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Abstract

The coordination between the animal’s external environment and internal state requires constant 

modulation by chemicals known as neuromodulators. Neuromodulators, such as biogenic amines, 

neuropeptides and cytokines, promote organismal homeostasis. Over the past several decades, 

Caenorhabditis elegans has grown into a powerful model organism that allows the elucidation of 

the mechanisms of action of neuromodulators that are conserved across species. In this 

perspective, we highlight a collection of articles in this issue that describe how neuromodulators 

optimize C. elegans survival.
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An animal receives multiple environmental stimuli, some of which have the potential to 

disrupt metabolism and overall physiology. To survive environmental stressors, an animal 

must transition between a range of internal states and behaviors to identify new set points at 

which its physiological processes function optimally, thereby regaining homeostasis. One 

mechanism by which all organisms, including Caenorhabditis elegans, integrate changes in 

their external environments with their internal states is through the secretion of chemicals 

known as neuromodulators, which allow the animal to best exploit its niche and prioritize 

survival. This perspective introduces a series of articles in this collection that highlight the 

role of these chemicals in survival programs, aging and disease.

What are neuromodulators?

Neuromodulators were discovered as brain chemicals that transform a neuron’s intrinsic 

excitability or synaptic dynamics (see Bargmann, 2012; Bargmann & Marder, 2013; Marder, 

2012; Taghert & Nitabach, 2012, for excellent reviews on neuromodulator function). In 

contrast to classical neurotransmitters, diverse members of this class of chemicals, such as 
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monoamines, neuropeptides, and cytokines, can be released extrasynaptically from neural 

sources (Bargmann, 2012; Bargmann & Marder, 2013; Bentley et al., 2016; Marder, 2012; 

Taghert & Nitabach, 2012). They can also be released from non-neural sources (Marder, 

2012; Taghert & Nitabach, 2012). Neuromodulators act locally in a paracrine manner or act 

hormonally at neural or non-neural targets far from their site of release (Bargmann, 2012; 

Bargmann & Marder, 2013; Hobert, 2013; Marder, 2012; Schafer, 2006; Taghert & 

Nitabach, 2012). They can modify the outputs of anatomically defined neural circuits or 

alter the composition of these circuits to generate entirely different outputs (Bargmann, 

2012; Bargmann & Marder, 2013; Marder, 2012; Taghert & Nitabach, 2012). To add to their 

complexity, a neuromodulator may promote one response by enhancing one cell’s activity 

and/or repressing the activity of another (Bargmann & Marder, 2013; Marder, 2012). Then, 

due to a change in local cell environments, that same neuromodulator may promote a second 

or opposite response by affecting the activities of other cells that now express the 

appropriate receptors (Bargmann & Marder, 2013; Di Giovangiulio et al., 2015; Marder, 

2012; Schafer, 2006). This multiplicity of effects by neuromodulators has made their study 

particularly challenging.

Neuromodulators in C. elegans survival

Thanks to the pioneering work of Brenner, Sulston, and others, the worm C. elegans has 

grown into a powerful experimental system to study the effects of neuromodulators on all 

aspects of animal physiology. Caenorhabditis elegans expresses all the major classes of 

neuromodulators, which include the biogenic amines (serotonin, dopamine, octopamine, and 

tyramine; Bentley et al., 2016), neuropeptides (short peptides that are processed post-

translationally from precursor proteins; reviewed by Hobert, 2013; Li & Kim, 2008), and 

cytokines [such as TGF-β and the interleukin IL-17 (Bargmann, 2012; Chen et al., 2017)]. 

