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Velvet antler is the traditional tonic food or medicine used in East Asia for treating aging-related diseases. Herein, we try to dissect
the pharmacology of methanol extracts (MEs) of velvet antler on Parkinson’s disease (PD). Caenorhabditis elegans studies showed
that MEs decreased the aggregation of α-synuclein and protected oxidative stress-induced DAergic neuron degeneration. In vitro
cellular data indicated that MEs suppressed the LPS-induced MAPKs and NF-κB activation, therefore inhibiting overproduction of
reactive oxygen species, nitric oxide, tumor necrosis factor-α, and interleukin-6; blocking microglia activation; and protecting DAergic
neurons from the microglia-mediated neurotoxicity. In vivo MPTP-induced PD mouse investigations found that MEs prevented
MPTP-induced neuron loss in the substantia nigra and improved the behavioral rotating rod performance in MPTP-treated mice
by increasing the expression level of tyrosine hydroxylase (TH) and downregulating α-synuclein protein expression. In all, these
results demonstrate that MEs ameliorate PD by inhibiting oxidative stress and neuroinflammation.

1. Introduction

Parkinson’s disease (PD) is the second most common neuro-
degenerative disorder after Alzheimer’s disease and is still
incurable [1]. It is characterized by motor symptoms such
as uncontrollable tremor, muscle stiffness, and slowness of
movement [2]. PD is characterized by severe degeneration
of dopaminergic (DAergic) neurons in substantia nigra
(SN) and depletion of dopamine in the striatum. The etiology
and pathogenesis of PD so far have not been completely
elucidated, although current theories suggest that oxidative

stress and neuroinflammation exert DAergic neuron demise
and are involved in neuronal degeneration of PD [3].

Currently, there are few therapeutic options for prevent-
ing and treating PD, which only treat symptoms and do not
retard DAergic neuron degeneration. Velvet antler has been
used as traditional Chinese medicine and tonic food in East
Asia for thousands of years [4], which has been reported to
exert anti-inflammatory and antiaging effects [5, 6].
Methanol extracts (MEs) of velvet antler, which are rich in
terpenoids, phenol, steroids, lipids, and glycosides and have
no protein substances, protect against oxidative stress in
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Caenorhabditis elegans (C. elegans) [7]. Herein, we try to
investigate whether MEs could ameliorate PD based on C.
elegans and mouse models. MEs were found to inhibit reac-
tive oxygen species (ROS) and neuroinflammation and there-
fore prevented the degenerations of DAergic neurons, which
indicate that MEs would be an effective therapeutic agent
against PD.

2. Materials and Methods

2.1. Materials. Velvet antler from sika deer (Cervus nippon)
was provided by the Zuojia Sika Deer Farm (Jilin, China). The
preparation and composition of velvet antler methanol extracts
(MEs) were previously described [7]. Simply, 7 g of antler velvet
powder was mixed with 210mL methanol and was refluxed at
80°C for 1h. The supernatant was obtained after centrifugation
at 8000 g for 15min. The methanol solvent was removed under
vacuum with a rotary evaporator. The yield of MEs was 3.2%
(w/w) of the dried sample. 6-Hydroxydopamine (6-OHDA),
2,3-diaminonaphthalene, 2′,7′-dichlorodihydrofluorescin dia-
cetate (DCFH-DA), crystal violet, BCA assay kit, 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP), and hematoxyli-
n/eosin were obtained from Sigma-Aldrich (St. Louis, MO,
USA). Interleukin-6 (IL-6) and tumor necrosis factor α
(TNF-α) ELISA kits were purchased from Abcam (Cambridge,
MA, USA). The Cell Death Detection kit was purchased from
Roche Applied Science (Basel, Switzerland). The primary anti-
bodies against IBA-1, p-ERK, p-JNK, p-p38, GAPDH, p-p65,
p-Akt, tyrosine hydroxylase (TH), and α-synuclein as well as
the horseradish peroxidase- (HRP-) conjugated secondary
antibody were purchased from Cell Signaling Technology
(Beverly, MA, USA). Alexa Fluor 568 to goat IgG secondary
antibody was purchased from Thermo Fisher Scientific
(Waltham, MA, USA).

