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Abstract
To understand the molecular mechanism of nitrogen use efficiency (NUE) in rice, two nitrogen (N) use efficient genotypes 
and two non-efficient genotypes were characterized using transcriptome analyses. The four genotypes were evaluated for 3 
years under low and recommended N field conditions for 12 traits/parameters of yield, straw, nitrogen content along with 
NUE indices and 2 promising donors for rice NUE were identified. Using the transcriptome data generated from GS FLX 454 
Roche and Illumina HiSeq 2000 of two efficient and two non-efficient genotypes grown under field conditions of low N and 
recommended N and their de novo assembly, differentially expressed transcripts and pathways during the panicle development 
were identified. Down regulation was observed in 30% of metabolic pathways in efficient genotypes and is being proposed 
as an acclimation strategy to low N. Ten sub metabolic pathways significantly enriched with additional transcripts either in 
the direction of the common expression or contra-regulated to the common expression were found to be critical for NUE in 
rice. Among the up-regulated transcripts in efficient genotypes, a hypothetical protein OsI_17904 with 2 alternative forms 
suggested the role of alternative splicing in NUE of rice and a potassium channel SKOR transcript (LOC_Os06g14030) 
has shown a positive correlation (0.62) with single plant yield under low N in a set of 16 rice genotypes. From the present 
study, we propose that the efficient genotypes appear to down regulate several not so critical metabolic pathways and divert 
the thus conserved energy to produce seed/yield under long-term N starvation.

Keywords Nitrogen use efficiency · Landraces · Metabolic pathways · Transcriptomics · Differential gene expression · 
SKOR transporter

Abbreviations
NUE  Nitrogen use efficiency
IE  Internal efficiency
NHI  Nitrogen Harvest Index
PNUE  Physiological nitrogen use efficiency
DET  Differentially expressed transcripts

Introduction

Rice is cultivated in an area of 163 million ha with ~ 15% 
of global nitrogen (N) fertilizer inputs resulting in the esti-
mated production of 759.6 million tons (FAO 2018) (www.
ferti lizer .org). The input use efficiency of N is reported 
to be low (~ 30–50%) for rice (Ladha et al. 2005) and the 
remaining N is lost to environment. In addition to increas-
ing the cost of cultivation, the unutilized N contributes to 
greenhouse gases especially, nitrous oxide affecting climate 
change. Nitrous oxide is 310 times more potent greenhouse 
gas than  CO2 and 21 times more potent than methane on a 
100 year time scale, though atmospheric loading of nitrous 
dioxide is low (IPCC 1995). Thus, improving NUE in rice 
has economic and environmental benefits, while maintain-
ing the crop productivity. Genetic variation of NUE in rice 
germplasm has been earlier reported (Broadbent et al. 1987; 
Tirol-Padre et al. 1996; Vijayalakshmi et al. 2015; Rao et al. 
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2018). The NUE includes processes of N uptake, transloca-
tion, assimilation, and remobilization which are inherently 
complex and are governed by multiple genetic and environ-
mental factors (Xu et al. 2012). Several quantitative trait 
loci (QTL) and genomic regions for N metabolism and NUE 
have been reported in rice (Vinod and Heuer 2012). Genetic 
approaches to improve NUE mostly included the manipula-
tion of genes associated with N metabolism and their regula-
tion (Li et al. 2017; Tegeder and Masclaux-Daubresse 2018).

Genome-wide expression profiling analysis using micro-
arrays or RNA sequencing (RNA-seq) is a promising 
approach to understand molecular aspects of complex traits. 
Transcriptome analyses using microarrays (Lian et al. 2006; 
Cai et al. 2012; Takehisa et al. 2013; Chandran et al. 2016; 
Hsieh et al. 2018) and RNA-seq have identified several dif-
ferentially expressed transcripts and pathways in response to 
differential N conditions in rice (Yang et al. 2015a, b; Sun 
et al. 2017; Shin et al. 2018; Sinha et al. 2018), barley (Quan 
et al. 2016), sorghum (Gelli et al. 2014), durum wheat (Curci 
et al. 2017) and maize (Chen et al. 2015). Comparative tran-
scriptomics studies have reported a role of up-regulated high 
affinity nitrate transporters resulting in improved uptake 
efficiency and storage capacities in N efficient genotypes 
as compared to non-efficient genotypes in sorghum (Gelli 
et al. 2014), Arabidopsis (Richard-Molard et al. 2008) and 
wild barley (Quan et al. 2016). So far, transcriptome studies 
in rice under differential N conditions were reported only 
in seedlings under hydroponics and artificial medium (Cai 
et al. 2012; Yang et al. 2015a, b; Shin et al. 2018). Studies 
have not been conducted yet for the response of rice grown 
under long-term low N field conditions at the transcriptome 
level during reproductive stage. Comparative analysis of 
more number of genotypes contrasting for NUE through 
transcriptome studies would strengthen confidence of the 
identified candidate gene transcripts. Moreover, most of the 
rice transcriptome studies under low N only focused on a 
single genotype except for only one study, where two geno-
types have been analysed (Sinha et al. 2018).

Rice landraces adapted to low N were reported to be 
promising genotype resource for identification of transcripts 
associated with NUE (Rao et al. 2018). It is important to 
study the acclimation strategy of rice to low N, especially 
during the reproductive stage because of the direct asso-
ciation of nitrogen with yield. To identify differentially 
expressed transcripts and pathways critical for the acclima-
tion of rice genotypes under low N, we deployed transcrip-
tome analyses using the data of eight sets generated from GS 
FLX 454 Roche and Illumina HiSeq 2000 and their de novo 
assembly. Thus, the objective of the present study was to 
identify the differentially expressed transcripts and pathways 
during panicle development stage using transcriptome analy-
ses of two efficient and two non-efficient genotypes grown 
under long-term low N field conditions (without external 

N fertilization since 2011) in comparison to recommended 
N field conditions. To our best knowledge, this is the first 
study on transcriptome response of tissue at booting stage 
of panicle development using four contrasting genotypes 
under long-term low N, especially in field conditions to 
identify the common and exclusive up and down-regulated 
transcripts and pathways representing cumulative response 
of N uptake, assimilation and remobilization till the panicle 
development stage.