The worm’s extra-ordinary tractability to forward and reverse genetics allows the easy 

manipulation of neuromodulators and their receptors in specific cells and visualization of the 

subsequent changes in cellular properties, behavior, and physiology. The secretion of 

neuromodulators by neural or non-neural tissues into the worm pseudocoelomic cavity also 

facilitates the study of the systemic effects of these chemicals—how they mediate 

communication between neural and non-neural cells. The above advantages of C. elegans 
has yielded a wealth of information that allows us to understand the impact of 

neuromodulators on its biology. Indeed, the worm’s food choices, its decision to forage, 

mate, or reproduce, its metabolism or responses to threats and competition, its 

developmental programs and longevity are but some processes influenced by 

neuromodulators and amenable to experimental manipulation (Aprison & Ruvinsky, 2019; 

Banerjee, Bhattacharya, Gorczyca, Collins, & Francis, 2017; Beets, Temmerman, Janssen, & 

Schoofs, 2013; Bhattacharya & Francis, 2015; Cermak et al., 2020; Ezcurra, Walker, Beets, 

Swoboda, & Schafer, 2016; Ghosh et al., 2016; Ishita, Chihara, & Okumura, 2020; Kagawa-

Nagamura, Gengyo-Ando, Ohkura, & Nakai, 2018; Ringstad, 2017; Schafer, 2006; Wu et 
al., 2019; Zang, Ho, & Ringstad, 2017).
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A common thread throughout this issue

The profound influence of neuromodulators on behavior, metabolism, and overall 

physiology is a common thread throughout this issue (Cheon, Hwang, & Kim, 2020; Honer 

et al., 2020; Kim & Flavell, 2020; Kim, Lee, Kim, & Lee, 2020; Liang, McKinnon, & 

Rankin, 2020; Liu & Zhang, 2020; Muirhead & Srinivasan, 2020; Prahlad, 2020; Srinivasan, 

2020; Takeishi, Takagaki, & Kuhara, 2020; Yang, Lee, Yim, & Lee, 2020). In this 

perspective, we will focus on the roles of monoamines and neuropeptides in C. elegans 
survival.

Monoamine modulators—Caenorhabditis elegans synthesizes four monoamine 

neuromodulators—octopamine (OA), tyramine (TA), dopamine (DA), and serotonin (5-HT)

—but lack histamine, epinephrine, and norepinephrine, which are found in vertebrates 

(Bentley et al., 2016; Chase & Koelle, 2007). The major source, and, in some cases, the only 

source, of these monoamine modulators are neurons. Caenorhabditis elegans mutants that 

lack key biosynthetic enzymes for each of the bioamine neuromodulators are viable, 

allowing C. elegans to serve as a powerful discovery platform to understand neuromodulator 

function. These bioactive monoamine synthesis mutants exert pleiotropic effects on C. 
elegans internal states, thereby affecting behavior (see, e.g., Cermak et al., 2020; Ghosh et 
al., 2016; Schafer, 2006).

Octopamine and tyramine.: OA and TA are considered the functional equivalent of 

epinephrine and norepinephrine in invertebrates (Li et al., 2017). OA and TA are best 

characterized in orchestrating the transition between the foraging state, which is elicited by 

lack of food, and the dwelling state, which denotes food availability. TA is present in low 

abundance and is synthesized by the enzyme tyrosine decarboxylase (TDC-1) in the RIM-1 

motor neurons, gonadal sheath cells, and the uv1 neuroendocrine cells (Alkema, Hunter-

Ensor, Ringstad, & Horvitz, 2005; Chase & Koelle, 2007). OA is synthesized from TA by 

the enzyme tyramine β-hydroxylase (TBH-1) in RIC interneurons and the gonadal sheath 

cells (Alkema et al., 2005; Chase & Koelle, 2007; Horvitz, Chalfie, Trent, Sulston, & Evans, 

1982). Food deprivation results in the release of OA by the RIC neurons (Churgin, 

McCloskey, Peters, & Fang-Yen, 2017; Roeder, 2020; Suo, Culotti, & Van Tol, 2009). The 

released OA acts via the G protein-coupled receptors (GPCRs) SER-3 and SER-6 in SIA 

neurons to promote roaming behaviors that increase the probability of finding food (Churgin 

et al., 2017; Suo et al., 2009). When food becomes available, TA promotes reduced 

locomotion to allow feeding (Churgin et al., 2017).

