
Continuum Mech. Thermodyn. (2021) 33:1207–1221
https://doi.org/10.1007/s00161-021-00970-z

ORIGINAL ARTICLE

Michael Bestehorn · Alejandro P. Riascos · Thomas M. Michelitsch · Bernard A. Collet

A Markovian random walk model of epidemic spreading

Received: 16 October 2020 / Accepted: 4 January 2021 / Published online: 16 January 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract We analyze the dynamics of a population of independent random walkers on a graph and develop
a simple model of epidemic spreading. We assume that each walker visits independently the nodes of a
finite ergodic graph in a discrete-time Markovian walk governed by his specific transition matrix. With this
assumption, we first derive an upper bound for the reproduction numbers. Then, we assume that a walker
is in one of the states: susceptible, infectious, or recovered. An infectious walker remains infectious during
a certain characteristic time. If an infectious walker meets a susceptible one on the same node, there is a
certain probability for the susceptible walker to get infected. By implementing this hypothesis in computer
simulations, we study the space-time evolution of the emerging infection patterns. Generally, random walk
approaches seem to have a large potential to study epidemic spreading and to identify the pertinent parameters
in epidemic dynamics.

Keywords Markovian random walks · Ergodic networks · Epidemic spreading

1 Introduction

Within the last two decades, network science has become a huge interdisciplinary field [1–3] recently driven
by the significant upswing of online (social) networks and search engines with a burst of works focusing
on human mobility and encounter networks [4]. It turned out that random walks in networks are especially
powerful to cover spreading and diffusion phenomena widely observed in nature. These diffusion phenomena
include so-called anomalous diffusion which have been successfully described by space-time fractional partial
differential diffusion equations [5].

On the other hand within the last two decades, an impressive amount of scientific work has been devoted
to epidemic spreading models. For an introduction in epidemic modeling and state-of-the-art models such as
the ‘SIR model’ (S = susceptible, I = infected, R = recovered), we refer to [6]. It is natural that the present
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worldwide pandemic context of COVID-19 is boosting an additional interest to this topic [7,8]. Epidemic
spreading in complex networks was studied by several authors [9–11] and the epidemic dynamics in scale-free
networks was analyzed in [12]. In a recent paper, the effects of quarantine measures to epidemic spreading
in activity-driven adaptive temporal networks were studied [13] including percolation effects in epidemic
spreading in small-world networks [14,15]. A renormalization group approach has been employed to model
the second COVID-19 wave in Europe [16], just to quote a few examples.

Strongly driven by the present world-wide COVID-19 spreading there is a huge and urgent need of reliable
models that are able to capture essential aspects of the space-time dynamics of infectious diseases allowing to
develop preventive strategies. For an overview of the present world-wide COVID-19 situation as far known,
we refer to [17].

Infectious diseases such as measles, mumps, and rubella can be studied in the framework of nonlinear
dynamical systems. For the most simple case of spatially homogeneous infection rates, SIR models have been
applied successfully in the past [18,19]. As mentioned, SIR stands for the three compartments susceptible–
infected–recovered into which the individuals are grouped, depending on their state. A susceptible individual
(S) can be infected and become ill (I). After a certain time τ1, it will recover and be removed from the system
(R) in the subsequent computer simulation model. During time τ1, it can infect other susceptible individuals.
The mathematical description in the SIR model is achieved by an ordinary first-order differential equation for
each rate. If spatial effects are taken into account, the rates can be assumed space-dependent and a set of three
nonlinear coupled diffusion equations can be derived [6].

Instead of using partial differential equations, the individuals or particles can be considered as indepen-
dent random walkers on a discrete network with a given architecture. Our model is based on the following
assumptions. The particles perform random jumps from one node to another connected node of the network.
If on the same node an infected particle meets a susceptible one, the susceptible walker may be infected with
a given probability P . To describe the process of recovery, each particle has an inner variable parametrizing
its state. This variable changes in course of time. If ’time’ is assumed to be discrete, the whole dynamics on
the network and of the inner variable can be formulated as a (nonlinear) mapping from one-time step to the
next. The system has no memory, its state is uniquely defined by the positions of the particles and the values
of their inner variables at a certain time step (Markov process).