Methods

Plant materials and their field evaluation 
under differential N

Based on the earlier evaluation of 472 genotypes during two 
seasons under low and recommended N field conditions, 4 
contrasting rice genotypes consisting of 2 efficient—Thurur 
Bhog (TB) (landrace) and Basmati 370 (BM) (selection of 
landrace) with relative higher grain yield (> 3000 kg ha−1) 
and 2 non-efficient—Suraksha (SK) (improved variety) 
and Kola Joha (KJ) (landrace) with relative lower grain 
yield (< 1500 kg ha−1) were selected (Rao et al. 2018). 
These rice genotypes were obtained from Plant Breeding, 
Crop improvement section, ICAR-Indian Institute of Rice 
Research (IIRR), Hyderabad, India. These four genotypes 
were grown during wet seasons of 2012, 2013 and 2015 
under low and recommended N conditions for agro mor-
phological observations. A set of 18 rice genotypes with 
differential yield response were also evaluated during 2015 
under low and recommended N field conditions. Two field 
plots with different N levels viz., a nitrogen deficient plot (N 
low) of dimensions 19.0 m length and 24.5 m width without 
any artificial N inputs and a plot supplied with recommended 
dose of nitrogen (N rec) are being maintained since 2011 
at ICAR-IIRR, (Vijayalakshmi et al. 2015). Soil properties 
of these two plots during wet seasons of 2012, 2013 and 
2015 were analysed as per the procedures of Surekha and 
Satishkumar (2014) (Table S1). One-month-old seedlings of 
four rice genotypes raised in a nursery with regular package 
of practices including recommended dose of N were trans-
planted at a spacing of 10 × 20 cm in N low and N recom-
mended fields. Nitrogen fertilizer @ 100 kgN  ha−1 in the 
form of urea (46.5%) in three equal split applications was 
supplied only to the recommended N plots (at basal, maxi-
mum tillering and panicle initiation stages). Phosphorus as 
 P2O5 (@40  kgha−1), potassium  asK2O (@40kgha−1) and 
zinc as ZnO (@25  kgha−1) were applied to low and recom-
mended N field plots and no additional nitrogen was applied 
to low N plot. Field management followed standard rice crop 
production and protection practices. For each genotype, five 
representative plants were harvested at maturity and were 
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divided into vegetative and reproductive parts, dried and 
weighed for determining dry matter of various plant parts. 
Grain and straw yield were expressed in kg  ha−1 and grain 
yield was adjusted to 14% grain moisture content. A total of 
12 traits/parameters were recorded for morphological, yield 
and nitrogen content in low and recommended N field condi-
tions for 3 years.

Data analysis

Three NUE indices have been calculated for low and recom-
mended N viz., Physiological NUE (PNUE kg  kg−1) (Zhao 
et al. 2012), Internal Efficiency (IE kg  kg−1) (Dobermann 
and Fairhurst 2000) and Nitrogen Harvest Index (NHI %) 
(Singh et al. 1998). The N content of straw and grain sam-
ples after harvest was analysed with micro Kjeldahl method. 
The PNUE was calculated as total dry weight including 
straw and yield/total N uptake as N content of straw and 
grain samples. The IE was calculated as grain yield/total N 
uptake and the NHI was estimated using N content of the 
grain/N of the straw.

Two-way analysis of variance (ANOVA) was performed 
using an open source software R  (R Core Team, 2012) 
with agricolae package.

RNA extraction, library preparation, and sequencing

The tissues of four genotypes grown during 2012 were col-
lected from low N and recommended N plots at the boot-
ing stage by dissecting panicle out of sheath based on their 
flowering times. The total RNA was isolated using the Tri-
zol method from three biological replications of developing 
panicle tissue and pooled. The quality and quantity of total 
RNA was checked on Nanodrop (Thermo fisher) as well as 
on 1.5% agarose gel. The quality was also assessed on Bio-
analyzer (Agilent 2100) using RNA 6000 Nano chip and 
RNA having > 7.8 RNA Integrity Number (RIN) were fur-
ther processed for GS FLX 454 Roche and Illumina HiSeq 
2000 paired end sequencing.

For 454 Roche GS FLX Titanium series, rRNA removal, 
mRNA purification and double stranded cDNA synthesis 
were carried out using Roche by Genotypic Technologies 
Pvt. Ltd., Bangalore, India. The raw reads in fastq for-
mat were processed for removal of adaptor sequences and 
deposited in the NCBI’s SRA database with the accession 
number PRJNA379890. For IlluminaHiSeq 2000, the pair-
end cDNA sequencing libraries (2 × 100 bp) were prepared; 
clusters were generated and sequenced on the HiSeq2000 
platform using sequencing by synthesis by Xcelris Genom-
ics, Ahmedabad, India. The left and right reads for each 
sample were merged and raw reads were generated. The data 
are deposited in NCBI’s SRA database with the accession 
numbers SAMN06718310—SAMN06718317.

Eight datasets of developing panicle transcriptome were 
generated comprising two efficient genotypes and two non-
efficient genotypes grown under low and recommended 
N conditions and the differentially expressed transcripts 
(DETs) between low and recommended N were studied for 
biologically meaningful comparisons.

Pre‑processing of RNA‑seq data

The raw reads of Illumina were cleaned for high quality 
reads following the criteria of retention of bases with qual-
ity > 20 phred score and > 70% of bases. For 454, reads 
with > 50% of bases in a read with > 20 phred score were 
considered as high quality reads.

De novo assembly

The high quality 454 reads were assembled using the propri-
etary GS-de novo assembler (version: 2.9) and the Illumina 
reads were assembled using CLC Genomics Workbench 
6 with default parameters. The transcripts generated from 
these two assemblies were clustered through cd-hit (version: 
4.6.1) clustering tool to generate the final set of transcripts 
aptly known as the hybrid assembly at a similarity threshold 
of 90%. The assembly statistics were generated using N50 
perl script of NGS QC toolkit.

ORF prediction and functional annotation

The transcripts were subjected to TransDecoder (version: 
rel16JAN2014 or TransDecoder Release v3.0.1) for identi-
fication of candidate gene coding regions within transcript 
sequences, i.e., Open Reading Frames (ORFs). The identi-
fied ORFs were subjected to functional annotation through 
Blastx (version: 2.2.28 +) against NCBI "nr" database at an 
e-value threshold of 1e-05. All the sequences in the nr data-
base till 01.09.2016 were used for analysis.

Differential expression of transcripts

The Illumina reads were employed for differential tran-
script expression. High quality reads of Illumina were back 
mapped on the de novo hybrid assembly using the DESeq 
package. The transcripts with RC (read count) value > 0 
were only considered for differential expression analysis. 
The "baseMean" value which is the normalized expres-
sion value was calculated from RC values and served as 
the basis for differential transcript expression analysis. The 
differential expression of transcripts was calculated as the 
log fold change of RC values of low/ recommended N for 
each genotype with criteria for differential expression as 
 log2 fold-change ≥ 2 and false discovery rate (FDR) p-value 
correction of ≤ 0.05. The DETs were functionally classified 
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and represented as heat map using Multi-experiment Viewer 
(MeV) v4.9.0 (Saeed et al. 2003) (http://bioin fogp.cnb.csic.
es/tools /venny /)  (Oliveros 2016). The number of DETs 
among and within conditions was plotted as Venn diagram 
using VennPlex https ://www.nia.nih.gov/resea rch/labs/
vennp lex)  (Cai et al. 2013).

