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Abstract
Due to regulatory bans and voluntary substitutions, halogenated polybrominated diphenyl ether (PBDE) flame retardants 
(FR) are increasingly substituted by mainly organophosphorus FR (OPFR). Leveraging a 3D rat primary neural organotypic 
in vitro model (rat brainsphere), we compare developmental neurotoxic effects of BDE-47—the most abundant PBDE 
congener—with four OPFR (isopropylated phenyl phosphate—IPP, triphenyl phosphate—TPHP, isodecyl diphenyl phos-
phate—IDDP, and tricresyl phosphate (also known as trimethyl phenyl phosphate)—TMPP). Employing mass spectroscopy-
based metabolomics and transcriptomics, we observe at similar human-relevant non-cytotoxic concentrations (0.1–5 µM) 
stronger developmental neurotoxic effects by OPFR. This includes toxicity to neurons in the low µM range; all FR decrease 
the neurotransmitters glutamate and GABA (except BDE-47 and TPHP). Furthermore, n-acetyl aspartate (NAA), considered 
a neurologic diagnostic molecule, was decreased by all OPFR. At similar concentrations, the FR currently in use decreased 
plasma membrane dopamine active transporter expression, while BDE-47 did not. Several findings suggest astrogliosis 
induced by the OPFR, but not BDE-47. At the 5 µM concentrations, the OPFR more than BDE-47 interfered with myelina-
tion. An increase of cytokine gene and receptor expressions suggests that exposure to OPFR may induce an inflammatory 
response. Pathway/category overrepresentation shows disruption in 1) transmission of action potentials, cell–cell signaling, 
synaptic transmission, receptor signaling, (2) immune response, inflammation, defense response, (3) cell cycle and (4) lipids 
metabolism and transportation. Taken together, this appears to be a case of regretful substitution with substances not less 
developmentally neurotoxic in a primary rat 3D model.

Keywords  Developmental neurotoxicity · Flame retardants · 3D in vitro model · New approach methodologies · 
Metabolomics · Transcriptomics

Introduction

Flame retardants (FR) are a group of compounds, which 
are added to consumer products, including upholstered 
furniture, electrical devices, baby products, textiles and 
plastics, to restrain or delay flame propagation to prevent 
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fire spreading (Dishaw et al. 2014b; EPA US 2005; Jarema 
et al. 2015). The global FR consumption has surpassed 2 
million tons and is yet expected to increase due to interna-
tional flammability standards (Ceresana 2018). However, FR 
exhibit characteristics similar to environmental toxicants, 
such as heavy metals, air pollutants and pesticides that are 
well recognized as hazardous to human health and inducers 
of neurodevelopmental damage. Prior to 2005, halogenated 
polybrominated diphenyl ethers (PBDEs) were the primary 
FR used in the USA. However, the halogenated FR have 
been linked to the development of cancer, endocrine dis-
ruption, immunotoxicity, reproductive toxicity, and fetal 
and child development perturbation (Birnbaum and Staskal 
2004; Costa and Giordano 2007; Roze et al. 2009; Shaw 
et al. 2010). In particular, 2,2′,4,4′-tetrabromodiphenyl ether 
(BDE-47)—the most abundant PBDE congener in the envi-
ronment and human serum (Birnbaum and Staskal 2004; 
EPA US 2008)—has been shown to affect the adult and 
developing nervous system (Dingemans et al. 2007; Eriks-
son et al. 2002).

Due to these human health concerns, PBDEs have been 
banned in Europe and phased out in the USA (Birnbaum and 
Staskal 2004; Feo et al. 2013), and mainly been replaced by 
organophosphorus FR (OPFR) (Blum et al. 2019; Dishaw 
et al. 2014a, 2014b; Stapleton et al. 2014). Following the 
phase out of PBDEs, there is increasing evidence showing 
higher exposure to OPFRs compared to PBDEs from hand 
wipes in toddlers, and house dust suggesting that the mag-
nitude of exposure via hand-to-mouth and dermal transfer 
pathways is potentially greater for OPFRs than for PBDEs 
(Blum et al. 2019).

The use of OPFRs is further anticipated to increase fol-
lowing the recent proposal by the European Commission to 
prohibit the class of organohalogen chemicals in electronic 
display enclosures and stands effective since April 2021 
(Commission 2018). Hence, it is likely that the manufactur-
ers will explore the potential for use of OPFRs in televisions 
and other electronics as alternative methods to meet flam-
mability codes.

Although there has been an increase in the use of OPFRs, 
there is still relatively limited information on their poten-
tial health effects. This is of concern, as OPFRs bear some 
structural similarities to organophosphate pesticides that are 
well known to induce (developmental) neurotoxicity (Burke 
et al. 2017; Grandjean and Landrigan 2014; Mie et al. 2018). 
Especially, the use of FR in baby products and the expo-
sure to children are of concern as the developing brain is 
much more vulnerable to environmental perturbation than 
the brain of adults (O’Rahilly and Muller 2008; Smirnova 
et al. 2014).

The exposure to industrial chemicals, including FR, and 
drugs during early development has been associated with the 
occurrence of neurodevelopmental disorders in children such 

as autism, mental retardation, dyslexia, epilepsy or mental 
deficit (Grandjean and Landrigan 2006, 2014; Rice and Bar-
one 2000; Zhong et al. 2020).

Current DNT testing guidelines for chemicals and pesti-
cides (EPA U 1998; OECD 2007, 2011) are based on tra-
ditional in vivo animal studies. These guidelines require 
elaborated, lengthy and costly study protocols that are 
incompatible with the assessment of large numbers of chem-
icals in addition to elicit uncertain predictivity for human 
risks (Smirnova et al. 2014). Hence, the screening of chemi-
cals requires the employment of more reliable, cheap and 
fast tools capable of determining DNT potential to ensure 
the safety of children’s health (Bal-Price et al. 2015a, 2010, 
2018; Bjorling-Poulsen et al. 2008; Fritsche et al. 2017).