Our paper is organized as follows. In the subsequent Sect. 2, we give a brief general introduction into the
dynamics of Z independent Markovian random walkers on finite connected (ergodic) graphs. Without loss
of generality, we confine us here to undirected graphs. We utilize the Markovian walk approach to derive an
upper bound for the so-called basic reproduction number R0 which is defined subsequently. In this part, we
consider the situation when there is a single infected walker and Z − 1 susceptible walkers in the network. We
derive explicit formulae for the expected number of times the infected walker meets a susceptible one which
defines an upper bound for R0.

In Sect. 3, we perform numerical simulations employing above mentioned assumptions to generate space-
time patterns of the susceptible/infected walkers where we consider Z independent walkers on a finite 2D
square lattices with variable adjacency matrices and connectivity. In this way, we explore how the architecture
of a network affects the space-time dynamics of the epidemic spreading and identify pertinent parameters
governing the space-time patterns in order to establish predictive measures such as confinement and social
distance rules.

2 Multiple random walkers model

2.1 Some basic features

In the present section, we recall some basic features of random walks with independent multiple walkers on
the network [20] (See also [4,21,22] for outlines and analysis of the emergent space-temporal dynamics which
we employ in our model). We focus on unbiased Markovian walks, however, this approach can be generalized
to biased walks on directed graphs and also to continuous-time random walks (CTRWs). We consider Z
independent random walkers r = 1, . . . Z on a connected undirected network of p = 1, . . . , N nodes. Despite
the results of the present section can be derived in a simpler way, the approach recalled here allows to be
applied to elaborate more sophisticated models such as for instance when the walkers perform independent
CTRWs.
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We assume that the walkers move independently through the network where the jumps of a walker r are
governed by his own N × N one-step transition matrix W(r) with the elements W (r)

i j (i, j = 1, . . . , N , r =
1, . . . , Z ) indicating the probability of the transition between the nodes i → j in one jumpwith

∑N
j=1 W

(r)
i j = 1

and 0 ≤ W (r)
i j ≤ 1, i.e., per construction the transition matrices W(r) are row-stochastic. Further, we assume

that all walkers jump synchronously at integer times t = 1, 2, . . . ∈ N and occupy at t = 0 their respective
departure nodes. Performing its nth jump at t = n, each walker remains during t ∈ [n, n+1) on the node he has
reached at t = n ∈ N0. For convenience, we employ Dirac’s 〈bra|−|ket〉 notation with |i〉 = |i1, i2, . . . , iZ 〉 =
|i1〉|i2〉 . . . |iZ 〉 where ir indicates the node occupied by walker r . We refer |i〉 to as ‘state-vector’ containing
the positions of the walkers in the network. The collective dynamics of the Z independent walkers is then
characterized by the collective one-step transition matrix1

W i, j = 〈i|W|j〉 =
Z∏

r=1

W (r)
ir , jr

. (1)

Assuming walker r starts at t = 0 at node ir , then the probability to find the walker r on node jr at time t is
given by

P(r)
ir jr

(t) = 〈ir |(W(r))t | jr 〉, t ∈ N0 (2)

where for t = 0 we assume here the initial condition P(r)
ir jr

(t)|t=0 = δir jr . In this relation we assume that each
walker r = 1, . . . , Z moves independently through the graph in a Markovian walk governed by the master
equation

P(r)
i j (t + 1) =

N∑

k=1

P(r)
ik (t)W (r)

k j , P(r)
i j (0) = δi j , r = 1, . . . , Z (3)

thus P(r)
i j (t) = 〈i |W(r))t | j〉 indicates the probability of walker r to reach node j in t jumps when departing at

t = 0 from node i . When all walkers hop synchronously at t ∈ N0 the probability to find the Z walkers in the
state |j〉 = | j1, j2, . . . , jZ 〉 at time t becomes