Caenorhabditis elegans is a bacterivore, and the bacteria encountered by the animal range 

from highly nutritious to poorly nutritious and outright pathogenic (see Kim & Flavell, 

2020; this issue). Interestingly, OA also suppresses aversive behaviors (Guo et al., 2015; 

Mills et al., 2012) to prioritize feeding. OA allows C. elegans to tolerate low-quality or 

detrimental bacterial food sources by modulating bacteria-elicited innate immune responses 

(Sellegounder, Yuan, Wibisono, Liu, & Sun, 2018; Suo et al., 2009). Consequently, OA 

mediates a shift towards attraction to a greater range of foods, like altering the valence of the 

response to CO2 levels that typically signify food (Rengarajan, Yankura, Guillermin, Fung, 

& Hallem, 2019). In this issue, Srinivasan (2020) discusses how RIC neuron-secreted OA 
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coordinates food availability with lipolytic activity by signaling through intestinal SER-3 

receptors to activate the intestinal lipases LIPS-6 and ATGL-1.

Remarkably, C. elegans is subject to signaling not only from its self-synthesized OA, but 

also from OA or OA-like compounds secreted by certain bacteria or other C. elegans, 

respectively. In this issue, Kim and Flavell (2020) highlight the recent findings from the 

Sengupta lab (O’Donnell, Fox, Chao, Schroeder, & Sengupta, 2020) on how OA produced 

by commensal bacteria alters C. elegans behavior and internal state. Cheon et al. (2020; this 

issue) and Muirhead and Srinivasan (2020; this issue) also review how starved larvae 

produce the OA-like small molecule osas#9, an ascaroside component of the worm-secreted 

pheromone blend, which is then sensed by nociceptive ASH neurons in adults to initiate 

their avoidance behavior (Chute et al., 2019).

Dopamine.: The DA neurons in C. elegans were initially identified by Sulston and 

coworkers (Sulston, Dew, & Brenner, 1975), using the catecholamine-specific technique of 

formaldehyde-induced fluorescence (FIF). DA is synthesized in eight neurons (ADEL/R, 

CEPDL/R, CEPVL/R, and PDEL/R) in hermaphrodites and in six additional neurons 

(R5AL/R, R7AL/R, R9AL/R) in males by the tyrosine hydroxylase CAT-2, which catalyzes 

the rate-limiting step in dopamine synthesis (Lints & Emmons, 1999; Sulston, Dew, & 

Brenner, 1975). As in other animals, C. elegans DA plays key roles in coordinating motor 

programs with the reward system during foraging, feeding, and egg laying (Ardiel et al., 
2016; Bettinger & McIntire, 2004; Chase & Koelle, 2007; Cermak et al., 2020; Qin & 

Wheeler, 2007; Rivard et al., 2010; Sanyal et al., 2004; Sawin, Ranganathan, & Horvitz, 

2000; Suo et al., 2019). DA is released upon sensing food (Oranth et al., 2018) to initiate the 

slowing of movement in the presence of food (Sawin et al., 2000). Thus, DA counteracts 

OA-induced hyperactivity (Luedtke, O’Connor, Holden-Dye, & Walker, 2010; Rengarajan, 

Yankura, Guillermin, Fung, & Hallem, 2019). Similarly, DA works antagonistically to OA in 

switching the responses to CO2: DA promotes aversion to CO2 in the fed state and OA 

promotes attraction in the starved state (Rengarajan et al., 2019). As in mammalian 

neurodegenerative models, C. elegans DA neurons appear more susceptible to degeneration 

upon expression of disease-associated aggregation-prone proteins, such as α-synuclein (Mor 

et al., 2017). In this collection, the Rankin lab focuses on how C. elegans serves as a 

powerful model in which to study neurodegeneration (Liang, McKinnon, & Rankin, 2020).