The use of in vitro, in silico and non-mammalian spe-
cies-based methodologies and models has been proposed 
to enhance the DNT assessment in terms of cost, time and 
mechanistic understanding (Bal-Price et al. 2015a, 2018; 
Coecke et al. 2007; Smirnova et al. 2014). Several prom-
ising in vitro cell models have been developed; however, 
most of them still have difficulties in simulating the com-
plex structure of the developing brain. Three-dimensional 
(3D) primary organotypic cell cultures have the advantage 
of reproducing the complex multicellular environment that 
closely resembles in vivo conditions (Alepee et al. 2014; 
Pamies et al. 2017; Sundstrom et al. 2005). The 3D rat pri-
mary neural organotypic in vitro model, used in this study, 
is a model able to recreate the CNS in vivo structural char-
acteristics and biochemical signaling (Forsby et al. 2009; 
Honegger and Monnet-Tschudi  2001; van Vliet et al. 2007). 
It consists of most of the relevant cell types in the brain 
such as neurons, astrocytes, oligodendrocytes and micro-
glia (Honegger et al. 1979). The model has been extensively 
characterized by immunohistochemistry, electrophysiology, 
pharmacological behavior and expression of neurodevelop-
ment marker genes (van Vliet et al. 2007). The model is con-
sidered mature after 21–28 days in vitro (DIV), as electrical 
activity, synaptogenesis and myelination are robust at this 
time. The DNT consensus process identified the rat aggre-
gating cell model among the most representative models for 
DNT studies (Bal-Price et al. 2010).

Taking into consideration the importance of identifying 
and characterizing potential DNT chemicals by applying 
suitable testing methods, this study aimed to investigate the 
DNT potential of four OPFR (isopropylated phenyl phos-
phate—IPP, triphenyl phosphate—TPHP, isodecyl diphe-
nyl phosphate—IDDP, and tricresyl phosphate (also known 
as trimethyl phenyl phosphate)—TMPP) relative to one 
replaced PBDE (BDE-47) using metabolomics and tran-
scriptomics approaches. The exposure to the FR induced 
significant alterations in gene expression and metabolite 
levels, with stronger effect after exposure to OPFRs. The 
major effects were observed for genes and metabolites 



209Archives of Toxicology (2021) 95:207–228	

1 3

associated with the neurotransmitter glutamate and its 
receptors, followed by general neuronal markers and reacti-
vated glial cells. Many of the alterations could be linked to 
existing DNT adverse outcome pathways (AOPs) (Sachana 
et al. 2018; Spinu et al. 2019; Wang et al. 2018), which 
increase the concern of OPFRs usage as replacements of 
PBDE and imply the need for additional assessment of these 
compounds.

Materials and methods

Animals

Pregnant female Sprague–Dawley rats were used as the 
source of embryonic brain tissue for dissociation and re-
aggregation in vitro. The animals were kept in the Johns 
Hopkins Bloomberg School of Public Health Animals 
Resources Facility for 48 h. They were housed individually 
under standard laboratory conditions with controlled tem-
perature of 22 °C and a 12-h light/dark photoperiod. Food 
and water were supplied ad libitum. Housing and experi-
mental protocols were approved by the Institutional Animal 
Care and Use Committee (IACUC) (Protocol RA15H122).

Sixteen-day pregnant females were anesthetized by inha-
lation of tribromoethanol (Sigma-Aldrich) following imme-
diate decapitation to minimize any pain or distress. Aseptic 
conditions were maintained throughout the procedure to pre-
vent contamination of tissue cell cultures. The rats were ster-
ilized with 70% ethanol and an incision was made through 
the skin over the midline of the abdomen for the removal 
of the uterus containing the fetuses. The fetuses were then 
excised from the uterus and the whole brain was dissected 
out for the preparation of re-aggregating brain cell cultures.

3D rat primary neural organotypic in vitro model

3D rat primary neural cell cultures were prepared from 
16-day-old fetal rat brains as described previously (van 
Vliet et al. 2008). Briefly, the brain tissue was mechani-
cally dissociated in Puck’s solution [NaCl (9 g/l), KCl 
(0.4 g/l), Na2HPO4 (75 mg/l), KH2PO4, (30 mg/l), phenol 

red (5 mg/l), d-glucose monohydrate (1.1 g/l) and d-sucrose 
(20 g/l) in water, adjusted pH 7.4 with 0.2 N NaOH] (all 
from Sigma-Aldrich) following re-suspension of the cells 
at a density of 7.5 × 106 cell/ml in a modified serum-free 
media: DMEM with high glucose (25 mM, Thermo Fisher 
Scientific) supplemented with insulin (0.8 µM), triiodothy-
ronine (30 nM), hydrocortisone solution (20 nM), apo-trans-
ferrin (1 µg/ml), biotin (4 µM), vitamin B12 (1 µM), linoleic 
acid (10 µM), lipoic acid (1 µM), L-carnitine (10 µM) and 
trace elements [Na2SiO3 (2.5 mM), Na2SeO3 (1.5 mM), 
CdSO4 (0.5 mM), CuSO4 (1 mM), MnCl2 (0.5 mM), (NH4)
MO3 (0.005 mM), NiSO4 (0.025 mM), SnCl2 (0.025 mM), 
ZnSO4 (0.5 mM)] (all from Sigma-Aldrich). Cells were re-
aggregated and kept in glass flasks (15 ml initial, followed 
by 20 ml from DIV4) under gyratory shaking using an orbital 
shaker (Kühner shaker ES-X, 50 mm orbit diameter, Adolf 
Kühner AG, Birsfelden, CH). The initial speed was set to 
68 rpm and was increased over 7 days to a constant speed 
of 80 rpm, at 37 °C in an atmosphere of 10% of CO2. Half 
of the culture media was replenished every 3 days. After 3 
days in vitro (DIV3), 3D aggregates were formed, which 
were size-wise and morphologically robust (increasing in 
size from ~ 350 µm at DIV7 to ~ 400 µm at DIV21) (Trapp 
et al. 1979; van Vliet et al. 2007).

Chemical treatments

Five FR (Table  1) and corresponding vehicle control 
(DMSO) were studied. FR were supplied by the Division 
of National Toxicology Program, U.S. National Institute of 
Environmental Health Sciences (NTP, NIEHS, Research Tri-
angle Park, NC). Stock solutions were prepared in DMSO 
(Sigma-Aldrich). The final concentration of DMSO did not 
exceed 0.1% (v/v), which is non-toxic in the rat brainsphere 
model.