P(i, j, t) =
Z∏

r=1

P(r)
ir jr

(t) (4)

with P(r)(i, j, t)|t=0 = δi, j = ∏Z
r=1 δir jr . In order to develop such a model we are interested in the ‘state-

probabilities,’ i.e., the probabilities that the nodes j = 1, . . . , N are occupied by s1, . . . , sN (
∑N

j=1 s j = Z )
walkers. For our convenience, we introduce the following generating functions

G(r)
ir

(u1, . . . , uN , t) = P(r)(t) · u =
N∑

s=1

P(r)
ir s

(t)us, r = 1, . . . , Z (5)

with Gr
ir
(u1 = 1, . . . , uN = 1, t) = ∑N

j=1 P
(r)
i j (t) = 1 reflecting normalization. Now consider the collective

generating function

Gi(ξu, t) = Gi(ξu1, . . . , ξuN , t) =
Z∏

r=1

Gr
ir (ξu1, . . . , ξuN , t)

= ξ Z
∑

s1+s2+···sN=Z (0≤si≤Z)

Ai(s1, s2, . . . , sN , t)us11 u
s2
2 . . . usNN

(6)

which is a multinomial of total degree Z . The coefficients (si = 0, 1, . . . , Z )

Ai(s1, s2, . . . , sN , t) = 1

s1!s2! . . . sN !
∂ Z

∂us11 ∂us22 . . . ∂usNN
Gi(u, t)||u〉=0 (7)

1 We employ for products the notation
∏Z

r=1 ar = a1a2 . . . aZ .
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indicate the state-probabilities, i.e., the probabilities that the nodes 1, 2, . . . , N at time t and with the given
initial condition are occupied by s1, s2, . . . , sN walkers (where s1+s2+· · ·+sN = Z recovers the total number
of walkers). We observe that Gi(u1, . . . , uN , t)

∣
∣
u1=...=uN=1 = 1, i.e., (7) indeed is a normalized distribution.

We further observe that since (6) is a homogeneous function of total degree Z , namely Gi(ξu1, . . . , ξuN , t) =
ξ ZGi(u1, . . . , uN , t) thus holds the homogeneity relation

d

dξ
Gi(ξu1, . . . , ξuN , t)|ξ=1 =

N∑

j=1

u j
∂

∂u j
Gi(u1, . . . , uN , t) = ZGi(u1, . . . , uN , t) (8)

with
N∑

j=1

u j
∂

∂u j
Gi(u1, . . . , uN , t)

∣
∣
∣
∣
u1=...=uN=1

= Z . (9)

As an important case let us consider when all walkers have identical transitionmatrixW (r)
i j = Wi j and identical

departure node ir = i ∀r = 1, . . . Z . Then, with (2) (Pi j (t) = P(r)
i j (t)) we get for (6) the relation

G(Z)
i (u1, . . . , uN , t) =

⎛

⎝
N∑

j=1

Pi j (t)u j

⎞

⎠

Z

(10)

with the state-probabilities given by the multinomial-coefficients

A(Z)
i (s1, s2, . . . , sN , t) = Z !

s1!s2! . . . sN ! (Pi1(t))
s1(Pi2(t))

s2 . . . (PiN (t))sN (11)

where s1 + s2 + · · · + sN = Z and s j ∈ [0, Z ].
Case: N = 2
For illustration, let us consider a network of two nodes i = 1, 2 (N = 2) where we have Z independent

walkers and let us assume the initial condition ir = 1 for all Z walkers. Let us assume all walkers have the
same transition matrix W (r)

i j = Wi j . Then, the collective generating function (6) is given by

G(1,1)(u1, u2, t) = (P11(t)u1 + P12(t)u2)
Z

=
Z∑

s=0

(
Z
s

)

(P11(t))
s(P12(t))

Z−sus1u
Z−s
2

(12)

where

(
Z
s

)

= Z !
s!(Z−s)! indicate the binomial-coefficients. Hence, the state-probabilities, i.e., probabilities

that (with the given initial condition) at time t node 1 is occupied by s walkers and node 2 by Z − s walkers
are obtained as

A(1,1)(s, Z − s, t) =
(
Z
s

)

(P11(t))
s(P12(t))

Z−s, s ∈ [0, Z ]. (13)

The normalization of the state-probability distribution again is easily verified
∑N

s=0 A1,1(s, Z − s, t) =
Gi=(1,...1)(1, 1, t) = (P11(t) + P12(t))Z = 1.