Serotonin.: The rate-limiting enzyme tryptophan hydroxylase, TPH-1, synthesizes 5-HT in 

eight to ten neurons in hermaphrodites (ADFL/R, NSML/R, HSNL/R, ASGL/R upon 

hypoxia, and rarely in AIM and RIH) and in more neurons in males (CP0 to CP06 and the 

B-type ray neurons R1BL/R, R3BL/R, and R9BL/R; Hare & Loer, 2004; Loer & Kenyon, 

1993; Loer & Rivard, 2007; Pocock & Hobert, 2010; Serrano-Saiz et al., 2017). Release of 

5-HT from each of these neurons performs different functions, either because of its co-

release with other neurotransmitters (Srinivasan, 2020; this issue) or because the acute 

versus chronic availability of 5-HT exerts different effects on target tissues (Prahlad, 2020; 

this issue). In the worm, 5-HT can mimic food and favorable conditions or signal stress, 

based upon the duration and site of release (Avery & You, 2012; Chase & Koelle, 2007; 

Cruz-Corchado, Ooi, Das, & Prahlad, 2020; Curran & Chalasani, 2012; Ishita, Chihara, & 
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Okumura, 2020; Rankin, 2006). For instance, 5-HT can promote recovery from the 

developmental arrest known as dauer that forms in response to early life stress (Cassada & 

Russell, 1975; Mylenko et al., 2016; see also Yang, Lee et al., 2020), by mimicking food 

signals that promote growth and differentiation (Srinivasan, 2020; this issue). Alternatively, 

5-HT can activate behavioral avoidance responses or stress-responsive transcription 

programs (Prahlad, 2020; this issue). Notably, these opposing effects resemble what is 

observed during the administration of 5-HT modulators for the treatment of neuropsychiatric 

disorders in humans: an acute increase in 5-HT availability causes increased anxiety; chronic 

treatment leads to anti-depressant effects (Sharp & Cowen, 2011).

Neuropeptides—The C. elegans genome contains more than 120 genes that encode 

neuropeptide precursor proteins, and these proteins are processed to more than 250 

neuropeptides. Most of their receptors belong to the large GPCR family but can also include 

ion channels and receptor kinases (for more extensive reviews on neuropeptides and their 

receptors, see Hobert, 2013; Li & Kim, 2008). Caenorhabditis elegans has the FMRFamide-

like peptides (FLPs; Li, Kim, & Nelson, 1999), insulin-like peptides (ILPs; Pierce et al., 
2001), and the non-FLP, non-ILP neuropeptides called NLPs (Nathoo, Moeller, Westlund, & 

Hart, 2001). Like the biogenic amines, neuropeptides have also been extensively studied in 

C. elegans and are implicated in behaviors and physiological mechanisms that modulate 

homeostasis and survival.

FMRFamide-like peptides.: A prominent example of a worm FLP-dependent pathway is 

neuropeptide Y signaling, which is represented by the FLP-21 peptide ligand and its 

associated GPCR, NPR-1 (Rogers et al., 2003). FLP-21 and NPR-1 are required for 

avoidance responses to noxious stimuli and loss of pathway activity compromises survival 

(Glauser et al., 2011; Reddy, Andersen, Kruglyak, & Kim, 2009; Styer et al., 2008). In this 

issue, Kim and Flavell (2020) review how this pathway can alter C. elegans behavior in 

response to bacterial metabolites in the animal’s natural environment. Other FLP genes also 

modulate longevity and metabolism. In this collection, Kim et al. (2020) describe the role of 

flp-6 in increasing survival at high temperatures, but flp-6 also intriguingly exhibits an 

opposite role in survival at lower temperatures (Chen et al., 2016). Srinivasan (2020; this 

issue) discusses how FLP-17 coordinates environmental oxygen levels with intestinal fat 

metabolism. Yang et al. (2020; this issue) refer to findings by the Sternberg lab (Lee et al., 
2017), where peptides encoded by two flp genes, flp-10 and flp-17, facilitate a dispersal 

behavior adopted by dauers in migrating to environments that support better survival.