At DIV7, aggregating cell cultures were pooled and dis-
tributed over six-well plates, each containing approximately 
100 aggregates in 2 ml of serum-free media. The cultures 
were then exposed to the chemicals up to DIV14 and DIV21, 
a period that covers crucial developmental processes and 
different stages of cell maturation (Fig. 1). The concentra-
tions of FR were chosen based on preliminary range-finding 

Table 1   Flame retardants (FR) evaluated in a 3D rat primary neural organotypic in vitro model

Flame Retardant CAS Supplier CoA Purity Conc. stock Conc. well

2,2′4,4′Tetrabromodiphenyl ether (BDE-47) 5436-43-1 Cerilliant Corp 98% 20 mM 0.1–20 µM
Triphenyl phosphate (TPHP) 115-86-6 Acros Organics 99% 100 mM 0.1–20 µM
Isopropylated phenol phosphate (IPP) 68937-41-7 Chemtura NA 100 mM 0.1–10 µM
Isodecyl diphenyl phosphate (IDDP) 29-761–21-5 Ferro Corp NA 100 mM 0.1–20 µM
Tricresyl phosphate (TMPP) 1330–78-5 Acros Organics 99% 100 mM 0.1–20 µM
Dimethyl sulfoxide (DMSO) 67–68-5 Sigma-Aldrich 100% NA 0.1% (v/v)
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experiments, where wide ranges of concentrations were 
tested using cell viability assay (resazurin). In final experi-
ments, three non-cytotoxic concentrations at DIV14 (0.1, 1, 
and 5 µM) were selected for metabolomics and gene expres-
sion analysis. Importantly, using in vitro to in vivo extrapola-
tion suggests that these are relevant human exposures (Blum 
et al. 2019). Half of the culture media were exchanged with 
new chemical treatment twice per week. One non-cytotoxic 
concentration at DIV21 (1 µM) of IPP was selected for tran-
scriptomics analyses.

Assessment of cell viability

Cell viability was determined after exposure to the selected 
chemicals (0.1–20 µM) at DIV14 and DIV21 using the resa-
zurin reduction assay (O’Brien et al. 2000). The blue colored 
dye resazurin is reduced to fluorescent resorufin by redox 
reactions in viable cells with active metabolism. Resazurin 
(0.01 mg/ml, Sigma-Aldrich) in PBS was added directly to 
the six-well plates, without removing the medium at the 
end of the period of exposure to the tested compounds. 
The plates were incubated for 2 h at 37 °C, 10% CO2. After 
incubation, 100 µl of medium from each sample was trans-
ferred to a 96-well plate and the fluorescence of the resa-
zurin metabolite, resorufin, was measured at 530 nm/590 nm 
(excitation/emission) in a multi-well fluorometric reader 
(Cytofluor Multi-well Plate Reader Series 4000, Perseptive 
Biosystems). The differentiation medium was incubated 
with resazurin in parallel as a blank control. Cell viability 
was calculated as % of fluorescence intensity relative to sol-
vent-treated controls after subtracting average blanks. Data 
are presented as mean ± SD of at least three independent 

experiments performed in two to four replicates. Differences 
between treated and DMSO control groups were assessed 
by one-way ANOVA (GraphPad Prism 8.4.3), followed by 
Dunnett’s multiple comparison post hoc test including cor-
rection for multiple testing. Post hoc test was only performed 
vs. controls. Statistical significance is indicated as follows: 
*p < 0.05 (treated vs. control).

RNA purification, reverse transcription, 
and quantitative real‑time PCR (RT‑qPCR)

Cell samples were lysed for mRNA expression analysis 
and total RNA extraction was carried out according to the 
manufacturer’s protocol of RNeasy Mini Kit (Qiagen). RNA 
integrity was assessed with the Nanodrop 2000 (Thermo 
Scientific) UV–Vis spectrophotometer at 260 nm. Reverse 
transcription was performed as follows: 500 ng RNA was 
incubated with 2.5 mM PCR Nucleotide Mix (Promega) and 
12.5 µg/ml random primers (Promega) for 5 min at 65 °C 
using a Techne PCR system. Subsequently, 2 units/µl RNa-
seOut inhibitor (Thermo Fisher Scientific), 10 units/µl Molo-
ney murine leukemia virus (M-MLV) reverse transcriptase 
(Promega) and the samples were incubated for 10 min at 
25 °C for annealing, 60 min at 37 °C for cDNA synthesis 
and 15 min at 70 °C for inactivation of enzymes. RNase-
free DNase set (Qiagen) was used to avoid contamination 
with DNA. cDNA was diluted 1:5 and quantitative RT-PCR 
was performed using the Fast Applied Biosystems 7500 Sys-
tem (Life Technologies). Genes were selected (Table S1) 
based on previous studies (Hogberg et al. 2009, 2010) and 
transcriptomics data for IPP. The expression was measured 
using TaqMan gene expression assay (Life Technologies) 

Fig. 1   Schematic experimental design of rat brainsphere model exposed during development to FR at DIV7. Samples were collected at DIV14 
and 21 for metabolomics and transcriptomics analysis
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and FastStart Universal Probe Master mix (ROX) (Roche) 
according to the manufactures protocol. Relative RNA quan-
tification was performed using the comparative CT method, 
normalizing the data to a standard calibrator (a mixture of 
samples from the different time points of the cell prolif-
eration and differentiation), and to the 18S rRNA content 
(Schmittgen and Livak 2008). Data were calculated and 
presented as average log2-fold change in each independent 
experiment ± SD of at least three independent experiments 
performed in two to three replicates. Differences between 
treated and non-treated groups were assessed by two-way 
ANOVA (GraphPad Prism 8.4.3), followed by Bonferroni’s 
comparison post hoc test including correction for multiple 
testing. Post hoc test was only performed vs. controls. Sta-
tistical significance is indicated as follows: *p < 0.05.

Transcriptomics sample preparation and analyses

Perturbations in transcriptome were analyzed by microarray 
after exposure to 1 µM of IPP or solvent control (DMSO) 
from DIV7 to DIV21. Transcriptomics was performed in 
triplicate from one experiment. 100 ng of total RNA from 
treated and control cells was converted into cDNA and then 
into labeled cRNA using Agilent LowInput QuickAmp 
Labeling Kit (Agilent). The resulting cRNA was labeled 
with Cy3. Labeled cRNAs were then purified, and RNA 
concentration and dye incorporation were measured using 
Nanodrop 2000 spectrophotometer (Thermo Scientific). 
Hybridization to SurePrint G3 Rat Gene Expression 8 × 60 k 
(Agilent, Product No. G4853A, Grid No. 028279) was con-
ducted following the manufacturer’s protocol. Microarrays 
were scanned with an Agilent DNA microarray scanner. 
Feature Extraction (12.0.0.7 version, Agilent) was used to 
calculate the signal intensity and ratios. All arrays met each 
of the ten quality evaluation metrics parameters of Feature 
Extraction (“Good”).

After deleting non-detected probes and quantile-normal-
ization, statistical and pathway overrepresentation analyses 
were performed with activated mean centering and scaling 
option (GeneSpring V13.1, Agilent).