Now we need to relate the architecture of the graph with its random walk features. The information of the
topology of an undirected graph is contained in the one-step transition matrix [1,24]

Wi j = δi j − 1

Ki
Li j (14)

where we assume that each walker undertakes jumps on the graph governed by the same one-step transition
matrix. In (14), we introduced the N × N Laplacian matrix

Li j = Kiδi j − Ai j (15)
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which contains the adjacency matrix Ai j with Ai j = 1 if the nodes i, j are connected by an edge and Ai j = 0
else. Further, we do not allow self-connections which is expressed by Aii = 0. In undirected networks the
edges do not have a direction, i.e., the adjacency matrix and the Laplacian matrix are symmetric. Further
important is the degree Ki of a node i which counts the number of nodes connected with i , namely

Ki =
N∑

j=1

Ai j (16)

where the condition Ki > 0 tells us that there are no isolated disconnected nodes. With (15), the transition
matrix (14) can also be written as

Wi j = 1

Ki
Ai j (17)

where we directly verify row-stochasticity
∑N

j=1 Wi j = 1. Per construction, we haveWii = 0 thus the walkers
at any time step have to move and change the node. The transition matrix is non-symmetric if there are nodes
with variable degree Ki �= K j . For later use, we introduce the canonical representation (For a detailed spectral
analysis of spectral properties, see [24])

W = |Φ1〉〈Φ̄1| +
N∑

m=2

λm |Φm〉〈Φ̄m | (18)

where |Φs〉 and 〈Φ̄s | denote the right- and left eigenvectors of W, respectively, and we assume an aperiodic
ergodic (connected) network with the eigenvalue structure |λs | ≤ 1 with real eigenvalues λs ∈ R where the
largest unique (Frobenius-) eigenvalue is λ1 = 1 and−1 < λm < 1 form = 2, . . . N . We thus have the unique
stationary distribution

W∞ = lim
n→∞Wn = |Φ1〉〈Φ̄1| (19)

as λnm → 0 (m = 2, . . . N ) with the elements [24]

W (∞)
i j = W (∞)

j = K j

K , K =
N∑

j=1

K j = N 〈K 〉 (20)

where K is called the total degree and 〈K 〉 denotes the average degree of the network. It is important to notice
that in (aperiodic) ergodic (i.e., connected) networks the stationary distribution has uniquely (nonzero) positive
elements W (∞)

i j = W (∞)
j > 0 and is given by the normalized degrees independent of the departure node i .

The stationary transition matrix is a matrix consisting of identical rows (see, e.g., [24] for an analysis of the
related spectral properties of the transition matrix in ergodic graphs). Having recalled these general features,
we can now use these properties to derive estimates for the reproduction numbers which are key quantities in
epidemic models.

2.2 Upper bounds for reproduction numbers

We now consider the situation of Z independent walkers where one walker is infectious in the time interval
0 ≤ t ≤ τ1. We denote the infectious walker by r = 1 and Z − 1 walkers (denoted by r = 2, . . . Z )
are susceptible. For later use let us introduce the ‘effective reproduction number’ Re(τ1) as the number of
infections an infectious walker causes up to time τ1 while he is infectious. Apart of this quantity the so-called
basic reproduction number R0(τ1) is of interest. R0(τ1) indicates the number of newly infected walkers (up to
time τ1) by one infected walker under the assumption the infected walker meets only susceptible walkers. In
fact Re also depends on time by the time-dependence of the number of susceptible walkers. In the present part,
in order to derive an upper bound, we ignore this time-dependence. On the other hand, the quantity R0 ignores
the fact that an infectious walker does not only meet susceptible ones, but also infected and recovered walkers.
Therefore, R0 ≥ Re, i.e., the basic reproduction number overestimates the ‘real’ effective reproduction number
Re. For Re > 1, the number of infected walkers is increasing. If Re > 1 is persisting over longer times, then
we are in the regime of (exponential) epidemic spreading. For Re = 1, the number of infected walkers remains
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stable, and for Re < 1, the number of infected walkers is decreasing and when persisting over longer times
then the epidemics dies out.

