins, blood clots, stool, etc). VC, on the other hand, provides 

complete 3D geometric information of the colon including polyps. This complementary 

nature of OC and VC motivates our current work to find ways of translating information 

between these two modalities. The geometric information from VC images can aid in 3D 

reconstruction and surface coverage (percentage of colon inspected) during the OC 

procedure; lower the surface coverage higher the polyp miss rate. Inferring scale-consistent 

depth maps for given OC video sequences enables 3D reconstruction through established 

simultaneous localization and mapping (SLAM) algorithms [23, 25], which can help deduce 

the surface coverage during OC. Augmenting VC with texture and specular highlights from 

OC can be used to generate realistic virtual training simulators for gastroenterologists as 

well as realistic polyps. Shin et al. [24] have presented a method to produce polyps from 

edge maps and binary polyp masks. This generates realistic polyps, but the 3D shape and 

endoscope orientation are hard to control making it difficult to produce specific polyp 

shapes, for example, flat polyps. VC to OC translation, in our context, provides full control 

over the 3D shape and endoscope orientation making it easy to generate pendunculated and 

flat polyps.

The task of translating between OC and VC can be generalized to image-to-image domain 

translation. Since there is no ground truth paired data for OC and VC, CycleGAN [27] is 

suited to this problem, but it cannot handle lossy transformations, for example, between VC 

(structure) and OC (structure + color + texture + specular highlights), as shown by Chu et al. 

[3]. Porav et al. [20] have presented a method to handle the lossy CycleGAN translation by 

adding a denoiser to reduce high frequencies with low amplitudes. As seen in Figure 1, 

specular highlights and textures are not embedded as high frequency/low amplitude signals, 

hence the denoiser will not help in our context.

Thus, we introduce a novel extended cycle consistency loss for lossy image domain 

translation. This frees the network from needing to hide information in the lossy domain by 

replacing OC comparisons with VC comparisons. Stronger removal of these specular 

reflections and textures are handled via a Directional Discriminator that differentiates the 

direction of translation as opposed to the standard CycleGAN which is direction-agnostic. 

This Directional Discriminator acts like a discriminator in a conditional GAN and deals with 

paired data thus giving the network, as a whole, a better understanding of the relationship 

between the two domains.

The contributions of this work are as follows:

Mathew et al. Page 2

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2021 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. A lossy image-to-image translation model via a novel extended cycle consistency 

loss to remove texture, color and specular highlights from VC.

2. A Directional Discriminator to create a stronger link between OC and VC for 

removing remaining textures and lighting.

3. The same framework can synthesize realistic OC (flat and pendunculated) 

images.

4. Scale-consistent depth inference from OC video sequences.

2. Related Work

Generative Adversarial Networks:

GANs [6] introduced the concept of adversarial learning and have shown promising results 

in image generation, segmentation [10], super resolution [9], video prediction [14] and 

more. The idea behind GANs revolves around two networks playing a game against each 

other.

Image-to-Image Translation:

This task maps an image in one domain to another. OC and VC image translation, in our 

context, can be reframed as an image-to-image translation problem. The pix2pix network is 

a deep learning model that solves this problem using a conditional GAN with an additional 

L1 loss [7]. This model requires paired ground truth data from two given domains, which is 

not available in our context.

Recent deep learning approaches that tackle unpaired image-to-image domain translation 

include CycleGAN [27] and similar approaches [8, 26]. In this paper, we modify CycleGAN 

for unpaired lossy image-to-image translation between OC and VC, and further alter it to 

create a stronger link between the two input domains. CycleGANs, have been shown to 

hallucinate features [24], which is problematic if used directly for patient diagnosis. We, 

however, use it as an add-on to the real data rather than for diagnostic purposes.

CycleGANs, when dealing with lossy image translations, tend to hide information in the 

lossy images. The cycle consistency loss requires the network to embed extra information in 

the lossy domain, in order to reconstruct the image [3]. Porav et al. [20] have proposed a 

possible solution to the lossy domain translation by adding a denoiser to reduce high 

frequencies with low amplitudes. In our case, the network simply tries to blend in texture 

and lighting artifacts with the colon wall, so their method is not helpful.

Mirza et al. [16] have introduced the idea of conditioning the output of the generator with all 

or part of the input. This extra information is passed to the discriminator and provides a 

stronger link between the input and the output. Conditional CycleGAN [11] employs this 

same concept, where a label or another image are used to drive the direction of translation. 