Alternative splicing

For understanding the alternative splicing events, high qual-
ity reads of each sample emanated from Illumina paired end 
sequencing were aligned to the de novo hybrid assembly as 
reference using MapSplice version-2.2.1 at default param-
eters (Wang et al. 2010). The splice variants were identified 
and classified as novel canonical, semi-canonical and non-
canonical splice junctions, novel insertions and deletions.

Gene ontology (GO) enrichment and pathway 
analysis

Gene ontology (GO) enrichment analysis was performed for 
the functional categorization of various DETs using GOseq 
analysis tool, which is based on Wallenius non-central 
hyper-geometric distribution (Young et al. 2010). The gene 
ontology annotations were compared as graphs using online 
tool, WEGO (Web Gene Ontology Annotation Plot) (Ye 
et al. 2006). Pathway analysis was performed through the 
KEGG Automatic Annotation Server (KAAS)(http://www.
genom e.jp/tools /kaas/). The ORFs predicted were uploaded 
to KAAS and analysed using the BBH (bi-directional best 
hit) method. To view specific pathways related to plant 
metabolism, the DETs were analysed using the MapMan 
(version 3.5.1; http://mapma n.gabip d.org/web/guest ) with 
P value cut-off of ≤ 0.05 (Thimm et al. 2004).

Identification of gene co‑expression modules

A co-expression gene network was constructed using the 
WGCNA software package (v1.66) in R (Langfelder and 
Horvath 2008) using eight datasets of developing panicle 
comprising two efficient and two non-efficient genotypes 
grown under low and recommended N (https ://cran.r-proje 
ct.org/web/packa ges/WGCNA /index .html). Transcripts with 
p value on and above 0.5/− 0.5 were selected for the analy-
ses removing low expressed transcripts (reflecting noise). In 
each analysis, common transcripts (Table S2) were selected 
using merge function of plyr R package and the offending 
transcripts were removed by gsg (good samples genes) syn-
tax available in WGCNA package (v1.66). A total of 4598 
transcripts was used for network construction and module 
detection using the function block wise Modules. In brief, an 
adjacency matrix was created using correlation function and 
soft threshold of six estimated with the pick Soft Threshold 

function. The subsequent Topological Overlap Matrix 
(TOM) was used for module detection using the Dynamic 
Tree cut algorithm with a minimal module size of 30 and 
a branch merge cut height of 0.25. The module eigen tran-
scripts with the highest correlation coefficient (> 0.9) were 
used to evaluate associations between the ten resulting mod-
ules and traits/parameters under low and recommended N.

Mapping DETs to known quantitative trait loci (QTL)

The genomic positions of DETs were checked for their co-
localization within the QTL genome regions reported for 
NUE, yield and associated traits under low N condition in 
rice (Xu et al. 2012).

Validation of RNA‑seq analysis by qPCR

The DETs on the basis of up and down regulation in efficient 
and non-efficient genotypes and their function in N metabo-
lism were selected, primers were designed using QuantPrime 
(http://quant prime .mpimp -golm.mpg.de/) with the default 
parameters and were synthesized at Integrated DNA Technolo-
gies (USA) (Table S3). The stability of endogenous reference 
genes at booting stage was analysed using RefFinder (http://
www.leonx ie.com/refer enceg ene.php) and Membrane protein 
(LOC_Os12g32950.1) (forward primer: GAG CGC AAA GTT 
CCA GAA GAA and reverse primer: CGC CAC TAG TTG CCG 
TCC TGAT) was used for normalized relative expression of 
transcripts for validation (Phule et al. 2018). For qPCR, panicle 
tissues of 4 genotypes and 16 genotypes with single plant yield 
(g) ranging from 2.5 to 10.4 (Table S4) during booting stage 
grown during 2015 were collected as two biological replicates 
and immediately frozen in liquid nitrogen for RNA isolation. 
Panicle tissues were also similarly collected from 18 rice geno-
types grown under low and recommended N during wet season 
2015. Total RNA was isolated using NucleoSpin RNA Plant 
kit (MACHEREY–NAGEL, Germany) according to manufac-
turer’s protocol and the quality of the RNA was assessed using 
Nanodrop® ND1000 spectrophotometer (Thermo Scientific, 
USA). Approximately 1 µg of total RNA from each sample 
was used as template for the first-strand cDNA synthesis, using 
Transcriptor First Strand cDNA Synthesis Kit (Roche Diag-
nostics, Mannheim, Germany) and diluted to 1:10 prior to use 
as template for qPCR. Each reaction was performed in three 
technical replicates containing 5 µl FastStart Universal SYBR 
Green Master (Roche Diagnostics, Mannheim, Germany), 2 µl 
template cDNA, 0.4 µl each of the primers (10 µM), and 2.2 µl 
RNase-free water with a total volume of 10 µl. The qPCR 
was performed using LightCycler 96 system (Roche Diagnos-
tics, Mannheim, Germany) with the following program 95 °C 
(10 min) followed by 40 cycles of 95 °C (15 s), 58 °C (15 s) 
with fluorescent signal recording and 72 °C for 10 s. The melt-
ing curve was obtained using a high resolution melting profile 
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performed after the last PCR cycle: 95 °C for 10 s followed 
by a constant increase in the temperature between 65 °C for 
60 s and 97 °C for 1 s. The data were analysed using Light 
Cycler 96 system software (Roche Diagnostics, Mannheim, 
Germany). The relative expression levels of transcripts were 
calculated using the  2−∆∆Ct method according to (Schmittgen 
and Livak 2008) where recommended N condition was taken 
as control and low N was considered as treatment.

Screening of germplasm with DET of potassium 
channel SKOR transcript

The expression of potassium channel SKOR (LOC_
Os06g14030: potassium channel stellar K + outward recti-
fier, putative) transcript, an up-regulated transcript in both 
efficient genotypes was studied in a set of 16 rice genotypes 
with differential yield response under low N, i.e., in efficient 
and non-efficient genotypes. The correlation between the 
fold changes of SKOR transcript and single plant yield (g) 
was calculated using MS Excel (Table S4).