Now for the sake of simplicity in the formulas to be derived, we assume for the susceptible walkers random
initial conditions and stationary distributions, namely

P(s)
i j (t) = W (∞)

j = K j

K , s = 2, . . . , Z (21)

independent of time. In order to get an upper bound for the basic reproduction number, we are now interested
in the expected number of times R̂(τ1) the infectious walker meets another walker (no matter whether or not
susceptible) during the time τ1 of his infection. Clearly R̂(τ1) ≥ R0(τ1), i.e., R̂(τ1) represents an upper bound
for the basic reproduction number R0(τ1). The quantity R̂(τ1) ignores also the fact that the infectious walker
may multiply meet the same susceptible walker. We come back to the issue of variable ‘susceptibility’ with a
probability P of infection as a crucial parameter later on. For the susceptible walkers in the stationary state,
the generating function (10) becomes independent of their initial nodes and of time (as we ignore transitions
from susceptible to the infectious state) and takes the form

G(Z−1)∞ (u1, . . . , uN ) =
⎛

⎝
N∑

j=1

W (∞)
j u j

⎞

⎠

Z−1

=
∑

s1+s2+···+sN=Z−1

A(s1, s2, . . . , sN )us11 u
s2
2 . . . usNN .

(22)

The ‘state-probabilities’ that s j susceptible walkers are on node j ( j = 1, . . . N ) with
∑

j s j = Z − 1 then
are obtained as

A(s1, s2, . . . , sN ) = 1

s1!s2! . . . sN !
∂ Z−1

∂us11 ∂us22 . . . ∂usNN
,

N∑

j=1

s j = Z − 1

= (Z − 1)!
s1!s2! . . . , sN ! (W

(∞)
1 )s1(W (∞)

2 )s2 . . . (W (∞)
N )sN (23)

with the stationary distribution W (∞)
j = K j

N 〈K 〉 . Now we assume that the duration of the infection is τ1 ∈ N

and that each walker performs jumps exactly at integer times t ∈ N. Accounting for the fact that the infectious
walker remains on his departure node during the time-interval [0, 1) and performs its first jump at t = 1, then
it follows that the infectious walker during his infection, i.e., within the time interval [0, τ1) performs τ1 − 1
jumps where at each jump he meets susceptible walkers in the stationary distribution (23). In our calculation,
we ignore the transitions of susceptible walkers to the infectious state and assume the number of susceptible
walkers remains constant Z−1. The expected number of timesR(τ1) the infectious walker meets a susceptible
one within the time-interval [0, τ1) then is obtained as (where we assume the infectious walker has departure
node i and transition probabilities at time t : P(1)

i j (t) = [Wt ]i j )

R(τ1) =
τ1−1∑

t=0

N∑

j=1

∑

s1+s2+,...sN=Z−1

P(1)
i j (t)s jA(s1, s2, . . . , sN )

=
τ1−1∑

t=0

N∑

j=1

P(1)
i j (t)u j

∂

∂u j
G(Z−1)(u1, . . . , uN )

∣
∣
∣
∣
u1=...=uN=1

=
τ1−1∑

t=0

r(t)

(24)
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where

r(t) =
N∑

k=1

P(1)
ik (t)uk

∂

∂u j

⎛

⎝
N∑

j=1

W (∞)
j u j

⎞

⎠

Z−1 ∣
∣
∣
∣
u1=...=uN=1

= (Z − 1)
∑N

j=1 P
(1)
i j (t)W (∞)

j .