2.2. C. elegans DAergic Degeneration Measurement. A trans-
genic strain BZ555, which expresses GFP in DAergic neurons
through the dat-1::GFP reporter system, was used to assess
the effect of MEs on DAergic neurons. Adult worms were
incubated for 6 h at 20°C and allowed to lay eggs; then, syn-
chronized worms at the L4 larval stage were treated with 6-
OHDA. At the end of exposure, worms were spread on the
NGM OP50 plates with or without MEs. Worms at days 1,
2, and 3 past the adult stage were mounted onto 2% agarose
pads and immobilized with 2mM levamisole and imaged
with a Nikon TS2-FLfluorescence microscope. DAergic
neurons were counted by inspecting the GFP fluorescence,
which could be quantified with ImageJ. At least 30 worms
were examined with three replicates.

2.3. C. elegans Basal Slowing Response (BSR) Assay. The C.
elegans strain N2 was handled according to standard proce-
dures and grown at 20°C. N2 adult worms were incubated
for 6 h at 20°C and allowed to lay eggs. The synchronized
worms at the L4 larval stage were treated with M9 buffer con-
taining 10mM ascorbic acid and 50mM 6-OHDA for 1 h.
The worms were then washed in M9 buffer and spread on
NGM OP50 plates with or without MEs. Ten worms at days
1, 2, and 3 past the adult stage were collected by a washing

plate with M9 buffer and then transferred to plates with or
without a ring-shaped OP50 lawn. 5min later, the number
of body bending was counted to assess the locomotor rate
in 20 s duration. Data is expressed as the difference (Δ) in
body bending per 20 s between worms in OP50 seeded plates
and plates without food, which is a measurement of 6-OHDA
oxidation damage on dopaminergic neurons in C. elegans. At
least three replicates were performed independently.

2.4. C. elegans α-Synuclein Aggregation Measurement. A
transgenic strain, NL5901[unc-54p::alpha synuclein::YFP
+unc-119(+)], which stably expresses human alpha synuclein
protein tagged with yellow fluorescent protein, was used to
assess the PD in the worm. Briefly, NL5901 strain nematodes
were exposed to MEs from the L4 larval stage to days 3 and 5
past the adult stage. At the end of exposure, worms were
mounted onto 2% agarose pads and immobilized with
2mM levamisole. To monitor the α-synuclein aggregation,
YFP protein was microscopically visualized and photo-
graphed using a Nikon TS2-FLfluorescence microscope. At
least 30 worms examined with three replicates were imaged,
and the fluorescence signals were quantified in each worm
with ImageJ software.

2.5. Cell Viability Assay.Amouse microglial BV2 cell line was
cultured in Dulbecco’s modified Eagle’s medium (DMEM)
containing 10% FBS, 4mM glutamine, 100U/mL penicillin,
and 100μg/mL streptomycin at 37°C in a 5% CO2 incubator.
BV2 cells were exposed to different treatments as indicated.
After 24 h treatment, cells were fixed with 3.7% paraformal-
dehyde for 5min and then stained with 0.05% crystal violet
for 15min. The plates were subsequently washed with tap
water and dried for 30min at room temperature; 200μL of
methanol was added to each well, and the plates were shaken
for 15min at room temperature to dissolve the dye.
Absorbance at 540nm was measured using a plate reader.

2.6. ROS Measurement in BV2 Cells. BV2 cells were exposed
to different treatments for 24h as indicated. Cells were
washed with PBS and then loaded with H2DCFDA at a final
concentration of 5μM in a serum-free medium. H2DCFDA
is a nonfluorescent and cell-permeable probe that is con-
verted into 2′,7′-dichlorodihydrofluorescein after intracellu-
lar deacetylation and is subsequently oxidized to highly
fluorescent dichlorofluorescein (DCF). Cells were incubated
for 15min and then washed. Cellular fluorescence was
viewed by a Nikon TS2-FLfluorescence microscope.

2.7. NO Assay. BV2 cells were exposed to different treatments
for 24h as indicated. 100μL of supernatant media was
removed after cells were treated for 24 h and added to flat
black 96-well microfluor plates (Thermo Scientific, Waltham,
MA, USA). Subsequently, 10μL of 2,3-diaminonaphthalene
(0.05mg/mL in 0.62M HCl) was added to each well and
incubated for 15min. The reaction was quenched by the
addition of 5μL of 3M NaOH, and the plate was read on a
plate reader with excitation at 360 nm and emission at
430 nm.
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2.8. TNF-α and IL-6 ELISA. BV2 cells were exposed to differ-
ent treatments as indicated. After 24 h treatment, culture
supernatants were collected for TNF-α and IL-6 ELISAs,
which were performed according to the manufacturer’s
instructions (Abcam, Cambridge, MA, USA). Briefly, the
capture antibody was added in each well of a 96-well ELISA
plate and incubated overnight at 4°C. The plate was washed
with phosphate-buffered saline (PBS) with 0.05% Tween 20
solution (PBST) five times and then incubated with 100μL
supernatant/each well for 2 h at room temperature. Follow-
ing five PBST washings, biotin-conjugated antibody was
added to each well and incubated for 1 h at room tempera-
ture. After five PBST washings, diluted avidin-HRP was
added and the plate was incubated at room temperature for
30min. After washing the plate five times, tetramethylbenzi-
dine (TMB) substrate was added to each well, and the color
was developed in the dark for 10-30min at room tempera-
ture. The color reaction was stopped by adding 1M H3PO4.
The absorbance at 450 nm was measured on a plate reader,
and 620nm was chosen as the reference wavelength. The
concentration of TNF-α and IL-6 was calculated using a
mouse TNF-α and IL-6 standard working curve, respectively.