Results

Effective assimilation and remobilization of N 
in efficient genotypes

Evaluation of 2 efficient genotypes (TB: ThururBhog and 
BM: Basmati 370) and 2 non-efficient genotypes (SK: 
Suraksha and KJ: Kola Joha) showed consistent performance 
across 3 years for 12 traits/parameters based on yield and N 
content. Significant differences were observed for 11 traits/
parameters between N treatments, among the 4 genotypes 
and interaction between the treatments and varieties through 
ANOVA, but for Physiological Nitrogen Use Efficiency 
(PNUE kg  kg−1) as total dry weight/total N uptake (Table 1). 
Variations due to years and interactions were not significant 
(P > 0.05). In the present study, NUE was analysed using 
three indices viz., PNUE to study conversion efficiency 
into total biomass, internal efficiency (IE kg  kg−1) to study 
assimilation of total N taken up into grain yield and NHI 
(%) to study partition efficiency of N. For both efficient and 
non-efficient genotypes, PNUE was observed to be higher 
under low N than the recommended N. The IE and NHI were 
high in efficient genotypes in comparison to non-efficient 
genotypes under low N.

De novo assembly and annotation of panicle 
transcriptome

The data were assembled de novo to identify differentially 
expressed transcripts and pathways during the panicle 
development (Figure S1). The RNA-seq by GS FLX 454 
resulted in 969,535 raw reads with 829,437 (85.55%) high 

quality reads after filtration. IlluminaHiSeq2000 emanated 
164,026,769 raw reads with 159,219,245 (97.07%) high 
quality reads after trimming and filtering the low quality 
reads (Table S5). Approximately, 20 million paired end 
100 bp and 0.1 million single end high quality reads were 
obtained per sample with Illumina and 454 sequencing. The 
high quality reads of each platform were assembled through 
GS assembler and CLC Genomics Workbench 6 into 5770 
and 107,584 transcripts, respectively (Table 2).

The two transcriptome data sets were de novo assembled 
into 47,814 transcripts totalling to 64 Mb with an average 
transcript length of 1340 bp and N50 value of 1,701. The 
total open reading frames (ORFs) in the transcripts were 
34,612 (35.33 Mb) and 32,340 showed Blast similarity to the 
non-redundant nr database (Table 2). The functional anno-
tation was performed for two data sets GS FLX 454 Roche 
and Illumina HiSeq 2000 and also for the de novo assembled 
transcripts for improved functional annotation (Table S6). 
As the four studied genotypes belong to different subgroups 
of rice (Basmati370—Basmati subgroup; Suraksha—indica 
subgroup; ThururBhog and Kola Joha—still to be sub 
grouped), de novo assembly improved complete assembly 
and increased the number of annotated transcripts.

The de novo assembled transcripts have been submitted 
to the NCBI, TSA with accession number SUB2593709.

Lower number of differentially expressed 
transcripts (DETs) in efficient genotypes under low N

The number of significant up and down-regulated transcripts 
in efficient genotypes was observed to be lower than 50% in 
non-efficient genotypes under low N as compared to recom-
mended N (Figure S2). In efficient genotypes, the number of 
up-regulated transcripts was only about a half of the number 
of the down-regulated transcripts under low N. Contrarily, in 
non-efficient genotypes, the number of significant up-regu-
lated transcripts was more than down-regulated transcripts 
(Table S7).

In efficient genotypes, 18 up-regulated and 191 down-
regulated transcripts were observed in common with con-
tra-regulation of 43 transcripts (Fig. 1) (Table S8). The up-
regulated transcripts mostly comprised hypothetical proteins 
(66.6%) and a few known proteins (Table 3). The number of 
hypothetical proteins was also higher among the down-reg-
ulated transcripts, in addition to transcripts related metabo-
lism of amino acids, carbon, lipids, reactive oxygen species 
(ROS), terpenoids and polyketides, secondary metabolites 
and transcription factors.

In non-efficient genotypes, 256 transcripts were up-reg-
ulated and 139 transcripts were down-regulated in common 
with 32 contra-regulated transcripts (Fig. 1) (Table S8). 
Most of the up-regulated transcripts belonged to the path-
ways of energy metabolism, environmental adaptation and 
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cell motility and the down-regulated transcripts were mostly 
from pathways of amino acid metabolism.

Common biological processes across efficient 
and non‑efficient genotypes under low N

Through GO enrichment analysis, the DETs were classi-
fied into three main categories including biological process, 
cellular component, and molecular function (corrected P 
value < 0.05). Catalytic activity, binding, metabolic and 

cellular processes were the most well represented sub cat-
egories in up and down-regulated DETs of efficient and non-
efficient genotypes (Figure S3).

Over representation of metabolic pathways 
in non‑efficient genotypes under low N

Using MapMan analyses, most of the transcripts involved in 
the metabolic pathways (69.4%) were found to be over rep-
resented in the non-efficient genotypes as compared to the 
efficient genotypes (Table 4) (Figure S4 A and B). Across 
the four genotypes under low N, (11.1%) pathways of gly-
colysis, N and sulphur metabolism and development were 
found to be up-regulated in common. The number of up-
regulated transcripts in efficient genotypes in comparison to 
non-efficient genotypes was over represented in nucleotide, 
co-factor and vitamins, RNA and DNA pathways (11.1%). 
The number of down-regulated transcripts was higher in cell 
wall, lipid and metal handling metabolic pathways across 
four genotypes (8.3%). In efficient genotypes, higher number 
of down-regulated transcripts was found in fermentation, 
oxidative pentose phosphate pathway, amino acid, second-
ary, hormone, redox, biodegradation and miscellaneous 
metabolic pathways (22.2%) (Table 4). The analyses of sub 
metabolic pathways showed an interesting pattern of addi-
tional DETs in efficient and non-efficient genotypes viz., 
additional over representation of some sub pathways in the 
same direction and contra-expression of some pathways to 
the common up and down-regulated DETs of four genotypes 
(Tables S9 and S10). The additional DETs of glutathione 
metabolism were found to be down-regulated in efficient 
genotypes and up-regulated in non-efficient genotypes. 
Under low N, majority of DETs of the secondary metabo-
lites pathways were found to be only down-regulated across 

Table 2  Summary of transcripts 
and ORF predictions of 454, 
Illumina and hybrid assemblies

Particulars 454 Data assembly 
GS assembler

Illumina 
data assembly
CLC Genomics 
Workbench 6

Hybrid assembly

Number of transcripts 5770 107,584 47,814
Total length (Mb) 3.8 82 64.0
Average transcript length 668.55 670.19 1340.38
Transcript N50 785 1219 1701
Maximum transcript length in bases 5297 16,563 16,563
Minimum transcript length in bases 100 200 500
Number of ORFs 34,612
Total length (Mb) 35.33
Average ORF length 1020.72
ORF N50 1275
Maximum ORF length in bases 16,200
Minimum ORF length in bases 297
Number of ORFs with blast hits 32,340