(25)

The quantity r(t) indicates the expected number of susceptible walkers met by the infectious one in the time
increment Δt = 1 following to his t th jump and we observe that r(0) = (Z − 1)W (∞)

i (as Pi j (0) = δi j ).
Hence, (24) yields

R̂(τ1, i) = (Z − 1)
N∑

j=1

W (∞)
j

τ1−1∑

t=0

P(1)
i j (t)

= (Z − 1)
N∑

j=1

W (∞)
j T (1)

i j (τ1)

= (Z − 1)

N 〈K 〉
N∑

j=1

K jT
(1)
i j (τ1)

(26)

where T (1)
i j (τ ) = ∑τ−1

t=0 P(1)
i j (τ ) indicates the expected sojourn time of the infectious walker (with departure

node i) on node j in a walk of τ −1 time steps (i.e., in a walk of duration [0, τ )). For a detailed analysis of this
issue, consult [24]. For τ1 = 0, we have with P(1)

i j (0) = δi j in (26) R̂(0, i) = R0(0) = Re(0) = (Z −1)W (∞)
j

which are at t = 0 the exact values for the effective and basic reproduction numbers since per construction at
t = 0 the infectious walker meets on his departure node r(0) = (Z − 1)W (∞)

i susceptible walkers. We also
can define a global value by averaging (26) over all departure nodes of the infectious walker, namely

R̂(τ1) = 1

N

N∑

i=1

R̂(τ1, i) = (Z − 1)

N 2〈K 〉
N∑

i=1

N∑

j=1

K jT
(1)
i j (τ1) ≥ R0(τ1). (27)

2.3 Regular networks

It is worthy to consider above result for regular networks, i.e., networks with constant degree K j = K = 〈K 〉
(i = 1, . . . N ). Then, we get for (26) which coincides then with (27) the simple expression

R̂(τ1, i) = R̂(τ1) = (Z − 1)

N

N∑

j=1

R̂(τ1, i)

= Z − 1

N

τ1−1∑

t=0

N∑

j=1

P(1)
i j (t)

= (Z − 1)τ1
N

= ρs τ1 ≥ R0(τ1)

(28)

where we have used W (∞)
j = 1

N and normalization
∑N

j=1 P
(1)
i j (t) = 1 where ρs = Z−1

N denotes the density
of the susceptible walkers.

3 Two-dimensional model

In the previous section, we ignored the transitions between the states susceptible, infectious, and recovered. In
the present section, we present numerical simulations of space-time patterns of infectious/susceptible walkers
where we account for transitions between them.
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3.1 The model

We consider again Z independent random walkers (particles) performing independent jumps at integer times
on a two-dimensional undirected graph with N = L2 nodes where (x (n)

i , y(n)
i ) indicate the position of walker

(‘particle’) i at time n, namely

1 ≤ x (n)
i ≤ L , 1 ≤ y(n)

i ≤ L

where xi , yi , L are integer numbers. Let the walkers jump according to

x (n+1)
i = x (n)

i + ξ (n)
x (29)

y(n+1)
i = y(n)

i + ξ (n)
y , i = 1, . . . , Z . (30)

Here, ξx,y are equally distributed random integer numbers ξ in [−h, h]. In our simple network, each node
has d = (2h + 1)2 accessible neighbors, where d is the degree of a node. The velocity of each walker (mean
distance in one step) is given as

v̄ = 1

2h + 1

⎡

⎣
h∑

i, j=−h

(
i2 + j2

)
⎤

⎦

1/2

. (31)

Let si be the ’grade of infection’ of walker i . Due to recovery, we assume a simple linear decrease

s(n+1)
i = s(n)

i − μ (32)

with 1/μ as the relaxation time of healing. We define particle i as infectious at time n if s(n)
i > s1 and as

susceptible if s(n)
i ≤ 0. In the range 0 < s(n)

i < s1, we define particle i to be immune.
For infection, the following rule applies. If two particles i, j meet on the same node, i.e.,

x (n)
i = x (n)

j , y(n)
i = y(n)

j

and

s(n)
i > s1, s(n)

j ≤ 0

then particle i infects particle j with a given probability P . If particle j gets infected at time-step n, we set

s(n)
j = 1.