In other words, the CycleGAN allows for extra input to drive the translation but requires 

ground truth pair between the label and the input. Our Directional Discriminator is similar to 
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conditional GANs, but unlike conditional GANs does not require the ground truth labels and 

input.

Donahue et al. [4] and Dumoulin et al. [5] have presented approaches that are similar to ours 

as they use paired input and output of two networks to train a single discriminator, but 

instead of pairing images (like in our case), they pair latent vectors and images. As shown by 

Zhu et al. [27], these approaches did not work well by themselves in the image-to-image 

domain translation task and resulted in heavy artifacts and unrealistic images. More recently, 

Pajot et al. [19] have discussed a similar extended cycle consistency loss to ours for 

reconstructing noisy images. We differ from their method as we only take one step forward 

in the cycle to allow for a one-to-many image translation (requirement for our application), 

rather than two steps forward in their case.

Depth Reconstruction:

Due to complexities in texture and lighting, traditional computer vision techniques do not 

work well for OC depth inference. Nadeem et al. [18] have introduced a non-parametric 

dictionary learning approach to infer depth information for a given OC video frame using 

only a VC RGB-Depth dictionary. However, due to the non-realistic rendering of depth cues 

in the VC RGB images, the inferred depth was inaccurate. Mahmood et al. [13] have 

overcome this limitation by incorporating realistic depth cues, using inverse intensity fall-off 

in the rendered images. They created a transformer network that is trained on synthetic colon 

images. Given OC images, a GAN is used to first transform these images into a synthetic-

like environment, which are then used to generate depth maps using a separate deep learning 

network. While this approach does a good job in removing patient-specific textures without 

requiring paired image data, it has difficulties removing specular reflections from the OC 

images. In addition, the resulting depth maps are not smooth and scale-consistent.

Rau et al. [21] have introduced a variant of pix2pix called extended pix2pix to produce OC 

depth maps. The extended pix2pix is a variant of the pix2pix model applied to colonoscopy 

depth reconstruction. Since a phantom and VC data was used to create paired depth and 

colon images, the network struggled with real OC data. To alleviate this problem, an 

extension was introduced that included real OC images for the GAN loss. Due to a lack of 

ground truth the L1 loss in pix2pix is ignored for these OC inputs. This allows the network 

to partially train on real colon images while not needing the corresponding ground truth. 

Their method, however, assumes a complete endoluminal view (tube-like structure) and fails 

otherwise. Chen et al. [2] have also used a pix2pix network to produce depth maps from a 

phantom model. They trained on VC with various realistic renderings that did not include 

any complex textures or specular reflections found in OC. Still, they were able to produce 

scale-consistent depth maps for a phantom and a porcine colon video sequence.

A deep learning method based on visual odometry has been presented by Ma et al. [12] to 

infer scale-consistent depth maps from OC video sequences. These scale-consistent depth 

maps are then passed into a SLAM algorithm [23] to 3D reconstruct a colon mesh for 

surface coverage computation. Like most other methods, however, they assume a cylindrical 

topology and only caters to the endoluminal view. Furthermore, their method cannot handle 
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specular highlights, occlusion and large camera movements, and requires preprocessing to 

mask these aspects.

3. Data

The OC and VC data was acquired at Stony Brook University for 10 patients who underwent 

VC followed by OC (for polyp removal). The OC data contained 10 videos from OC 

procedures. These do not provide ground truth as the shape of the colon is different between 

VC and OC. The images taken from the videos were cropped to the borders of the frames. A 

cleansed 3D triangular mesh colon model was extracted from the 10 abdominal CT patient 

scans using a pipeline similar to Nadeem et al. [18]. The virtual colon was then loaded into 

the Blender1 graphics software, and centerline flythrough videos of size 256×256 pixels 

were rendered with two light sources on the sides of the virtual camera in order to replicate 

the endoscope and its environment. To incorporate more realistic depth cues, the inverse 

square fall-off property for the virtual lights was enabled [13]. When training the network, 

both VC and OC images were downsampled to a size of 256×256 pixels for computational 

efficiency. In total, 10 OC and VC videos were used with 5 of these used for training and the 

remaining three for testing and two for validation purposes. We captured 300 images from 

each OC and VC video, resulting in 1500 for training, 900 for testing and 600 for validation. 

Figure 2 shows our end-to-end pipeline.