Fig. 1  Differentially expressed transcripts (DETs) in four genotypes
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four genotypes viz., stilbenoid, diarylheptanoid and gingerol, 
flavonoid, flavone and flavonol biosynthesis. Under trans-
lation, the ribosome sub metabolic pathway was found to 
be significantly down-regulated across four genotypes and 
additional DETs were also found to be down-regulated in 
efficient and non-efficient genotypes. Contra-regulation was 
also observed in the DETs of aminoacyl-tRNA biosynthe-
sis of translation, DNA replication and nucleotide excision 
repair of replication and repair pathway, where a significant 
upregulation was found across four genotypes in common 
and in efficient genotypes, but significant down regulation 
was noted in non-efficient genotypes. Conversely, the DETs 
of proteasome of folding, sorting and degradation pathway 
were significantly down-regulated across four genotypes in 
common and in efficient genotypes, but significantly up-reg-
ulated in non-efficient genotypes. The DETs in efficient and 
non-efficient genotypes were also analysed according to a 
few important gene families associated with NUE (Table 5).

Nitrogen metabolism

In efficient genotypes, no common transcript related to 
N metabolism were found to be up-regulated and only 
one hypothetical protein (EAY84173) was observed to be 
down-regulated in efficient genotypes. Across four geno-
types, there was a relatively higher number of up-regulated 
transcripts than down-regulated transcripts, however, only 
four up-regulated transcripts viz., hypothetical protein 

(putative function of nitrate reductase) (EEC74079); glu-
tamine synthetase, chloroplastic (Os04g0659100); gluta-
mate synthase 2 [NADH], chloroplastic (Os05g0555600) 
and a hypothetical protein (putative function of ferredoxin-
dependent glutamate synthase) (EEC82609) andthree down-
regulated transcripts viz., high-affinity nitrate transporter 
(Q94JG1), putative nitrilase (Os02g0635000) and cyanate 
hydratase (Os10g0471300) were in common. In non-effi-
cient genotypes, nitrate reductase [NADH] (Os08g0468100) 
was up-regulated and two transcripts viz., formamidase 
(Os01g0764900) and glutamine synthetase, cytosolic 
(Os03g0712800) were down-regulated (Table S11).

Vitamin and cofactor metabolism

In efficient genotypes, among 12 up-regulated transcripts, 
75% were hypothetical proteins besides bifunctional dith-
iobiotin synthetase (Os08g0245400), bifunctional dihydro-
folate reductase-thymidylate synthase (ABA93693) and 
tocopherol cyclase (Os02g0276500) transcripts (Table S11).

Transcription factors

Four common up-regulated transcription factors, CCAAT-
binding (Os12g0618600); WRKY DNA binding domain 
containing protein (Os03g0741400); bHLH (ADX60281) 
and heat stress (Os01g0625300) were noted in efficient 

Table 3  Annotation of 
the common up-regulated 
transcripts associated with low 
N in two efficient genotypes

*Multiple predictions of ORFs on the same strand suggest alternative splicing

Annotation Fold change

TB Nrec TB
Nlow

BM
Nrec

BM Nlow

1 Hypothetical protein OsJ_01563 (LOC_Os01g22540) 2.08 24.94 1.05 25.84
2 Hypothetical protein OsI_17904* 81.31 665.77 16.72 272.71
3 Hypothetical protein OsJ_10779 91.73 371.26 52.25 538.72
4 Unknown protein 1.04 35.50 2.09 20.09
5 Os06g0528700 putative flavin-containing monooxygenase 7.30 49.88 10.45 87.08
6 Os03g0184100 expressed protein 488.88 3300.08 400.26 3009.38
7 Hypothetical protein OsI_17904* 47.95 313.70 16.72 123.44
8 Putative RNA helicase/RNAseIII protein 104.24 507.48 11.50 75.59
9 Os11g0120300 unknown protein 1.04 14.39 24.04 149.27
10 Hypothetical protein OsI_17459 27.10 200.50 21.95 135.88
11 Aspartyl proteinase (LOC_Os11g08200) 28.14 146.78 42.85 254.53
12 Hypothetical protein OsI_22386 130.30 799.12 335.47 1946.29
13 Os07g0578300 putative subtilisin-like serine protease 29.19 157.33 160.94 813.35
14 Os01g0956200 putative glycosyltransferase 59.42 330.97 310.38 1516.65
15 Hypothetical protein OsJ_05709 (LOC_Os02g09830) 28.14 123.75 97.19 466.96
16 Hypothetical protein OsI_17459 93.82 387.57 70.02 331.08
17 LOC_Os06g14030 SKOR protein OsJ_20828 51.08 424.02 140.04 630.58
18 Hypothetical protein OsJ_27967 (LOC_Os08g40919) 90.69 375.10 87.79 370.31
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genotypes. Eighteen transcription factors were found to be 
down-regulated in efficient genotypes comprising mostly 
transcription factors belonging to AP2, bHLH, WRKY and 
ZFP classes. In non-efficient genotypes, 17 transcription 
factors were up-regulated in common and, predominantly 
belonging to heat stress, MADS, MYB and NAC classes 
(Figure S5 A, B, C, and D).

Transporters

The five common up-regulated transporters in efficient 
genotypes included two ABC transporters (BAB17113 
and ABA91534), potassium-sodium symporter (Q93XI5); 
phosphate transporter (Os01g0279700) and sulphate trans-
porter (Os03g0195800). Fourteen transporters belong-
ing to ABC, AAT and AMT families were found to be 

Table 4  Summary of the number of the differentially expressed transcripts according to MapMan BINs in efficient and non-efficient genotypes 
under low N in comparison to recommended N