2.9. Iba-1 Immunofluorescence Staining. BV2 cells were
exposed to different treatments as indicated. After 24 h treat-
ment, cells were fixed with 4% paraformaldehyde. 1% bovine
serum albumin (BSA) in PBS was used for blocking for
30min. The cells were incubated overnight at 4°C with Iba-1
primary antibody diluted 1 : 250 in 1% BSA in PBS. After five
washings with PBS, the cells were incubated with a secondary
Alexa Fluor 568-conjugated anti-goat IgG for 1h at room
temperature. The cellular nucleus was stained with 1μg/mL
of Hoechst 33258 for 5min. The staining of BV2 cells was
visualized by a Nikon TS2-FLfluorescence microscope.

2.10. TUNEL Assay. BV2 cells were exposed to different treat-
ments as indicated. After 24h treatment, cells were fixed with
4% paraformaldehyde, and terminal deoxynucleotidyl trans-
ferase dUTP nick end labeling (TUNEL) staining was per-
formed by the Cell Death Detection kit (Roche Applied
Science, Basel, Switzerland) according to the manufacturer’s
instruction. DNA fragmentation was detected using a Nikon
TS2-FLfluorescence microscope.

2.11. Western Blotting. The lysate samples were first resolved
in 12% sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis (SDS-PAGE) and then transferred to nitrocellulose
membranes, followed by blocking membranes with 5% non-
fat dry milk in TBST buffer (25mM Tris-HCl, 140mMNaCl,
0.05% Tween 20, pH 7.5) for 1 h and incubation with the
appropriate primary antibody (0.5μg/mL) at 4°C overnight.
After being washed five times by TBST, the membrane was
incubated with horseradish peroxidase-conjugated second-
ary antibody (50ng/mL) for 1 h at room temperature. After
sufficient washing, antibody complexes attached to the
membrane were visualized by a Tanon-5200 Multi when
reacting with SuperSignal West Pico Chemiluminescent
Substrate (Pierce, Rockford, IL, USA). ImageJ was used for
densitometric analysis.

2.12. In Vivo Mouse Behavioral Studies. Pathogen-free adult
male C57BL/6 mice weighing 20–25 g were used in all exper-
iments (Liaoning Changsheng Biotechnology, China). Mice
were housed in temperature-controlled (18–21°C) and
light-controlled (12 h light-dark cycle; lights on at 7:00 am)
rooms with standard rodent food and water available ad libi-
tum and allowed to habituate to the holding facility for ≥1
week prior to experimentation. All the animal-handling
procedures were performed in strict accordance with the
regulations for the Administration of Affairs Concerning
Experimental Animals approved by the State Council of the
People’s Republic of China (11-14-1988).

The mice that pretrained on the rotating rod and had no
difference in the time of staying on the rod were randomly
divided into three groups (6 per group): the control group
(intraperitoneal injection of a saline solution for 5 days),
MPTP-treated groups (intraperitoneal injection of 30mg/kg
MPTP for 5 days), and MPTP plus ME-treated group (intra-
peritoneal injection of 30mg/kg MPTP and 30mg/kg MEs
for 5 days). The animals were subjected to behavioral testing
48 h after the final injection and then sacrificed.

PD-induced behavioral changes were measured by the
rotarod performance test as described previously [8]. In brief,
mice performed three 10min pretraining trials daily for 3
consecutive days before MPTP treatment. The rotarod per-
formance test used a rod with a diameter of 3 cm and set at
40 rpm rotation. Mice were placed on the rotating rod, and
the time for which each mouse maintained balance on the
rod was recorded. Each mouse was tested three times with
an intertrial interval of 20min. The average time was
considered the final score.