Thus, we may identify three regions (Fig. 1):

1. s1 ≤ si ≤ 1: particle i is infectious and infects particle j with probability P (duration of infectibility τ1).
2. 0 < s j < s1: particle j is immune and cannot be infected by particle i (duration of immunity τ2 − τ1).
3. s j ≤ 0: particle j is healthy (again) and can be (re)-infected.

From Fig. 1, the relations

μ = 1

τ2
, s1 = 1 − τ1

τ2
(33)

follow. Here, τ1 is the time while a particle can infect another one, τ2 denotes the time where a particle is
not susceptible after infection (time of infectibility plus time of immunity after recovering). The period of
immunity after recovering is τ2 − τ1 ≥ 0. In the present model, we assume the characteristic times τ1,2 to be
the same for all infected and immune particles, respectively. After the time τ2, a particle is again susceptible
and can be re-infected. If τ2 → ∞, particles stay immune forever after recovering.
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3.2 Reproduction numbers

The basic reproduction number R0 as mentioned above is defined as the number of particles that are infected
by one particle under the assumption that all other particles are healthy and susceptible. The probability for
a particle to meet another one during one time increment Δt = 1 is equal to the density (where we assume
Z , N � 1, see relation (28) for τ1 = 1)

ρ = Z

N
≈ ρs . (34)

To find R0, this quantity must be multiplied with the time of infectivity τ1 and with the probability of infection
P to obtain

R0 = ρτ1P = PR̂(τ1). (35)

This simple relation indeed is consistent with expression (28) of the previous section by introducing the
probability of infection P . Given τ1 and P , R0 is a constant. However, in real life due to hygiene measures P
may vary considerably in time but also in space, leading to an inhomogeneously distributed R0. Distance rules
or lockdowns may rather restrict the mobility of the particles and can be considered by changing the velocity
(31) or the connectivity of the network.

The effective reproduction number is found by replacing the particle number in (35) by the number of
those particles which are not infected or not immune

R(n)
e = R0

Z (n)
s

Z
(36)

t

s(t)

τ

s 1

1

immune

t

infectious

infection

τ
2 suscebtible

s = 1 − μ

Fig. 1 Linear decrease in s(t) after infection

R

z

z

e

I

k

Fig. 2 Effective R-number Re, relative numbers of ill zk = Zk/Z and immune zI = ZI /Z walkers over time. The black line
denotes herd immunity, Eq. (37). Here, P = 0.4, K = 100 and the system oscillates in form of waves
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Fig. 3 Snapshots of the patterns found for the parameters of Fig. 2. Black: susceptible, red: infectious, actively ill. The typical
dynamics of a wood fire can be recognized

where Z (n)
s is the total number of particles with s(n)

i ≤ 0 at time n. As long as Re > 1 the disease spreads and

more and more particles get infected. The number of insusceptible particles is given as Z (n)
I = Z − Z (n)

s , they
can be either ill or immune. In course of time, Zs and therefore Rs decreases. If Re = 1, herd immunity is
reached and from (36) one finds

ZH
I = Z

(

1 − 1

R0

)

. (37)

From the Z (n)
I immune particles, Z (n)

k are actively ill, i.e., s(n)
i > s1. The relation of ill to immune particles is

roughly
Z (n)
k

Z (n)
I

= τ1

τ2
. (38)
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Re

zk zI

Fig. 4 Same as Fig. 2 but for p = 1 and K = 200. Now the virus may die out and the disease becomes extinct after a certain
number of sweeps

Fig. 5 Snapshots of the patterns found for the parameters of Fig. 4
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Fig. 6 Cluster formation for small P = 0.2 and h = 1, initial condition of 1000 equally distributed infectious particles (red).
After t = 35000 P was increased to P = 0.3 and the clusters grow

increment of P

z

z

I

k

Fig. 7 Number of immune and ill particles for the parameters of Fig. 6. When P is increased, the number of ill walkers grows
and the disease spreads
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increment of P
f
H

Fig. 8 Inhomogeneity factor fH over time.When the clusters grow in size after t = 35000, fH decreases showing homogenization
of the patterns

Up to here, we assumed an average (stationary) particle distribution over the nodes. However, if clusters of
infected particles are formed, Zs may vary strongly in space thus this assumption does not any more hold true.
For an isolated cluster in an elsewhere healthy environment, Re may be locally around one and the number of
ill particles saturates due to herd immunity, where in the healthy regions Re can be much larger than one.