Bin Name TB Nrec 
-
TB Nlow

BM Nrec 
-
BM Nlow

SK Nrec 
-
SK Nlow

KJ Nrec 
-
KJ Nlow

TB Nrec 
-
TB Nlow

BM Nrec 
-
BM Nlow

SK Nrec 
-
SK Nlow

KJ Nrec 
-
KJ Nlow

Up-regulated Down-regulated

1 Photosynthesis 85 150 64 149 122 57 143 58
2 Major CHO metabolism 70 88 92 70 71 51 50 70
3 Minor CHO metabolism 59 92 77 68 99 65 77 89
4 Glycolysis 54 60 64 69 51 45 40 36
5 Fermentation 11 11 17 20 16 16 10 7
6 Gluconeogenesis / glyoxylate cycle 10 6 10 12 8 12 18 6
7 Oxidative pentose phosphate pathway 15 12 12 18 16 19 19 13
8 TCA / organic acid transformations 32 53 55 39 49 26 25 40
9 Mitochondrial electron transport / ATP synthesis 38 63 66 57 69 45 41 51
10 Cell wall 152 176 251 290 475 424 371 325
11 Lipid metabolism 191 240 270 280 428 359 345 337
12 Nitrogen metabolism 17 17 17 16 9 8 9 9
13 Amino acid metabolism 149 144 124 178 177 181 199 147
14 Sulphur assimilation 7 9 9 7 5 3 3 5
15 Metal handling 27 35 32 34 48 38 43 42
16 Secondary metabolism 201 225 206 369 412 351 413 241
17 Hormone metabolism 255 267 314 382 399 365 339 269
18 Co-factor and vitamin metabolism 59 50 46 40 44 53 56 63
19 Tetrapyrrole synthesis 22 28 15 26 23 17 30 19
20 Stress 518 542 598 495 644 531 530 634
21 Redox 76 87 76 105 132 119 132 101
22 Polyamine metabolism 12 16 13 12 16 11 14 16
23 Nucleotide metabolism 92 105 79 86 76 62 88 81
24 Biodegradation of xenobiotics 11 24 11 36 50 36 49 26
25 C1-metabolism 20 18 14 22 20 22 26 18
26 Miscellaneous 604 606 704 884 1002 947 905 716
27 RNA 1696 1496 1487 1305 964 1118 1150 1337
28 DNA 430 390 386 281 198 207 220 325
29 Protein 2004 1755 1814 1654 1655 1808 1809 1967
30 Signaling 837 891 1120 911 1125 960 820 1000
31 Cell 401 446 463 346 468 413 401 518
32 Micro RNA, Natural antisense etc 0 0 0 0 0 0 0 0
33 Development 430 398 443 406 341 346 320 355
34 Transport 638 774 829 772 819 645 611 670
35 Not assigned 7617 6723 7198 7217 7073 6725 6971 6986
36 C4-photosynthesis 0 0 0 0 0 0 0 0
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down-regulated in efficient genotypes. In non-efficient 
genotypes, 39 transcripts were found to be up-regulated 
in common comprising mostly ABC, sugar and YSL trans-
porters (Figure S5 E, F, G, and H).

Higher number of splice junctions under low N

Approximately, 99% canonical splice junctions were iden-
tified across the genotypes and treatments (Table 6). A 
relatively higher number of splice junctions and canonical 
splice junctions were observed under low N in comparison 
to recommended N for three genotypes but for one non-
efficient genotype. Semi-canonical splice junctions and the 
insertions/deletions appeared to be genotype specific. A 
hypothetical protein OsI_17904 with multiple predictions 
of ORFs on the same strand showed an upregulation in 
efficient genotypes suggests alternative or adjacent splic-
ing (Table 3).

A negative correlation of DET clusters (modules) 
in efficient genotypes under low N

Gene expression network analysed using WGCNA R pack-
age resulted in 10 modules (clusters) of highly correlated 
DETs and their association with phenotypic traits (Fig. 2). 
For low N, three modules comprising both up and down-
regulated transcripts were observed with only negative 
correlation viz., ‘pink’ with SPAD (205 DETs), ‘brown’ 
with panicle number and grain nitrogen (670 DETs) and 
‘red’ with grain yield, internal efficiency and HI (388 
DETs). The most enriched categories were amino acid 
metabolism in pink module, carbon metabolism, environ-
mental adaptation and signal transduction in brown mod-
ule and carbon metabolism, and signal transduction in red 
module (Table S12).

Table 5  Summary of DETs and their gene families in efficient and non-efficient genotypes under low N

Efficient Non-efficient

Up Down Up Down

Nitrogen metabolism – EAY84173gi hypothetical 
protein

Os08g0468100 Nitrate 
reductase [NADH] 1

Os01g0764900 Formami-
dase

Os03g0712800 Glutamine 
synthetase cytosolic

Vitamin and cofactor 
metabolism

Os08g0245400 Bifunction-
aldethiobiotinsynthetase

ABA93693gi Bifunctional-
dihydrofolatereductase

Os02g0276500 Putative 
tocopherolcyclase

– – –

Transcription factors (TF) Os12g0618600-CCAAT-
binding TF subunit B

Os03g0741400 WRKY TF
ADX60281 bHLH TF
Os01g0625300 Heat stress 

TF C-1a

AAM27466gi Putative 
bHLH TF

DAA05141gi WRKY 
TF 76

Os03g0437200 C2H2-
type zinc finger protein 
ZFP36

CAC39058gi putative 
AP2-related TF

Os01g0821300 WRKY TF 
64-like protein

Os10g0503100 LIM TF
BAD29571gi putative TF 

MADS27
BAD31424gi PHD finger 

TF-like protein
Os06g0679400 putative 

TF GAMyb
Os08g0103900 putative 

OsNAC7 protein

AAP83325gi TF
Os09g0538400 putative 

Myb-related protein Zm38
DAA05124gi WRKY TF 59
Os02g0643200 YABBY 

4 TF
Os03g0764100 zinc finger 

TF ZF1

Transporters (TPR) BAB17113gi ABC TPR-
like

Q93XI5gi potassium-
sodium symporter

Os01g0279700 Phosphate 
TPR

ABA91534gi ABC TPR
Os03g0195800 Sulfate 

TPR 1.2

ACN85155gi ABC TPR-
like protein

Os06g0228800 putative 
amino acid TPR

BAC83382gi putative 
organic cation TPR

AAT77331gi putative 
ABC TPR

Os03g0150500 H/Pi co 
TPR

Os05g0252000 Probable 
metal-nicotianamine 
TPR YSL4

XP_004972812gi nitrate 
TPR 1.1-like isoform X2

BAC83856gi putative 
nitrate TPR NRT1-5

Os01g0829900 Probable 
metal-nicotianamine 
TPR YSL18

Os11g0475600 hexose 
TPR

Os03g0281900 ABC TPR G 
family member 5

AAP53801gi Sulfate TPR 
3.1, putative

BAB63609gi putative nitrite 
TPR

BAB92574gi proline trans-
port protein-like

Os07g0557200 putative 
equilibrative nucleoside 
TPR ENT8 splice variant
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Co‑localization of DETs with reported QTL under low 
N

Out of 18 common up-regulated transcripts in the 2 effi-
cient genotypes, 10 transcripts (44.4%) were mapped to the 
reported QTL on chromosomes 1, 2, 3. 4, 6, 7 and 8 under 
low N condition. Interestingly, 75% of common down-reg-
ulated transcripts of the efficient genotypes were found to 
be in the region of the reported QTL for various traits under 
low N (Table S13).