2.13. Immunohistochemistry. After the behavioral studies,
brain tissues were dissected and fixed in universal tissue-
fixed fluid at 4°C for 24 and then embedded in paraffin.
Immunohistochemistry (IHC) was then performed. The tis-
sue slides (3μm) were deparaffinized with xylene and rehy-
drated in alcohol, washed with PBS, and incubated in
10mM citrate buffer (pH 7.4) at 90°C for 15min. The slides
were then treated with 0.3% hydrogen peroxide in methanol
at 4°C for 30min to inactivate endogenous peroxidases. After
blocking with 5% BSA for 25min at 25°C, the tissues were
washed with PBS and incubated with primary antibody
overnight at 4°C. Subsequently, they were incubated with sec-
ondary antibody for 30min. DAB was used as the chromo-
genic agent, and hematoxylin was used as the dye reagent.
The tissue slides were blocked and then observed under a
microscope.

2.14. Immunofluorescence Staining of NF-κB in Substantia
Nigra (SN). After the behavioral studies, brain tissues were
dissected and fixed in 4% paraformaldehyde and embedded
in paraffin. The brains were then cut into 3μm coronal sec-
tions with a paraffin microtome and followed by heat-
induced antigen retrieval. Sections containing substantia
nigra regions were subjected to immunostaining. Endoge-
nous peroxidase activity was quenched by incubation in 1%
hydrogen peroxide in methanol for 30min and then cleared
in PBS for 5min. The sections were blocked for 30min with
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bovine serum albumin diluted in PBS. These sections were
incubated with primary antibody against NF-κB protein
(ab16502, Abcam, UK) overnight at 4°C. After washing in
PBS, the sections were incubated in cy3-conjugated second-
ary antibody (Servicebio, China) for 1 h at room temperature.
Washing of the sections was again done three times and then
incubated with DAPI solution at room temperature for
10min. The sections were subsequently washed with PBS
and viewed under a fluorescence microscope.

2.15. Hematoxylin/Eosin Staining. Tissues were fixed in uni-
versal tissue fixation fluid at 4°C for 24 h and embedded in
paraffin. Tissue sections (3μm) were deparaffinized and
stained with hematoxylin/eosin (H-E). At least five paraffin
sections from each tissue were used for H-E staining.

3. Results and Discussions

3.1. MEs Inhibit α-Synuclein Aggregation and Protect DAergic
Neurons in C. elegans. C. elegans is a good model organism
for the study of pathogenesis and drug discovery for PD
[9], owing to several advantages including a completely

sequenced genome [10], numerous mutants and multicolor
reporter constructs freely available [11, 12], a rapid replica-
tion cycle, and ease of growing and maintenance as well as
manipulation [13]. Increasing evidence suggests that oxida-
tive stress plays a major role in the development of PD
[14]. Our recent work showed that MEs of velvet antler
protected against oxidative stress in C. elegans. Therefore,
whether MEs could affect the progression of PD was investi-
gated. NL5901 strain, which has been created by inserting
human α-synuclein gene with YFP fusion construct driven
by the unc-54 promoter, was used as a PD model. As shown
in Figure 1(a), ME treatment significantly prolonged the life-
span of NL5901 worms when compared to the untreated
control. NL5901 worms exhibited aggregation of α-synuclein
(Figure 1(b)). The YFP intensities were quantitatively
analyzed, and the mean fluorescent intensity in the control
group was set as 1. Although not statistically significant, there
was a trend which suggested that ME treatment decreased the
α-synuclein-YFP intensities on day 3 (Figure 1(c)). More-
over, ME treatment significantly decreased the α-synuclein-
YFP intensities on day 5 when compared to the untreated
control (Figure 1(c)). These results indicate that MEs decrease
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Figure 1: MEs decreased the aggregation and toxicity of α-synuclein in NL5901 worms. (a) The survival curve of NL5901 worms treated with
MEs. (b) The endpoint microscope fluorescence image of α-synuclein aggregates in NL5901 worms treated with or without MEs on days 3
and 5 past the adult stage. (c) The quantitative analysis of the α-synuclein aggregates in NL5901 worms shown in (b). All the worms in
the experiment were synchronized to the young adult stage and subsequently started to be exposed to 100μg/mL MEs. Error bars
represented the SEM of three independent replicates of total worms.
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the aggregation of α-synuclein and therefore improve the
lifespan of the worm model of PD.