Insulin-like peptides.: ILP signaling has long been associated with survival (see Kenyon, 

2010; and references therein). The worm ILP receptor DAF-2, which is a receptor tyrosine 

kinase (Kimura, Tissenbaum, Liu, & Ruvkun, 1997), promotes reproductive growth and 

inhibits dauer arrest (Riddle, Swanson, & Albert, 1981). The downregulation of DAF-2 

activity doubles C. elegans lifespan (Kenyon, Chang, Gensch, Rudner, & Tabtiang, 1993), a 

discovery that ushered the birth of a field—the genetics of aging. Like DAF-2 (Gems et al., 
1998), at least some of the worm ILPs (Hobert, 2013; Li & Kim, 2008) have pleiotropic 

functions (Fernandes de Abreu et al., 2014), which might be a consequence of their ILP-to-

ILP network organization, where one ILP regulates multiple ILPs (Fernandes de Abreu et 
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al., 2014). Many of the ILP functions typify neuromodulator functions. For example, there 

are ILPs that sometimes behave like the DAF-2 receptor in one context and opposite from 

DAF-2 in another context (Fernandes de Abreu et al., 2014). The articles in this collection 

discuss the roles of ILPs in temperature-sensing (see Takeishi, Takagaki, & Kuhara, 2020), 

in context-dependent avoidance behaviors (see Cheon, Hwang, & Kim, 2020; Kim & 

Flavell, 2020), in neuroprotection (see Liang, McKinnon, & Rankin, 2020), the dauer 

program (see Yang et al., 2020), and longevity (see Kim et al., 2020).

Non-FLP, non-ILP neuropeptides.: NLPs comprise a heterogeneous group of 

neuropeptides, but are again involved in diverse physiological processes (Li & Kim, 2008; 

Hobert, 2013), from sleep behaviors (see Honer, Buscemi et al., 2020; this issue) to 

neurodegeneration (Lezi et al., 2018) and longevity (Park, Link, & Johnson, 2010). Similar 

to FLPs and ILPs, NLPs can amplify or dampen signaling at specific synapses (Chalasani et 
al., 2010; Hapiak et al., 2013; Macosko et al., 2009), thereby shaping circuit connectivities 

and behaviors. The three classes of neuropeptides, the FLPs, ILPs, and NLPs, are also 

known to work together through feedforward or feedback mechanisms to maintain 

homeostasis at both the circuit level and the organismal level (Chalasani et al., 2010; Chen, 

Chen et al., 2016).

Coda

The dysregulation of neuromodulator activities can lead to disease. Indeed, numerous 

studies in mammalian systems implicate neuromodulator dysfunction in neurodegenerative 

diseases, such as Alzheimer’s disease, Huntington’s disease and Parkinson’s disease, where 

impaired neuromodulator signaling often preempt disease symptoms (Du, Pang, & Hannan, 

2013; Elsworthy & Aldred, 2019; Ohno, Shimizu, Tokudome, Kunisawa, & Sasa, 2015; 

Politis & Niccolini, 2015). Caenorhabditis elegans expresses many orthologs of 

neurodegenerative disease-associated genes and their study in the worm have contributed to 

our understanding of the above human diseases (see Liang, McKinnon, & Rankin, 2020; this 

issue). Understanding the role of neuromodulators in worm neurodegeneration will likely 

add to our understanding of human neurodegenerative disorders.

To conclude, we would like to highlight an important question. How does a neuromodulator 

modify a physiological response to a stimulus? This question circles back to experiments 

performed in the 1960s. Injection of an abdominal ganglion extract from one Aplysia into 

another Aplysia elicited the cessation of locomotor and feeding behavior, followed by the 

stereotyped head-waving behavior that facilitated egg laying in the second animal 

(Kupfermann, 1967; Strumwasser, Jacklet, & Alvarez, 1969; Toevs & Brackenbury, 1969). 

These experiments demonstrated that diverse modulatory substances could act centrally and 

peripherally to change the physiological state of an animal completely. It would be 

interesting to learn the rules and constraints by which different cocktails of neuromodulators 

achieve such a dramatic switch in physiological responses to environmental stimuli. 

Ultimately, the complete identification of the interacting modulators, their receptors and 

sites of action should allow us to address this question. We posit that C. elegans is an ideal 

system to achieve this goal.
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