Correlation of transcript expression 
between RNA‑seq and qPCR

Out of 59 DETs targeted for qPCR, 52 transcripts showed a 
clear amplification of expected product size. The expression 
of transcripts fold changes through qPCR were compara-
ble to the fold changes obtained through RNA-seq analysis 

(correlation coefficient r = 0.72) (Figure S6) (Table S3). The 
expression of SKOR (LOC_Os06g14030) has shown a posi-
tive correlation (0.62) with single plant yield (g) in a set of 
16 rice genotypes selected on the basis of single plant yield 
ranging from 2.5 to 10.4 g under low N (Fig. 3) (Table S4).

Discussion

Booting stage is critical in determining rice yield, because 
there is degeneration of spikelets, especially under low N 
during this stage (Yoshida 1981). The metabolic processes 
should support the growth and differentiation of panicle 
branches and spikelets (primary and secondary) and reduce 
the inherent degeneration during the booting stage. Tran-
scriptome analyses of panicle tissue of booting stage under 
low N have shown a predominant down regulation of tran-
scripts in efficient genotypes with ~ 30% of the metabolic 

Table 6  Total numbers 
of various splice variants 
identified under low N and their 
classification

Sample name Total 
splice 
junction

Canonical splice junction Semi-canonical 
splice junction

Small deletions Small insertions

TB Nlow 6514 6491 (99.65%) 23 (0.35%) 57,482 34,944
TB Nrec 6083 6048 (99.42%) 35 (0.58%) 55,909 34,692
BM Nlow 6911 6883 (99.59%) 28 (0.41%) 58,048 35,072
BM Nrec 6825 6807 (99.74%) 18 (0.26%) 70,426 43,359
SK Nlow 6444 6419 (99.61%) 25 (0.39%) 55,683 33,674
SK Nrec 5455 5418 (99.32%) 37 (0.68%) 58,590 33,289
KJ Nlow 5207 5186 (99.60%) 21 (0.40%) 43,918 27,081
KJ Nrec 5572 5563 (99.84%) 9 (0.16%) 54,123 34,065

Fig. 2  Module-trait relationships using WGCNA R
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pathways over represented by down-regulated transcripts 
(Fig. 1, Figures S2, S3 and S4) (Tables 4, S7 and S8).

For acclimation to low N, plant needs complex and 
diverse physiological and biochemical changes requiring 
a concomitant action of numerous genes of various meta-
bolic and regulatory pathways for its survival and propaga-
tion under limited resources. Through de novo assembly, a 
comprehensive transcriptome using four genotypes of two N 
conditions was built in the present study. The de novo assem-
bly is useful to reduce the under estimation of variability 
among the genotypes and to facilitate appropriate genome 
wide differential gene expression analyses reference for the 
associated pathways (Table S6) (Kawahara et al. 2013). Our 
genotypes comprised landraces (proven to be adapted to low 
N) which represent a source of novel genes (Rao et al. 2018), 
we have also increased the number of genotypes (two effi-
cient and two non-efficient) and the coverage through two 
kinds of analyses RNA-Seq to enhance the stringency and 
confidence of identified transcripts. The phenotypic observa-
tions recorded over 3 years and stringent statistical criteria 
employed throughout the analysis has added to the quality 
and accuracy of data.

The efficient genotypes could reveal relatively higher 
yield under low N indicating their inherent efficient uptake, 
remobilization and translocation abilities suggesting the rice 
landraces to be promising donors for NUE (Table 1) (Rao 
et al. 2018). In the present study, we have characterized two 
landrace genotypes with consistent and stable high NUE as 
shown by their higher internal use efficiency and remobiliza-
tion of N between source (leaf) and sink (panicle). A general 
trend of reduction of traits was observed under low N, which 
was expected as N is the base material of the plant biomass 
(Tirol-Padre et al. 1996; Dobermann and Fairhurst 2000; 
Rao et al. 2018). Comparative analysis of metabolites under 
low N has shown an abundant decrease of major metabolites 
in two contrasting rice genotypes as earlier reported (Zhao 
et al. 2018). We suggest that the efficient genotypes appear 
to down regulate several not so critical metabolic pathways 
(Tables 4, S9 and S10) and divert the thus conserved energy 

to produce the seed under long-term N starvation. Co-local-
ization of higher number of down-regulated transcripts with 
the reported QTL than up-regulated transcripts under low N 
in our study and similar observations of higher number of 
down-regulated transcripts in the earlier reports substanti-
ate our observations (Lian et al. 2006; Yang et al. 2015a, 
b) (Table S13). Even the three modules identified through 
gene expression network using WGCNA R package showed 
a negative correlation with the six traits/parameters under 
low N (Fig. 2) (Table S12).

Several transcriptome data under N starvation indicated 
that the plants adapt different strategies for short term and 
long-term N deprivation. While the early (immediate) tran-
scriptional response comprised signal transduction path-
ways, the late (adaptive) transcriptional response genes 
were related to be metabolic processes, substance transpor-
tation and physiological pathways (Hsieh et al. 2018). Under 
long term low N condition, the efficient genotypes through 
selective differential regulation of metabolic pathways were 
able to uphold the development of spikelets and reduce the 
degeneration of spikelets during the booting stage, whereas 
non-efficient genotypes appear to expend their energy by 
upregulation of genes of several pathways.

The common up and down-regulated metabolic pathways 
across four genotypes can be considered as a general adap-
tive response under long-term low N condition and it is the 
specific response of differentially regulated pathways in effi-
cient genotypes, which is useful for deciphering metabolic 
pathways of NUE in rice. A down regulation seems to be the 
key strategy in efficient genotypes for NUE with upregula-
tion of at least a few pathways for development of panicle 
and spikelets during the booting stage under low N. We have 
identified transcripts up-regulated for particular pathways 
viz., nucleotide, co-factor and vitamins, RNA and DNA 
(Tables S9 and S10). Co-expression network-based analyses 
reported a correlation of two of the clusters of adaptation to 
low N enriched with genes binding to nucleotides, purines 
and ATP (Coneva et al. 2014). The present data of DETs and 
pathways could be compared only to transcriptome studies 

Fig. 3  Fold change of SKOR 
transcript with single plant yield 
(g) in a set of 16 rice genotypes 
under low N
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of wheat spike, as panicle tissue transcriptome of rice under 
low N have not yet been reported. Even in wheat spike tis-
sue, a predominant down regulation has been observed. 
Interestingly, upregulation of thiamine biosynthesis was also 
observed as in wheat spike (Curci et al. 2017).