PD is typically associated with degeneration of the DAer-
gic neurons [15], which are particularly prone to oxidative
stress [16]. Whether MEs could protect DAergic neurons
was next investigated in C. elegans. In contrast to rodents
which have 10,000–20,000 DAergic neurons, or humans
which have greater than 40,000 DAergic neurons [17], C. ele-
gans have only eight DAergic neurons: two anterior, four
cephalic, and two posterior deirid neurons [18], which makes
the in situ investigation of the vulnerability of DAergic
neurons to oxidative stress possible. BZ555 strain, in which
all DAergic neurons are tagged with GFP by fusing with
DAT-1, was used to visualize the bodies of DAergic neurons.
6-Hydroxydopamine (6-OHDA), a redox cycling dopamine
analog and an oxidative neurotoxin, was used to lesion
dopaminergic pathways and generate an experimental model
for PD [19]. BZ555 worms were treated as indicated, and
the green fluorescence was analyzed in the nerve ring
(Figure 2(a) and Figure S1), which contains GFP-tagged
DAergic neurons. Compared to the untreated control, 6-
OHDA treatment caused a significant shrinkage of the soma
of DAergic neurons (Figure 2(b)). ME treatment slightly
increased the nerve ring of DAergic neurons under the
normal condition and significantly ameliorated the 6-OHDA-
induced degeneration of DAergic neurons (Figure 2(b)).

To confirm the results from the transgene BZ555 worms,
the effect of MEs on the functionality of DAergic neurons
under the oxidative stress was evaluated by the basal slowing
response (BSR) assay in the wild-type N2 worms. This behav-
ioral assay measures the ability of wild worms to slow down
their rate of locomotion when they encounter a bacterial
lawn, which is mediated by DA. As shown in Figure 2(c), 6-
OHDA treatment induced a reduction in BSR as compared
to the untreated control. MEs increased the BSR value of
N2 worms treated with 6-OHDA but did not affect the BSR
of the wild-type worms under the normal condition
(Figure 2(c)). These functional data revealed by BSR of the
wild-type N2 worms are consistent with the direct DAergic
neuron observations in the transgene BZ555 worms.
Together, these C. elegans data demonstrate that MEs inhibit
α-synuclein aggregation and protect DAergic neurons in C.
elegans from degeneration.

3.2. MEs Inhibit ROS and Proinflammatory Factors in the
Activated Microglia. The above C. elegans data implies that
MEs of velvet antler inhibit the development of PD. To test
whether MEs could be a potential means for preventing
and treating PD, the effects of MEs were further tested in
the mammalian system. Before moving to in vivo mouse
studies, the actions of MEs were tested in the microglia,
which are the main immune effector cells in the central ner-
vous system (CNS) and play a major role in PD pathology
[20]. Although a variety of potential sources for ROS exist
in the CNS, the microglia generate large quantities of these
reactive species [21]. Microglia BV2 cells were used herein
since they reproduce many of the responses of primary
microglia with high fidelity [22]. To explore the effect of
MEs on the LPS-induced ROS production, the bacterial

endotoxin, lipopolysaccharide (LPS), which has been the
most extensively utilized microglia activator for the induc-
tion of DAergic neurodegeneration [23], was used to activate
BV2 cells. Intracellular ROS generation was measured by
fluorescence staining with H2DCF-DA. No apparent green
fluorescence was observed for the untreated BV2 cells
(Figure 3(a)). LPS stimulation caused the ROS burst in BV2
as revealed by the strong green fluorescence from DCF
(Figure 3(a)), suggesting the activation of microglia. MEs
significantly inhibited the LPS-induced DCF fluorescence
intensity (Figure 3(a)), which indicates that MEs reduce the
oxidative stress in the activated microglia. Excess ROS
directly inflicts DNA damage, and TUNEL staining was per-
formed to assess oxidative stress by measuring DNA
fragmentation. Compared to the untreated control, LPS stim-
ulation caused DNA fragmentation in BV2 cells as reflected
by TUNEL fluorescence (Figure 3(b)). MEs protected against
the LPS-induced DNA fragmentation (Figure 3(b)).
Together, these results from microglia are consistent with
the previous observation that MEs protect against oxidative
stress in C. elegans [7]. It should be noted that the effect of
MEs on cellular viability was measured by crystal violet stain-
ing. No apparent cellular toxicity was observed (Figure S2),
even at the concentration of 80μg/mL of MEs, which
eliminates the possibility that the observed ROS inhibition
by MEs was due to the artifact like cell death.