Metabolomics sample preparation and analyses

Cells were collected in 1.5 ml Eppendorf tubes and washed 
three times with ice-cold PBS. After removal of PBS, ice-
cold high-purity methanol (MeOH) (Sigma-Aldrich) was 
added. Cells were stored at – 80 ℃ until use. For metabolite 
extraction, 75 µl of HPLC-grade water was added to the 
300 µl MeOH to allow 80:20 v/v mixture of high purity 
MeOH:water. The cells were disrupted using an ultrasound 
sonicator (Qsonica, CT, USA) for 10–20 s until no more 
intact cell could be detected. The total protein content of the 
homogenates was quantified according to the manufacturer’s 

protocol of the Bradford assay (Bio Rad) to control for 
potential differences in tissue quantities. After being stored 
at − 20 ℃ for at least 2 h to precipitate the proteins, the 
tubes were centrifuged at 14,000 rcf for 10 min at 4 ℃. The 
supernatant was transferred to a new Eppendorf tube and 
evaporated to dryness at room temperature in a speedvac 
concentrator (Savant, Thermo Fisher Scientific). The dried 
samples were reconstituted in 100 µl of 60% MeOH with 
0.1% formic acid (FA) (Sigma-Aldrich) and transferred to 
plastic vials for LC–MS measurements.

Metabolite separation was achieved using an Agilent 
1260 series HPLC system (Agilent, Santa Clara, CA). The 
injection volume of each sample was 5 µL and the column 
was maintained at 35 °C. QCs (pool of all samples within the 
experiment) and standards were run at the beginning and the 
end of each sequence and every four sample runs to monitor 
shift in the retention time on the column. For negative mode, 
a Cogent Diamond Hydride TM (MicroSolv, Eatontown, NJ, 
USA, Cat# 70,000-15P-2) aqueous normal phase (ANP) 
column (150 × 2.1 mm i.d., 4 µm particle size, 100 Å pore 
size) was used. The run time was 25 min at a flow rate of 
0.4 ml/min. Chromatography was performed using solvent 
A (50% MeOH/50% water/0.05% FA) and solvent B (90% 
acetonitrile with 5 mM ammonium acetate). The gradient 
was: 0 min, 100% B; 20–25 min, 40% B; post-run time for 
equilibration, 10 min in 100% B. For positive mode, a Targa 
C18 reverse phase column (50 × 2.1 mm i.d., 3 µm particle 
size, 120 Å pore size, Higgens Analytical Mountain View, 
CA, USA, Cat# TS-0521-C183) was used. The run time was 
25 min at a flow rate of 0.3 ml/min. Chromatography was 
performed using solvent A (Water with 0.1% formic acid) 
and solvent B (98% acetonitrile/2% water with 0.1% formic 
acid). The gradient was: 0 min, 2% B; 20–25 min, 100% B; 
post-run time for equilibration, 5 min in 2% B.

A 6520B Q-TOF LC–MS (Agilent, Santa Clara, CA) was 
operated in both positive and negative electrospray ioniza-
tion (ESI) modes with an acquisition rate of 1.5 spectra/s 
in extended dynamic range (1700 m/z, 2 GHz). The spectra 
were internally mass calibrated in real time by continuous 
infusion of a reference mass solution using an isocratic pump 
connected to a dual sprayer feeding into an electrospray ioni-
zation source. Data were acquired with MassHunter Acqui-
sition software B.05.01 and further processed with Agilent 
Profinder B.09 (Agilent, Santa Clara, CA).

The instrument settings were as follows: ion polarity, neg-
ative; gas temperature, 325 °C; drying gas, 10 l/min; nebu-
lizer pressure, 45 psi; capillary voltage, 4000 V; fragmen-
tor, 140 V; skimmer, 65 V; mass range, 70–1100 m/z; ion 
polarity, positive; gas temperature, 325 °C; drying gas, 10 l/
min; nebulizer pressure, 45 psi; capillary voltage, 4000 V; 
fragmentor, 140 V; skimmer, 65 V.

For the data processing and chemometric analysis of 
the LC–MS untargeted data, the acquired raw data files (.d 
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files) were first checked for quality in MassHunter Qualita-
tive Analysis software (Agilent, version 7.0). Reproduc-
ibility of chromatograms was visually inspected by over-
laying the total ion chromatograms (TICs) of all samples. 
Data files that exhibit outlier peaks, i.e., replicates with 
very dissimilar chromatograms (e.g., significant reten-
tion time shifts), were excluded for further processing. 
The raw data files were then converted to mzXML using 
ProteoWizard 3.0 (Kessner et al. 2008). Raw LC–MS data 
were analyzed by the MZmine 2 software (Pluskal et al. 
2010) for chromatogram deconvolution, peak detection 
and alignment. The metabolites were called by batch-tar-
geted feature extraction. The putative identification was 
achieved by online searching for the accurate m/z values 
of the peaks against HMDB and KEGG databases (Kane-
hisa and Goto 2000; Wishart et al. 2018). Those peaks 
were manually inspected for the quality of the extracted 
ion chromatograms (plausible adduct formation, max 
mass deviation 5 ppm, isotope ratios and peak shape) and 
for the remaining duplicate compound names. Data were 
calculated and presented as average log2-fold change in 
each independent experiment ± SD of at least two inde-
pendent experiments performed in four to six replicates. 
Differences between treated and non-treated groups were 
assessed by two-way ANOVA (GraphPad Prism 8.4.3), 
followed by Bonferroni’s comparison post hoc test includ-
ing correction for multiple testing. Post hoc test was only 
performed vs. controls. Statistical significance is indicated 
as follows: *p < 0.05.

Results

To characterize the metabolic perturbation of FR, 3D rat 
primary neural cell cultures were obtained from 16-day-
old fetal rat brains and were treated with FR from DIV7 
until DIV14 or DIV 21 to cover critical periods of dif-
ferentiation and maturation. The potential DNT effects of 
FR were assessed through the expression of specific genes 
selected from a previous work (Hogberg et al. 2009,2010) 
that serve as markers for the structural and functional 
development during subsequent stages of neuronal and 
glial differentiation. Additional genes were selected 
based on IPP microarray data. Furthermore, untargeted 
metabolomics was performed using a quadrupole time-of-
flight liquid chromatography mass spectrometry (Q-TOF 
LC–MS). Metabolomics involves the analysis of metabolic 
profiles in living cells in response to physiological altera-
tions triggered by endogenous or exogenous elements, 
such as chemicals and pathological and developmental 
factors (Nicholson et al. 2012; van Vliet et al. 2013, 2008).