Certain pathways were significantly enriched with addi-
tional transcripts either in the direction of the common 
expression or contra-regulated to the common expression 
across four genotypes (Table S9). The DETs of α-linolenic 
acid metabolism were found to be enriched in non-efficient 
genotypes, whereas there was a down regulation in common 
across four genotypes (Table S9). From the root transcrip-
tomics of early response with N deficiency, α-linolenic acid 
genes as a part of jasmonate-mediate defense responses were 
reported to be induced (Huang et al. 2016; Hsieh et al. 2018). 
The observed up-regulated glycosyltransferases, which are 
a part of the major catalytic machinery for synthesis and 
breakage of glycosidic bonds relates N starvation to starch 
starvation as reported (Sinha et al. 2018). Though, there was 
an enhanced expression of N metabolism transcripts across 
four genotypes, certain differential response of transcripts 
related to N metabolism was observed in efficient genotypes 
under low N as corroborated by earlier studies (Lian et al. 
2006; Zhu et al. 2006; Beatty et al. 2009). We suggest the 
role of transcripts underlying the metabolic sub pathways 
viz., nucleotide, translation, carbon, lipid, cell growth and 
death, replication and repair, membrane transport, second-
ary metabolites and transport to be critical in acclimation to 
the low N in rice.

A comparison of the data of panicle tissue transcriptom-
ics in the present study to reported transcriptomics data of 
root and shoot tissue of the rice seedlings showed a few 
pathways to be similar. The phenylpropanoid biosynthesis 
was found to be down-regulated across four genotypes with 
higher a number of transcripts in efficient genotypes during 
the panicle development which is contrasting to the stimu-
lation of phenylpropanoid biosynthesis in root and shoot 
tissues of seedlings under low N hydroponics (Richard-
Molard et al. 2008; Krapp et al. 2011; Hsieh et al. 2018). 
Phenylpropanoid metabolism is critical for the production 
of several secondary metabolites (Naoumkina et al. 2010), 
thus a reduction of phenyl propanoid pathway appears to be 
an acclimation response to long term low N condition as 
observed in the present study.

Transcription factors (TFs) are of special interest, since 
they are capable of coordinating the expression of several 
downstream targets genes and, hence, entire metabolic and 
developmental pathways (Table 5). Several classes of TFs 
including CCAAT, WRKY, bHLH, AP2, ZFP, MADS, 
NAC and MYB TFs were found among DETs in this 
study as described earlier in rice under low N condition 
and in spike tissue of wheat (Yang et al. 2015a, b; Curci 
et al. 2017). Upregulation of WRKY and bHLH among 

the 63 high C: low N up-regulated transcripts was also 
reported in rice (Huang et al. 2016). Most of the TFs with 
a similar function were found to be up or down-regulated 
in the present study suggesting the possible compensatory 
mechanism of different transcripts within the same family 
expressing differentially to balance the gene expression 
and metabolism under low N (Figure S5 A, B, C, and D).

Despite the different genetic background, common tran-
scripts were identified in the efficient genotypes unlike 
the earlier studies (Sinha et al. 2018). Interestingly, it 
was observed that most of the up-regulated transcripts in 
efficient genotypes are of unknown function suggesting 
landraces with their adaptation to low N to a promising 
source of the novel transcripts for NUE in rice (Tables 1 
and 3). Moderate correlation of fold changes of an up-reg-
ulated transcript SKOR (LOC_Os06g14030) with single 
plant yield in 16 need to check genotypes with differential 
response under low N was observed in the present study 
(Table S4). Yield and NUE are complex traits involving 
several transcripts, thus a moderate association of SKOR 
transcript obtained in our study is encouraging for further 
identification and characterization of landraces for new 
transcripts/genes.

We found more alternative splicing events under low N 
in comparison to recommended N, while a reported study 
(Yang et al. 2015a) suggested no significant difference in AS 
of root and shoot tissues of rice seedlings under N-deficient 
condition (Table 6). However, AS events are reported to be 
organ and genotype specific (de Araujo Junior and Rosa 
Farias 2015). Increased levels of specifically spliced tran-
scripts are demonstrated to have beneficial effects for devel-
opment and stress acclimation (Staiger and Brown 2013). In 
rice, AS complexity was shown to contribute to the genetic 
improvement of drought resistance (Wei et al. 2017). The 
up-regulated hypothetical protein OsI_17904 with its two 
forms in efficient genotypes observed in the present study 
becomes an interesting candidate gene for further charac-
terization (Table 3).

We selected the potassium transporter transcript on the 
basis of its upregulation in both efficient genotypes. Interest-
ingly, the expression of this SKOR transcript was up-regu-
lated in both efficient genotypes which prompted us to study 
its expression in a set of 16 genotypes differing in N effi-
ciency and its co-relation with nitrogen uptake. The SKOR 
gene has been reported to function in transport of potassium, 
root to shoot communication and under certain stress condi-
tion responses. Moreover, the positive co-relation of nitrogen 
use efficiency and potassium transporter transcript reflects 
certain relation with respect to ion homeostasis. Its relation-
ship with single plant yield also reflected that the expression 
is positively co-related with the single plant yield. It can be 
proposed that the expression of such transporters contributes 
to coping with the nitrogen deficiency.
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In conclusion, two consistent NUE genotypes were identi-
fied from four rice genotypes based on their evaluation for 
yield, N content in straw and grain and NUE indices across 
3 years. These two landrace genotypes could be deployed 
as donors for developing rice varieties with NUE. Using 
eight datasets of developing panicle transcriptome generated 
comprising two efficient genotypes and two non-efficient 
genotypes grown under low and recommended N conditions 
and their de novo assembly, differentially expressed tran-
scripts and metabolic pathways were identified. Based on 
the differential regulation in efficient genotypes, we propose 
a down regulation of selective metabolic pathways to be an 
adaptive mechanism of rice to long-term low N acclimation. 
We have identified a set of 18 up-regulated transcripts and 
10 differentially regulated metabolic pathways in efficient 
genotypes for further characterization of NUE in rice. Two 
up-regulated transcripts found to be promising candidate 
genes viz., a hypothetical protein OsI_17904 and a potas-
sium channel SKOR transcript (LOC_Os06g14030) from 
the present study. The information generated about the geno-
types, transcripts, pathways and mechanisms in the present 
study can be deployed to develop rice varieties with NUE, 
thus ultimately targeting the reduction of nitrous oxide emis-
sions affecting climate change through a lower application 
of nitrogenous fertilizer.
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