In addition to ROS, accumulating evidence points to acti-
vated microglia as a main source of several proinflammatory
factors, including nitric oxide (NO), tumor necrosis factor-α
(TNF-α), and interleukin-6 (IL-6), driving progressive
DAergic neurodegeneration and PD development [24, 25].
The effect of MEs on the proinflammatory mediators in the
activated microglia was investigated. LPS induced NO
(Figure 4(a)), TNF-α protein (Figure 4(b)), and IL-6 protein
(Figure 4(c)) overproduction in BV2 cells. MEs inhibited the
LPS-induced NO (Figure 4(a)), TNF-α (Figure 4(b)), and IL-
6 (Figure 4(c)) in a concentration-dependent manner. These
results imply that MEs have antineuroinflammation activity.

Ionized calcium-binding adaptor molecule 1 (Iba-1) is spe-
cifically expressed in microglia/macrophages and is involved
with the membrane ruffling and phagocytosis in activated
microglia [26]. Iba-1 is upregulated during the activation of
microglia, which is therefore used as the marker of microglia
activation [27]. As shown in Figure 4(d), Iba-1 was expressed
on the plasma of BV2 cells, where a green fluorescence signal
was observed. LPS stimulation increased the expression of
Iba-1, which was inhibited by MEs. Together, these data show
that MEs inhibit microglial activation, which is consistent with
the suppression of LPS-induced ROS and proinflammatory
factor (NO, TNF-α, and IL-6) overproduction by MEs.

Oxidative stress and neuroinflammation cause neuronal
cell degeneration [25, 28–31]. To directly explore whether
MEs could protect neuron cells from the damages caused by
oxidative stress and neuroinflammation from the activated
microglia, the effect of conditional media from BV2 cells on
SH-SY5Y cellular viability was investigated. SH-SY5Y cells
were used as an in vitro model of DAergic neurons for PD
research, because they possess many characteristics of DAergic
neurons [32]. The conditioned medium from the LPS-treated
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Figure 2: MEs protected against neuron injury induced by 6-OHDA in C. elegans. (a) The endpoint microscope fluorescence image of
DAergic neurons in BZ555 worms treated with or without MEs on days 1, 2, and 3 past the adult stage. The BZ555 worms synchronized
at the L4 larval stage were exposed to 6-OHDA and subsequently started to be exposed to 100μg/mL MEs for 1-3 days. (b) The
quantitative analysis of the intensity of DAergic neurons shown in (a). (c) The difference of the average number of body bends per 20 s
between N2 worms in OP50 seeded plates and plates without food. N2 worms synchronized at the L4 larval stage were exposed to
6-OHDA and subsequently started to be exposed to 100μg/mL MEs for 1-3 days. Data were expressed as the mean ± SEM.
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BV2 cells caused an ~40% decrease of SH-SY5Y cellular
viability (Figure S3). MEs decreased the cellular toxicity of
conditioned media from the LPS-treated BV2 cells in a
concentration-dependent manner (Figure S3). These results
show that MEs could protect DAergic neurons from
microglia-mediated neurotoxicity.

The expression of LPS-induced ROS and proinflamma-
tory factors is governed by the MAPKs and NF-κB [33, 34].
In order to dissect how MEs downregulate the LPS-induced
ROS and proinflammatory factors, the effect of MEs on
MAPKs and NF-κB activities was measured. LPS stimulation
significantly increased the phosphorylation of p65 subunit of
NF-κB, ERK1/2, JNK, and p38 (Figures 4(e) and 4(f)).
TAK242, a classic TLR4 antagonist, was used here as a posi-
tive control. Similar to TAK242, MEs inhibited the LPS-
induced phosphorylation of NF-κB p65, ERK1/2, p38, and
JNK in a concentration-dependent manner (Figures 4(e)
and 4(f)).

Taken together, these results suggested that MEs sup-
pressed the LPS-induced MAPK and NF-κB activation,
therefore inhibiting ROS and proinflammatory factors in
the activated microglia and protecting DAergic neurons from
the microglia-mediated neurotoxicity.

3.3. MEs Improve Parkinsonism in MPTP-Treated Mice. The
etiology of PD indicates that ROS and proinflammatory fac-
tors [14, 28], particularly the generation of ROS, NO, and