Assessment of cell viability of 3D rat primary neural 
cell cultures exposed to FR

To determine non-cytotoxic concentrations of FR in rat 
brainspheres, aggregates were exposed to FR for 7 or 
14 days starting from DIV7. Cytotoxicity was assessed 
using the resazurin cell viability assay at two different time 
points—DIV14 and DIV21. Initially, a wide range of con-
centrations for each FR was tested (Fig. 2, Table 2). Time 
and dose-dependent decrease in cell viability was induced 
by all FR (DIV14 vs. DIV21). At DIV14, 7 day exposure 
to 10 µM of BDE-47 (Fig. 2a), IDDP (Fig. 2d) and TMPP 
(Fig. 2e) induced significant reduction of the cell viability, 
while TPHP (Fig. 2B) only showed significant decrease at 
20 µM. IPP (Fig. 2c) was only tested up to 10 µM where no 
significant effect was observed at DIV14. At DIV21, 14 days 
exposure to 5 µM of all FR showed a significant decrease in 
cell viability (Fig. 2 and Table 2). The level of cytotoxicity 
caused by the FR was used as reference for the selection 
of concentrations for gene expression and metabolomics 
analyses. In conclusion, 0.1 µM, 1 µM (non-cytotoxic at 14 
and 21 DIV) and 5 µM (non-cytotoxic at 14 DIV and lowest 
observed cytotoxicity effect at 21 DIV, ~ 70–80% viability 
vs. control) were selected for further experiments.

Exposure to FR significantly altered marker genes 
involved in neuronal morphology and function

To assess FR effects on neurons, neurofilament 200 (nf-200) 
as an intermediate filament highly expressed in neurons dur-
ing the later stages of differentiation was chosen. It is an 
important cytoskeleton marker, whose expression can be 
used to detect neuronal morphology changes (Gupta et al. 
1999; Tonnaer et al. 2010). The mRNA levels of nf-200 were 
significantly downregulated after exposure to all FR (5 µM), 
at DIV14 (no cytotoxicity detected) (Fig. 3a and suppl. 
material 1). Further decrease was observed at DIV21 after 
exposure to 5 µM IPP and TMPP and already 1 µM TPHP 
exposure significantly decreased the mRNA expression of 
nf-200 at DIV21 (no cytotoxicity observed). In conclusion, 
all FR studies were toxic to neurons in the low µM range. 

The mRNA expression of two receptors that play crucial 
roles in neuronal function were addressed to further assess 
neuronal impairment: subunits (grin1, grin2a and grin2c) 
of the ionotropic N-methyl D-aspartate receptor (NMDA-R) 
of the main excitatory neurotransmitter glutamate, (Blanke 
and VanDongen 2009; Busse et al. 2014) and subunit alpha 
1 (gabra1) of the main inhibitory neurotransmitter gamma-
aminobutyric acid A receptor (GABAA-R) (Sigel and Stein-
mann 2012).

Exposure to the highest concentration (5 µM) of IPP, 
IDDP and TMPP significantly decreased mRNA levels 
of the NMDA-R subunit grin1 at DIV14 and was further 
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decreased at DIV21 (Fig.  3a and suppl. material 1), 
although at DIV21, already the lower concentration (1 µM) 
of these FR (IPP, IDDP and TMPP) downregulated the 
expression of grin1. Exposure to the highest concentra-
tion (5 µM) also decreased the mRNA levels of grin1 at 

21 DIV for BDE-47, and TPHP. The gene expression of the 
NMDA-R subunit grin2a was significantly downregulated 
after exposure to all OPFR both at 14 and 21 DIV (Fig. 3a 
and suppl. material 1). Exposure to BDE-47 did not alter 
the expression of grin2a. In contrast, the expression of 
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Fig. 2   Cell viability at DIV14 (filled circle) and 21 (open square) 
using resazurin reduction assay after exposure at 7DIV to FR a BDE-
47, b TPHP, c IPP, d IDDP and e TMPP. All data were normalized 
to mean of untreated control samples (100%) and are presented as 
mean ± SD of at least three independent experiments performed in 
2–4 replicates. Differences between treated and non-treated (control) 

groups were assessed by one-way ANOVA (GraphPad Prism 8.4.3), 
followed by Dunnett’s multiple comparison post hoc test includ-
ing correction for multiple testing. Post hoc test was only performed 
vs. controls. Statistical significance is indicated as follow *p < 0.05 
(treated vs. control). Arrows indicate concentrations selected for 
metabolomics and transcriptomics experiments (0.1, 1 and 5 µM)
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Table 2   Cell viability (resazurin 
assay) after exposure to FR

Data expressed as mean ± SD. Statistical significance is indcated as follow  *p < 0.05 (treated vs. con-
trol), using one-way ANOVA, Dunnett’s Multiple Comparison Test. followed by Dunnett’s multiple com-
parison post hoc test including correction for multiple testing. Post hoc test was only performed vs. controls

Conc. (µM) BDE-47 TPHP IPP IDDP TMPP

DIV14 (% of control)
 Control 100 ± 6.9 100 ± 5.5 100 ± 6.3 100 ± 6.9 100 ± 6.9
 0.1 97.7 ± 12.7 100.0 ± 8.9 104.6 ± 8.4 106.7 ± 10.6 89.9 ± 10.1
 1 93.6 ± 17.4 92.2 ± 9.5 103.8 ± 8.5 108.2 ± 9.4 100.2 ± 10.9
 5 93.6 ± 12.7 94.4 ± 18.7 100.7 ± 17.6 94.4 ± 14.3 101.1 ± 12.8
 10 84.5 ± 8.8* 96.1 ± 19.2 92.9 ± 11.5 82.2 ± 7.6* 87.2 ± 18.8
 20 76.0 ± 7.8* 77.5 ± 13.9* 75.3 ± 0.6* 81.7 ± 7.5

DIV21 (% of control)
 Control 100 ± 12.3 100 ± 11.2 100 ± 11.5 100 ± 12.3 100 ± 12.3
 0.1 89.2 ± 8.9 91.6 ± 13.1 91.2 ± 8.7 95.2 ± 10.0 94.1 ± 12.1
 1 87.8 ± 12.5 87.9 ± 13.1 90.6 ± 10.9 94.7 ± 12.7 88.1 ± 14.0
 5 84.4 ± 13.9* 77.9 ± 18.9* 78.2 ± 11.5* 72.1 ± 11.8* 65.6 ± 6.5*
 10 80.0 ± 14.1* 64.4 ± 22.4* 54.5 ± 8.8* 61.7 ± 6.6* 56.8 ± 10.1*
 20 39.3 ± 7.5* 23.3 ± 13.3* 59.0 ± 6.3* 56.0 ± 8.2*