4. Method

The CycleGAN network [27] consists of two GANs with additional losses to combine the 

GANs into one model. We define G as a generator, Goc as the generator from the GAN that 

produces OC images, and Gvc as the generator that produces VC images. D, Doc, and Dvc 

represents discriminators for their corresponding generators. Similar to Zhu et al. [27], we 

represent the data distribution of domain A as y ~ p(A) and the distribution of domain B as x 
~ p(B). The adversarial loss that is applied in GANs is as follows:

ℒGAN(G, D, A, B) = Ey p(A) [log(D(y)] + Ex p(B) [1 − log(D(G(x))] (1)

The cycle consistency loss in CycleGANs links the two GANs to handle the image-to-image 

domain translation task. The cycle consistency loss is as follows:

ℒcyc Ga, Gb, A = Ey p(A) y − Ga Gb(y) 1 (2)

where ‖·‖1 is the ℓ1 norm, and x ∈ a. This loss is depicted on the left in Figure 3. The cycle 

consistency loss is used for translating in both directions (i.e., A to B and B to A). The lossy 

transformations as seen in Figure 1 are not handled by the CycleGAN (as is previously 

shown [3, 20]). The cycle consistency loss requires OC images to be reconstructed from 

synthetic VC, Gvc(OC). In order to handle this task, the network requires synthetic VC to 

store color, texture, and specular reflections so the synthetic VC can reconstruct the OC. To 

1www.blender.org
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address this problem, we introduce the extended cycle consistency loss to help the network 

perform lossy translations. Still, there are textures and reflections that are passed into the VC 

domain and hence, a stronger link between OC and VC is required which is established via 

our Directional Discriminator that pairs OC and VC images.

4.1. Extended Cycle Consistency Loss

To address the OC features being embedded in VC, we propose a new loss to replace the 

cycle consistency loss in the OC domain, which we call the extended cycle consistency loss 

(Figure 3):

ℒexcyc Ga, Gb, A = Ey p(A) Gb(y) − Gb Ga Gb(y) 1 (3)

This loss has synthetic VC, Gvc(OC), compared with reconstructed synthetic VC, 

Gvc(Goc(Gvc(OC))). In other words, the extended cycle consistency loss is enforcing the 

structure captured in the VC domain to be the same between OC and the reconstructed OC, 

Goc(Gvc(OC)). This loss is depicted pictorially on the right in Figure 3. Figure 4 shows how 

the extended cycle consistency loss allows the reconstructed OC to have different textures 

and lighting than the original OC input. When applying this loss to the CycleGAN, we call it 

the extended CycleGAN (XCycleGAN).

The network, the way it is, has the reconstructed OC, Goc(Gvc(OC)), unrestrained. Since this 

image is supposed to look like an OC image, an additional OC discriminator is added and a 

GAN loss is applied. In addition, Zhu et al. [27] have mentioned the use of an identity loss 

that compares OC and GOC(OC) to retain color when reconstructing. This loss is removed as 

we do not wish to retain color information for OC but is kept on the VC side to retain the 

color there. Thus, ℒiden(A) = Ey p(A) Ga(y) − y , is a loss included for the XCycleGAN.

4.2. Directional Discriminator

To create a stronger link between OC and VC, our approach uses a single Directional 

Discriminator rather than two as shown in Figure 5. Since only the number of input channels 

of the discriminator is changed, the Directional Discriminator reduces the memory needed 

for the network. Our Directional Discriminator only required 17.4 MB, whereas a single 

CycleGAN discriminator required 11.1 MB (altogether 22.2MB).

GANs are based around the idea of creating a two player adversarial game between the 

generator and the discriminator. In our model, we wish to create a stronger relationship 

between the image generators by creating a three player game. The players of this game are 

two generators (Ga,Gb) and a discriminator (D). Similar to conditional GANs, Ga will give 

its input and output to D trying to convince D that its output came from Gb. Gb does the 

same task except it makes its input-output pair resemble Ga’s. Since, Ga’s input domain is 

GB’s output domain and Ga’s output domain is Gb’s input domain, the discriminator ends up 

discerning which generator is used since the input domains are fixed as shown on the right in 

Figure 5. By trying to differentiate the generators, the discriminator is essentially 

differentiating the direction of the translation. For example, if we look at OC and VC image 
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translation, the discriminator would be differentiating the following pairs {OC, synthetic 

VC} and {synthetic OC, VC}. Thus, the discriminator ends up discerning the direction of 

the translation. When this model converges, the synthesized images will need to reflect the 

real distribution of their corresponding domains, while also giving the discriminator paired 

information to work with. This creates a stronger connection between the two generators, 

while eliminating the need for two discriminators. The loss for this Directional 

Discriminator is:

ℒdir Ga, Gb, D, A, B = Ey p(A) log D y, Gb(y) + Ex p(B) 1 − log D Ga(x), x (4)

The combination of our Directional Discriminator and extended cycle consistency loss 

produces the Extended and Directional CycleGAN (XDCycleGAN). The total objective loss 

function for XDCycleGAN is:

ℒ = λℒexcyc Goc, Gvc, Ioc + λℒcyc Gvc, Goc, Ivc
+ ℒdir Goc, Gvc, Ddir, Ioc, Ivc
+ ℒdir Gvc, Goc, Ddir, Ivc, Ioc
+ αℒGAN Goc, Doc, Ioc, Goc Gvc Ioc
+ γℒiden(V C),

(5)

where α, λ, and γ are constant weights. For both OC to VC rendering and OC to scale 

consistent depth maps, we train the network for 200 epochs with α = 0.5, λ = 10, and γ = 5. 

We add spectral normalization [17] to each layer of the discriminators for better network 

stability.

5. Experimental Results

To clearly emphasize the texture and specular highlights in OC to VC translation, we show 

our results in Figure 6 by training the CycleGAN, XCycleGAN, and XDCycleGAN on OC 

and rendered VC data; in depth maps the texture and highlights are slightly difficult to 

visualize. To further highlight the embedding of the textures and lighting, histogram 

equalization is applied to the output VC images. For all the OC images, it is clearly seen that 

the histogram-equalized CycleGAN images embed the specular reflection and textures. In 

most cases these artifacts are visible in the VC images. We further point out that there are 

textures and lighting seen in the histogram-equalized XCycleGAN which are retained from 

the input, which the XDCycleGAN is able to remove. These cases are marked by the blue 

boxes. The last two rows in Figure 6 show how our network is able to recreate the polyps in 

VC. In the third last row, the XDCycleGAN shows its superior understanding of the 

geometry from OC. It recovers the shape of the polyp better than the XCycleGAN, which 

makes it appear much flatter. In the last row the more intricate geometry of the polyp is 

captured by the XDCycleGAN and is highlighted with a red box.

In the VC to OC image translation, our network also does better than CycleGAN, as seen in 

Figure 7. We observe that CycleGAN takes structures in the VC domain and turns these into 

texture, whereas the XDCycleGAN retains all of the structure in the VC domain. In order to 

demonstrate the benefits of the VC to OC translation, we generate polyps by adding bumps 
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with specific shapes and endoscope orientations in VC and augment them with textures and 

specular reflection also shown in Figure 7. The cycle consistency accuracy for depth in the 

VC → OC → VC case for the CycleGAN is 7.74±6.07, for the XCycleGAN is 6.84±5.39, 

and for the XDCycleGAN is 6.34±3.73.

Scale-Consistent Depth Inference

We train our XDCycleGAN on VC depth maps to demonstrate its ability to infer scale-

consistent depth information. This depth inference is a first step for 3D reconstruction, and 

once these depth maps are attained, standard SLAM algorithms [23, 25] can be used. Figure 

8 shows various time sequences and our results on that input. In our first test, we compare 

with Mahmood et al. [13] and show that our depth maps are much smoother. Their method 

shows issues by treating some of the specular reflections as a change in depth and failing in 

scale consistency. The XDCycleGAN, on the other hand, ignores these reflections and 

produces smoother depth maps.

For our second test, we use 2000 video frames produced from a manually textured virtual 

colon from VC. The colon is textured by blending various snapshots of textures found in 

OC, and ground truth can be attained. For quantitative analysis, we analyze the average 

SSIM score across the 2000 frames to test structural similarity. Our approach got an average 

SSIM score of 0.918, which indicates that our network is able to capture the structure of 

these frames rather well. We also ran Ma et al.’s approach [12] on our ground truth. The 

SSIM score was 0.637. Their score is low as the depth maps are smoothed out and most of 

the critical geometry/structures are lost. They also assume the endoluminal view which, if 

invalidated, propagates the error to the following frames. In addition to SSIM, RMSE for the 

depth maps with our approach is 31.25±6.76 as compared to 92.67±10.32 for Ma et al. [12].