proinflammatory cytokines by activated microglia [35],
mediates the majority of DAergic neuron destruction [20].
Cellular data shows that MEs of velvet antler inhibit ROS
and neuroinflammation in the activated microglia and pro-
tect DAergic neurons from the microglia-mediated neuro-
toxicity. To confirm whether MEs could prevent and treat
PD, the effect of MEs on the MPTP-induced PD mouse
model was investigated. It should be noted that MPTP is
the gold standard for toxin-based PD animal models [30,
31, 36], as it recapitulates the primary pathological and bio-
chemical features of PD [37]. As shown in Figure 5(a), PD
syndrome was induced by intraperitoneal administrations
of MPTP, and MEs were administered once per day since
the first MPTP injection for 5 days. Rotarod tests were per-
formed 48 h after the final injection to determine whether
MEs protected against the motor deficits caused by MPTP
neurotoxicity. Compared to the vehicle control (918 s ± 12 s),
the staying time of MPTP-treated mice on the rotating rod
(145 s ± 16 s) was much shorter (Figure 5(b)). This is not sur-
prising since subacute treatment of MPTP induces significant
loss of neurons in the nigrostriatal pathway (Figure S4), which
plays important roles in motor function [38]. ME treatment
increased neurons in the substantia nigra of MPTP-treated
mice (Figure S4) and substantially improved the performance
of MPTP-treated mice to 776 s ± 29 s (Figure 5(b)). These
results suggest that MEs improve the behavioral deficits in
MPTP-induced PD mice.
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Figure 3: MEs inhibit ROS generation in the activated microglia. (a) The endpoint microscope fluorescence image of intracellular ROS of
BV2 cells. Intracellular ROS generation was measured by fluorescence staining with H2DCF-DA. LPS (200 ng/mL)-activated BV2 cells
were treated with MEs (20 and 40 μg/mL), scale bar = 100μm. The quantitative analysis of the fluorescence intensity of DCF shown in (a).
(b) TUNEL staining. LPS (200 ng/mL)-activated BV2 cells were treated with MEs (20 and 40 μg/mL) for 24 h. DNA fragmentation was
detected by TUNEL assay. Scale bar = 100μm.
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PD is characterized by the degeneration of DAergic neu-
ron in substantia nigra (SN), leading to a reduction of striatal
dopamine [39]. Tyrosine hydroxylase (TH) catalyses the
formation of L-dihydroxyphenylalanine (L-DOPA) [40], the
rate-limiting step in the biosynthesis of dopamine [41]. There-

fore, the TH level is closely associated with DAergic neuron
function, and the reduction of the TH level in the brain tissues
is a direct indication of DAergic neuron loss [42]. As shown in
Figure 5(c), IHC analysis showed that MPTP-treatedmice had
decreased TH-positive neurons in the SN and striatum
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compared to the vehicle control group. MEs significantly
attenuated the MPTP-induced decrease of TH-positive neu-
rons in the SN and striatum (Figure 5(c)). These results indi-
cated that MEs could significantly reverse the decrease of TH
expression and the loss of DAergic neurons in the MPTP-
induced PD mice, which is consistent with the notion that

increasing nigrostriatal TH expression is an effective
therapeutic strategy for PD [43].

α-Synuclein, a key protein critically involved in PD path-
ogenesis [44], is a major component of Lewy bodies [45],
which are the neuropathological hallmarks of PD [46].
Aggregated α-synuclein interacts with the cell membrane of
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Figure 5: MEs improve parkinsonism in MPTP-treated mice. (a) Experimental timeline for the construction of the MPTP-induced PD
mouse model and the administration of MEs. C57BL/6 mice (male, 7-8-week-old) were injected MPTP intraperitoneally at 30mg/kg/day
for five days, and MEs (30mg/kg/day) were injected intraperitoneally for 5 days since the administration of MPTP. On day 6, the rotarod
test was performed. On day 7, mice were sacrificed and tissues were prepared for immunohistochemical (IHC) and western blotting. (b)
Rotarod behavioral performance of MPTP-induced PD mice after ME treatment. Data are presented as the mean ± SD (n = 6). (c)
Immunohistochemistry for tyrosine hydroxylase (TH) in the substantia nigra (scale bar = 100μm) and striatum (scale bar = 1000μm). (d)
Expression of α-syn by western blot analysis. The blots were reprobed to detect GAPDH as the internal control. (e) Effect of MEs on the LPS-
induced phosphorylation of Akt, p65, and p38 in the striatum. The protein in obtained tissue was analyzed and quantified by western blotting.
(f) Effect of MEs on the nuclear translocation of NF-κB in substantia nigra (scale bar = 100μm). C57BL/6 mice (male, 7-8-week-old) were
injected MPTP intraperitoneally at 30mg/kg/day for five days, and MEs (30mg/kg) were injected intraperitoneally for 5 days since the
administration of MPTP. On day 7, mice were sacrificed and substantia nigra tissues were collected, and immunofluorescence was performed.
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Figure 6: Acute toxicity of MEs in different organs. C57BL/6 mice (male, 7-8-week-old) were treated with indicated concentrations of MEs
for 7 days. Mice were sacrificed, and different organs (heart, liver, spleen, lung, and kidney) were collected for hematoxylin and eosin (H&E)
staining. Scale bar = 100μm.
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neurons to form pore-like structures and depolarize the
membrane potential, which disrupts the normal functions
of the cell and leads to DAergic neuron death and progress
of PD [47, 48]. Therefore, α-synuclein is a therapeutic target
for PD [49]. As shown in Figure 5(d), MPTP administration
induced a significant upregulation of α-synuclein protein in
the striatum compared to the vehicle control, which is in
agreement with the observed decrease of staying time of
MPTP-treated mice on the rotating rod. Much less α-synu-
clein protein expression was observed in the striatum of mice
cotreated with MPTP and MEs (Figure 5(d)). These results
indicate that MEs can protect PD development through
downregulating α-synuclein protein expression.