Fig. 3   Heatmap (double gradient, green—minus; red—plus) illus-
trating (A) genes (measured with RT-qPCR) and (B) metabolites 
(measured with Q-TOF LC–MS), involved in neuronal morphology 
and function after exposure to FR. All data were normalized to mean 

of untreated control cells (0) and are displayed as means log2-fold 
change in each independent experiment, from at least three independ-
ent experiments performed in 2–3 replicates (genes) or at least two 
independent experiments performed in 4–6 replicates (metabolites)
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subunit grin2c was significantly upregulated after expo-
sure to all FR (5 µM) both at DIV14 and DIV21 (Fig. 3a 
and suppl. material 1). Already the lower concentration of 
1 µM increased the mRNA levels after exposure to TPHP, 
IPP and TMPP at 14 and/or 21 DIV) (Fig. 3a and suppl. 
material 1). In conclusion, with slight differences in active 
concentrations, all FR decreased grin1and grin2a, but 
increased grin2c expression that could affect the affinity 
of the receptor.

The mRNA expression of GABAA-R subunit alpha 1 
(gabra1) was significantly downregulated after exposure to 
5 µM of all OPFR at 14 DIV (Fig. 3a and suppl. material 1). 
Already exposure to 1 µM of IDDP and TMPP significantly 
decreased the mRNA level of gabra1 at DIV14. After longer 
treatment (DIV21) only exposure to IPP and TMPP (5 µM) 
continued to decrease in the mRNA level of gabra1, while 
TPHP and IDDP treated cultures were reversed to control 
levels. Exposure to BDE-47 did not alter the expression of 
gabra1. In conclusion, the replacement FRs downregulated 
gabra1, while the same concentration of BDE-47 had no 
effect.

Furthermore, the expression of the neuronal marker syn-
apsin 1 (syn1) was evaluated. SYN1 is a protein present 
in the membrane of synaptic vesicles (Lu et al. 1992). It 
modulates neurotransmitter release and is believed to exert 
an important role in the functional maturation of synapses 
(Harrill et al. 2011). Already the lower concentration of 
1 µM decreased the expression of syn1 for most of the OPFR 
at DIV14 and DIV21 (Fig. 3a and suppl. material 1). Expo-
sure to 5 µM of all the OPFR downregulated the expression 
of syn1 at both time points. BDE-47 did not have any effect 
on the expression of syn1 at those concentrations. In conclu-
sion, the expression of syn1 was significantly downregulated 
after exposure to OPFRs, but not to BDE-47.

To characterize the perturbation of brainspheres on met-
abolic level, the neural-specific metabolite n-acetyl aspar-
tate (NAA) was measured. NAA is considered a diagnostic 
molecule for patients with brain damage and neurodegen-
erative disorders (Alakkas et al. 2019; Baslow et al. 2003; 
Chitturi et al. 2018; Nordengen et al. 2015). Mass spec-
trometry revealed that NAA was significantly lower after 
exposure to IPP (5 µM), IDDP (1 and 5 µM) and TMPP (1 
and 5 µM) at 14 and 21 DIV (Fig. 3b and suppl. material 
1). l-Aspartic acid, the precursor of NAA, was also signifi-
cantly lower after exposure to all OPFRs (Fig. 3b and suppl. 
material 1). This indicates that OPFRs induce toxicity in rat 
brainspheres.

In summary, the exposure to OPFR induced stronger 
effects on NAA, l-aspartic acid and selected genes involved 
in neuronal morphology and function than BDE-47. In 
addition, expression of subunits of the NMDA-R were 
more affected by exposure to OPFR than the subunit of the 
GABAA-R.

Exposure to OPFR significantly decreased 
the level of neurotransmitters and downregulated 
the expression of genes involved in their production 
and transportation

To further understand the effect of FR on neuronal cells, we 
evaluated expression of the enzymes catalyzing neurotrans-
mitter production and neurotransmitter transporters. Neu-
rotransmitters GABA and glutamate (l-glutamic acid) play 
important regulatory roles in neuronal activities in the brain 
(Busse et al. 2014; Sigel and Steinmann 2012). Therefore, 
the expression of genes encoding two enzymes, glutamate 
decarboxylase gad1 and gad2 that catalyze the synthesis of 
GABA from glutamate and the key enzyme responsible for 
catalyzing GABA degradation, 4-aminobutyrate transami-
nase (abat), was investigated. Treatment with 5 µM of all 
OPFRs, but not BDE-47, significantly decreased the expres-
sion of gad1 and gad2 at both DIV14 and DIV21 (Fig. 4A 
and suppl. material 1). The expression of abat was only 
affected by exposure to 5 µM IPP at DIV21.

Metabolomics analysis showed a significant decrease in 
the neurotransmitter glutamate at DIV14 after exposure to all 
FR (Fig. 4b and suppl. material 1). The strongest effect was 
observed after exposure to IDDP and TMPP as already the 
lowest concentration of 0.1 µM was effective. After DIV21, 
the amount of glutamate was restored except for the high-
est concentration of IPP, IDDP and TMPP (5 µM). Similar 
effects were observed on GABA: exposure to IDDP and 
TMPP decreased levels of GABA already at the lowest con-
centration (0.1 µM) and was restored at DIV21 except for 
5 µM of IPP, IDDP and TMPP (Fig. 4b and suppl. material 
1). Exposure to BDE-47 and TPHP did not alter the levels 
of GABA. Moreover, α-ketoglutaric acid a derivate of glu-
tamate were significantly decreased at DIV21 after expo-
sure to all FR except IPP, with TPHP having the strongest 
effect (Fig. 4b and suppl. material 1). In conclusion, all FR 
decreased the neurotransmitters glutamate, GABA (except 
BDE-47 and TPHP) and α-ketoglutaric acid (except IPP).

Next, we addressed the dopaminergic neurotransmitter 
system. The plasma membrane dopamine active transporter 
(dat—slc6a3) and the vesicular monoamine transporter 
(vmat1—slc18a1 and vmat2—slc18a2) are critical compo-
nents for dopamine neurotransmission: The plasma mem-
brane dopamine active transporter terminates the signal of 
the neurotransmitter by providing dopamine reuptake from 
the synaptic cleft, while vesicular monoamine transporter 
packages cytoplasmic dopamine into vesicles for storage and 
future use (Miller et al. 1999; Yamamoto et al. 2007). Expo-
sure to all OPFR (5 µM) at DIV14 decreased the mRNA 
expression of dat (Fig. 4A and suppl. material 1). At DIV21, 
the expression of dat after exposure to IDDP was returned 
to control levels, while the decrease was similar to DIV14 
levels for TPHP, IPP and TMPP. BDE-47 treatment did not 
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modify the gene expression of dat. In conclusion, at similar 
concentrations, the FR currently in use decreased plasma 
membrane dopamine active transporter expression, while 
BDE-47 did not.