To be fair, we also compared Ma et al.’s approach [12] on OC video sequences where their 

input assumptions hold. The depth maps produced from their pipeline does not recover the 

geometry of most haustral folds as accurately as XDCycleGAN. Finally, we compare with 

Chen et al.’s method [2] on their phantom colon and show that our model is robust, and is 

comparable even on data that we did not cater for during training.

6. Limitations and Future work

As with most deep learning frameworks there are failure cases with this network, as shown 

in Figure 9. When there is heavy occlusion, blurring, or fluid motion the network tries to 

reconstruct the image regardless and infers random geometry. To address these artifacts, in 

the future we will incorporate an image quality control framework to detect and remove 

these frames. Moreover, our pipeline does not cater to the instruments in the OC images 

since our VC counterpart does not have equivalent representation. Adding instrument 

models in the VC domain may be one way to recognize instruments in the OC images. 

Furthermore, if a polyp strongly blends in with the textures of the colon wall and its 

protrusion from the wall is hard to notice, the XDCycleGAN removes both the polyp and the 

texture. The polyp, however, may be visible in the earlier frames and a temporal component 
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may resolve this. Finally, we will undertake a more through analysis of polyp detection and 

segmentation pipelines with our polyp data augmentation/synthesis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Two examples of standard CycleGAN lossy transformation problem [3]. In OC to VC 

translation, standard CycleGAN stores the textures and specular reflections in the VC 

domain as depicted in the histogram-equalized output.
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Figure 2. 
Pipeline for generating realistic VC and OC images from their counterpart. OC and VC 

images are extracted from videos. VC videos are created from reconstructing CT scans and 

then rendering a flythrough of the colon. This data is passed into the generators of the 

Extended and Directional CycleGAN and produce VC and OC images.
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Figure 3. 
The image on the left depicts the cycle consistency loss used for VC to OC translation from 

Zhu et al’s CycleGAN [27]. The image on the right shows the extended cycle consistency 

loss that we used for OC to VC translation.

Mathew et al. Page 13

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2021 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
The first image is the input OC image. The input image is passed through GVC resulting in a 

synthetic VC, VCsyn. OCrec is VCsyn passed through GOC. Notice how this image does not 

have the same texture or the specular reflections as the input OC image. Rather only the 

geometry between the two are the same. This geometry is reflected in VCsyn_rec which is 

obtained by passing OCrec through GVC.
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Figure 5. 
The left image shows adversarial portion of CycleGAN to handle two GANs. Each generator 

acts independently without the cycle consistency losses included. The right image displays 

the architecture layout with a Directional Discriminator. Real OC and synthetic VC are 

concatenated and passed into the Directional Discriminator along with the concatenation of 

synthetic OC and real VC, creating a stronger connection between the two. This allows the 

Directional Discriminator to work with the paired information. In both cases, the 

discriminators only take into consideration the real distribution of real OC and VC along 

with the synthetic distributions produced by the generator from real OC and VC. 

Reconstructed images are not taken into account by the adversarial losses from these 

discriminators.
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Figure 6. 
Results from OC to VC. Blue boxes show areas where the XCycleGAN is unable to 

completely remove the specular reflections and texture, whereas the XDCycleGAN is able to 

remove these. The last two rows show polyps from [15] that XDCycleGAN can recreate 

polyps in VC.
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Figure 7. 
Results from VC to OC image translation. The synthetic OC images from the CycleGAN 

turn structures into texture where the XDCycleGAN does not do this. Below that, we display 

polyps created in VC with augmneted textures, colors, and specular reflections by our 

XDCycleGAN.
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Figure 8. 
Scale-consistent depth inference on video sequences. The first (top) dataset contains a polyp 

video sequence with Mahmood et al.’s [13] and our results. The second dataset is successive 

frames from our textured VC video flythrough and the corresponding results from Ma et al. 

[12] and ours. The SSIM for Ma et al.’s approach is 0.637, whereas ours is 0.918. Ma et al. 

assume as input a chunk of successive video frames with cylindrical topology (endoluminal) 

view with the specular reflections and occlusions masked out. The third dataset show 

another sequence assuming Ma et al.’s input [12] and our corresponding results. The final 

dataset, shows Chen et al.’s phantom model [2] along with their results and our results. 

Complete videos and additional sequences are shown in the supplementary material.

Mathew et al. Page 18

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2021 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Failure cases of the XDCycleGAN. These include frames with fluid movement, motion blur 

or occlusion, as well as instruments. The top-right image (from [15]) shows how our 

network can mistake polyps for texture if it is surrounded by texture.
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