Akt, NF-κB, and p38 are dysregulated in the brain of
PD patients [24, 50–52] and are the main components in
the signal transduction pathway predominantly responsible
for the generation of ROS and proinflammatory factors
[53]. To investigate how MEs affect ROS and neuroinflam-
mation in MPTP-induced PD mice, the effect of MEs on
the phosphorylation of Akt, NF-κB, and p38 in the stria-
tum was measured. As shown in Figure 5(e), MPTP treat-
ment induced a significant upregulation of p-Akt, p-p65,
and p-p38 in the striatum when compared to the vehicle
control group. MEs substantially reduced the MPTP-
induced Akt, NF-κB, and p38 activation (Figure 5(e)). In
addition, NF-κB nuclear translocation was found in
MPTP-induced PD mice [30]; ME treatment could inhibit
this nuclear translocation of NF-κB in our study
(Figure 5(f)). In agreement with in vitro study, these
in vivo results imply that MEs inhibit Akt, NF-κB, and
p38.

Last, the acute toxicology of MEs was investigated.
Hematoxylin and eosin- (H&E-) staining of different organs
(including the heart, liver, kidney, spleen, and lung) of mice
treated with MEs for 7 days was examined (Figure 6). No
apparent damage was detected in the examined organs,
which indicates low safety concern of MEs. This is not
surprising since velvet antler has been used as medicine and
tonic food in East Asia for over two thousand years [4].

4. Conclusions

In all, this study dissected the pharmacology of MEs of
velvet antler in PD. The C. elegans PD model studies show
that MEs inhibit α-synuclein aggregation and protect
DAergic neurons from degeneration. In vitro microglia
cellular data indicate that MEs suppressed the LPS-
induced MAPK and NF-κB activation, therefore inhibiting
ROS and proinflammatory factors as well as the activation
of microglia and protecting DAergic neurons from the
microglia-mediated neurotoxicity. In vivo MPTP-induced
PD mouse investigations demonstrate that MEs prevent
MPTP-induced neuron loss in the substantia nigra and
improve parkinsonism in MPTP-treated mice by increas-
ing the expression level of TH and downregulating α-
synuclein protein expression. Since MEs of velvet antler
have no apparent toxicology, MEs would have good trans-
lational potential for preventing and treating PD.

Data Availability

The accessibility data used to support the findings of this study
were collected according to scientific research criteria and can
be available from the corresponding authors upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Xiaohui Wang and Yinghua Peng conceived and designed
the experiments. Ying Liu, Hongyuan Li, Min Yang, and
Yunfei Li carried out the experimental work. Ying Liu and
Hongyuan Li collected and processed the data. All the
authors discussed the results, contributed to the final version
of the manuscript, and approved the submitted version. All
authors have read and agreed to the published version of
the manuscript. Ying Liu and Hongyuan Li contributed
equally to this work.

Acknowledgments

This work was supported by the National Key Research and
Development Program of China (2018YFC1706603-06),
Chinese Academy of Sciences (CAS) Pioneer Hundred Tal-
ents Program, Young Talents Program of Chinese Academy
of Agricultural Sciences, grants from the Department of Sci-
ence and Technology of Jilin Province (20180101021JC and
20180520059JH), and State Key Laboratory of Medicinal
Chemical Biology, Nankai University (2018076).

Supplementary Materials

Figure S1: MEs had little damage to the DAergic neurons.
The endpoint microscope fluorescence image of DAergic
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expressed as mean ± SD, n.s., p > 0:05. Figure S3: MEs protect
DAergic neurons from microglia-mediated neurotoxicity.
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