Treatment with OPFRs did not alter either vmat1 or vmat2 
mRNA levels at DIV14 (Fig. 4a and suppl. material 1). Inter-
estingly, treatment with BDE-47, at DIV14 significantly 
increased the vmat1 gene expression. At 21 DIV significant 
downregulation of vmat1 gene expression was observed only 
after exposure to 5 µM IPP, while vmat2 mRNA expression 
was significantly downregulated after exposure to 5 µM IPP, 
TMPP and TPHP. BDE-47 did not affect the expression of 
either transporter at DIV21. Metabolomics analysis showed 
a significant decrease in the neurotransmitter dopamine after 
exposure to all OPFRs, but not BDE-47. Again, exposure to 

IDDP and TMPP had the strongest effect, as the decrease 
was observed already at DIV14 (Fig. 4b and suppl. material 
1). In conclusion, BDE-47 showed very different effects to 
the other FR increasing not decreasing vmat1and no effect 
on vmat2 expression.

In summary, genes involved in the enzymatic transfor-
mation of glutamate to GABA were affected by all FRs 
at non-cytotoxic concentrations, again with the strongest 
effects observed by exposure to OPFRs. This indicates that 
the ratio of these neurotransmitters might be altered. In fact, 
the neurotransmitters glutamate and GABA were decreased 
as well as α-ketoglutaric acid (glutamate derivate). In addi-
tion, the expression of the dopaminergic transporter dat and 
dopamine levels were decreased for all OPFRs. Less promi-
nent effects were observed on genes encoding the vesicular 

Fig. 4   Heatmap (double gradient, green—minus; red—plus) illus-
trating a genes (measured with RT-qPCR) and b neurotransmitters 
(metabolites) (measured with Q-TOF LC–MS), involved in neuro-
transmitter transportation and production after exposure to FR. All 
data were normalized to mean of untreated control cells (0) and are 

displayed as means log2-fold change in each independent experiment, 
from at least three independent experiments performed in 2–3 repli-
cates (genes) or at least two independent experiments performed in 
4–6 replicates (metabolites)
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transporters and only at the highest concentrations. Minimal 
effects were observed after exposure to BDE-47 on selected 
genes.

Exposure to FR affects the gene expression of glial 
markers

One advantage of the 3D rat primary neural cell cultures is 
the presence of different cell types of the brain including 

glial cells, (astrocytes, oligodendrocytes and microglia). 
Aiming to assess glial toxicity due to exposure to FR, the 
gene expression of two specific markers for mature astro-
cytes were evaluated: glial fibrillary acidic protein (gfap) 
and the calcium-zinc-binding protein s100 beta (s100β).

The expression of gfap was upregulated after the expo-
sure to all OPFR (5 µM) at DIV14 (Fig. 5a and suppl. 
material 1). However, this effect was lower or even 
reversed at DIV21. OPFR exposure altered the mRNA 

Fig. 5   Heatmap (double gradient, green—minus; red—plus) illustrat-
ing a genes (measured with RT-qPCR) and b metabolites (measured 
with Q-TOF LC–MS), identified in glial cells (astrocytes, oligoden-
drocytes and microglia) after exposure to FR. All data were nor-
malized to mean of untreated control cells (0) and are displayed as 

means log2-fold change in each independent experiment, from at least 
three independent experiments performed in 2–3 replicates (genes) 
or at least two independent experiments performed in 4–6 replicates 
(metabolites)
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levels of the astrocytic marker s100β at a later stage with 
significant increase at DIV21. On the contrary, BDE-47 
decreased gfap expression at 21 DIV. This might indicate 
an astrogliosis induced by the OPFR not seen for BDE-47.

The effect of FR on the initial stages of the CNS devel-
opmental process, including proliferation of progenitor 
cells, was assessed by the expression of nestin. This pro-
tein is a cytoskeletal intermediate filament that is gradu-
ally replaced by cell-specific intermediate filaments such 
as nf-68 and nf-200 in the neural cells and gfap in astro-
cytes during the course of the CNS differentiation and 
maturation (Jin et al. 2009; Wiese et al. 2004). Further-
more, nestin can be re-expressed in activated astrocytes in 
the event of brain or neuronal injury and for this reason it 
is also recognized as a sensitive marker for reactive astro-
cytes (Brook et al. 1999; Chen et al. 2002; Sergent-Tanguy 
et al. 2006).

Nestin expression at DIV14 was significantly upregulated 
at the highest concentration (5 µM) and increased even fur-
ther at DIV21 after exposure to IPP, IDDP and TMPP and 
was not affected by the exposure to BDE-47 and TPHP at 
DIV21 (Fig. 5a and suppl. material 1). This is concordant 
with astrogliosis induced by the OPFR, but not BDE-47.

Lactic acid is mainly produced in astrocytes in the CNS 
and is an essential element of neuron–glia metabolic interac-
tions (Pellerin 2003). We observed a decrease in lactic acid 
after exposure to IPP, IDDP and TMPP (Fig. 5b and suppl. 
material 1). Creatine is a metabolite that has shown to be 
a marker of gliosis when increased (Konaka et al. 2003) 
as well as a marker of neurotoxicity when decreased (Dis-
erens et al. 2018; van Vliet et al. 2008). Exposure to IPP, 
IDDP and TMPP significantly decreased the levels of cre-
atine (Fig. 5b and suppl. material 1). Moreover, a significant 
decrease in dl-serine was observed after exposure to IPP, 
IDDP and TMPP with stronger effects to IDDP and TMPP 
(Fig. 5b and suppl. material 1). D-serine is considered an 
astroglia-derived neurotransmitter (Van Horn et al. 2013), 
though it is also produced marginally in neurons. However, 
with the method chosen here for mass spectrometry, it is not 
possible to distinguish between d- and l-isoforms, therefore, 
they are reported together.

In summary, expression of glial markers indicates that 
exposure to OPFR may activate astrocytes, either in a pri-
mary or secondary fashion, due to neuronal damage while 
less effect was observed after exposure to BDE-47 on 
selected genes and metabolites.