3.3 Results

Spatial patterns are expected if the initial distribution of infected walkers is localized (clusters). Let us assume
that K particles form a cluster in the central node of the layer and that all K particles are infected:

x (0)
i = L

2
, y(0)

i = L

2
, s(0)

i = ξ, i = 1 . . . K (39)

with ξ randomly distributed in [s1, 1]. The other N − K particles are healthy and randomly distributed over
all nodes:

x (0)
i = ηx , y(0)

i = ηy, s(0)
i = 0, i = K + 1, . . . , N (40)

and ηx , ηy as random integers in [1, L].
We present numerical solutions of the system with the fixed parameters N = 30000, L = 1500, N =

2.25 · 106, h = 4, τ1 = 600, τ2 = 2400. Figures 2 and 3 show the situation for P = 0.4, leading to a basic
R-number of R0 = 3.2. The thin black line denotes herd immunity. For Fig. 4, P was much higher, P = 1
and the virus dies out after some sweeps (Fig. 5).

Depending on P , but also on the mean particle velocity v̄, different pattern scenarios can be obtained. For
the case of small v̄ = 1.15, corresponding to h = 1 and small P = 0.2 clusters are formed independently
from the initial condition (Fig. 6). The clusters do not connect and large areas of the domain remain healthy.
As a consequence, the average number of infected walkers stays relatively low (Fig. 7). If P or h is increased,
the cluster size increases and the clusters connect (percolation point). Then, the number of infected particles
increases also strongly.

To characterize cluster formation, we define an inhomogeneity factor fH that is zero if a pattern is com-
pletely homogeneous (constant) in space and that becomes large if clusters are formed. Therefore, we introduce
a coarse mesh over the domain with 10× 10 cells and count the number of ill particles laying in each cell with
Xi , where i = 1, . . . , 100. Then, we compute the normalized variance

fH (X) = 〈X2〉 − 〈X〉2
〈X2〉 (41)

where brackets denote the average over all 100 coarse cells. Figure 8 shows fH over time for the situation
plotted in Figs. 6 and 7. If clusters are formed, fH increases, but after P is increased, the clusters grow and
fH tends to small values, showing that the pattern becomes more and more homogeneous.
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4 Conclusions

In the present paper, we first have developed a simple Markovian random walker model of epidemic spreading
in undirected graphs.We derived an upper bound for the reproduction numbers R0(τ1) and Re(τ1) in a multiple
randomwalker model where among Z independent randomwalkers one is infectious and Z−1 are susceptible.
We derived the expected number of times the infectious walker meets another (susceptible) walker (relations
(26) and (27)) where this quantity constitutes an upper bound for the basic reproduction number.

Further, we performed computer simulations of the space-time evolution patterns on a 2D network. We
showed that these space-time patterns depend sensitively on the infection probability P but also crucially
depend on the characteristic times of infectivity τ1 and duration of immunity τ2 − τ1 after recovering.

Despite its considerable simplicity, the present model allows predictions on the effect of lockdowns and
distance rules. For future research, it would be interesting to see what happens in the space-time epidemic
dynamics when τ1,2 become random variables drawn fromwaiting-time densities such as for instance exponen-
tial or Mittag-Leffler with heavy power-law tails and non-Markovian long memory features. An exponential
decay in the distribution of τ2 − τ1 describes the situation of short-time immunity whereas distributions with
heavy power-law tails correspond to long-time immunity. In this way, effects of ‘genetic stability’ of a virus
and its mutation activity could be taken into account. Such models could be important to obtain scenarios for
the efficiency of vaccinations. Another interesting feature is introduced by the space-time fractional dynamics
of the walkers on biased networks such as analyzed in recent papers [23,25]. Although epidemic spreading has
been widely addressed in many works, there are still many open questions such as effects of social distancing,
lockdowns, and others calling for further thorough analysis.
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