Myelin basic protein (mbp) is a protein expressed in 
mature oligodendrocytes and is a well-recognized oligo-
dendrocytic marker. The highest concentration (5 µM) of 
TPHP, IPP and TMPP significantly downregulated mbp 
expression at both DIV14 and DIV21 (Fig. 5a and suppl. 
material 1). Exposure to BDE-47 and IDDP did not interfere 
with the expression of mbp mRNA. In conclusion, at the 

higher concentration three of the OPFR but not BDE-47 
might interfere with myelination.

To further analyze the possible effects on myelination, 
myelin-associated glycoprotein (mag) was assessed. The 
mag is a transmembrane glycoprotein essential for the for-
mation and maintenance of the myelin sheath by promoting 
glia–axon interactions (Paivalainen and Heape 2007; Quar-
les 2007). At DIV14, the expression of mag was upregulated 
by exposure to all FR (5 µM) except IPP (Fig. 5a and suppl. 
material 1). At DIV21, the expression was instead signifi-
cantly downregulated by IPP and TMPP (5 µM) and back to 
control levels in BDE-47, TPHP- and IDDP-treated samples. 
This indicates some possible restored effects on myelination 
by these FR.

Exposure to FR may trigger an inflammatory 
response

The inflammatory cytokines interleukin-6 (IL-6) and tumor 
necrosis factor-alpha (TNF-α) are synthesized by cells of the 
CNS, including neurons and glial cells, to exert neuroprotec-
tive roles (Carlson et al. 1999). A significant increase in the 
expression of il-6 was observed after exposure to the high-
est concentration (5 µM) of IPP, IDDP and TMPP at DIV21 
(Fig. 5A and suppl. material 1). No change was observed 
after exposure to BDE-47 and TPHP. Expression of tnf-α 
was significantly increased only after exposure to 5 µM IPP 
at DIV21 (Fig. 5a and suppl. material 1).

To characterize further the inflammatory component, the 
macrophage colony-stimulating factor 1 receptor (csf1r), 
involved in microglial proliferation and activation (Mitra-
sinovic et al. 2005), and the allograft inflammatory factor 
(aif), upregulated in activated microglia due to inflammation 
(Deininger et al. 2002), were evaluated. The expression of 
csf1r and aif was only increased after exposure to TMPP 
(Fig. 5a and suppl. material 1). In contrast, levels of the 
metabolite 2,3-pyridinedicarboxylic acid (quinolinic acid) 
produced by activated microglia was significantly decreased 
after exposure to all OPFRs (Fig. 5b and suppl. material 1).

The increase of cytokine gene expression indicates that 
exposure to OPFRs may induce an inflammatory response in 
the rat primary neural model, but the microglia are only acti-
vated after exposure to TMPP. The latter was also supported 
by the metabolite observation. However, to fully confirm the 
lack of activated microglia, additional time course studies 
need to be performed.

Exposure to IPP modified the transcriptome

To get a more complete representation and to identify addi-
tional genes and pathways of interest, the whole transcrip-
tome was analyzed after exposure to 1 µM IPP at 21DIV 
versus correspondent solvent control. We observed 1971 
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significantly different expressed genes (|FC|> 1.4 and 
p < 0.05 false discovery rate Benjamini–Hochberg proce-
dure), which were further analyzed by pathway/category 
overrepresentation analysis using KEGG, WikiPathways and 
Reactome (Fabregat et al. 2018; Kanehisa and Goto 2000). 
The top perturbed pathways were associated with four main 
mechanisms by overrepresentation gene analyses (Table 3):

(1)	 downregulation of neurotransmitter receptors including 
VMAT1 and associated intracellular signal transduc-
tion (G-protein, Ca2+, MAPK);

(2)	 upregulation of immune response, inflammation and 
defense response mainly driven by MHC-I, FasL, Fas, 
complement system, FC IgG receptors (macrophages) 
and AIF (specific microglial activation biomarker);

(3)	 upregulation of cell cycle;
(4)	 changed fatty acid metabolism and transportation.

The transcriptome and RT-PCR analysis indicates similar 
effects.

In conclusion, after gene-wise careful evaluation, most 
pathways/categories could be classified into four categories: 
(1) transmission of action potential, cell–cell signaling, syn-
aptic transmission, receptor signaling, (2) immune response, 
inflammation, defense response, (3) cell cycle and (4) lipids 
metabolism and transportation.

Discussion

The U.S. Consumer Product Safety Commission (CPSC) 
accepted a petition to ban furniture, children’s products, 
electronic enclosures, and mattresses containing any mem-
ber of the class of organohalogen flame retardants in 2017. 
In response to the petition, the National Academies of Sci-
ences (NAS) released a report in May 2019, titled “Scoping 
Report for Conducting a Hazard Assessment of Organohalo-
gen Flame Retardants as a Class” (National Academies of 
Sciences 2019). The authors concluded that there is a need to 
categorize flame retardants into broad classes for risk assess-
ment rather than regulate on individual compounds.

Following the voluntary phase-out of the PBDEs, there 
has already been an increase in the use of the OPFR as evi-
denced by their ubiquitous detection in air and in dust in a 
variety of indoor environments (Bergh et al. 2011; Hoffman 
et al. 2015; Stapleton et al. 2009). A recent study showed 
the presence of OPFRs in children from residential expo-
sures (Phillips et al. 2018). OPFR metabolites have also been 
detected in urine in the general population (Hammel et al. 
2016; Hoffman et al. 2017; Ospina et al. 2018). Consider-
ing the recent petition on the ban on organohalogens, the 
use of OPFR is further projected to be on the rise. However, 

their toxicological hazard has not yet been well character-
ized. Several recent streams of data are converging on the 
conclusion that OPFRs show equivalent (or in some cases 
greater) toxicity compared to some of the phased-out PBDEs 
in several human-derived cell-based models (Behl et al. 
2015). These compounds have also been shown to produce 
neurobehavioral deficits in complementary animal models 
(Alzualde et al. 2018; Bailey and Levin 2015; Glazer et al. 
2018; Oliveri et al. 2015; Yan et al. 2017; Zhang et al. 2019) 
and might be a regretful substitution (Zimmerman and Ana-
stas 2015).

The current study sheds light on possible mechanisms by 
which OPFR may exert their developmental neurotoxicity 
using a 3D primary rat neural culture. The aggregates were 
exposed to non- or low-cytotoxic concentrations of BDE-47, 
TPHP, IPP, IDDP and TMPP (0.1, 1 and 5 µM) to under-
stand the toxicity mechanism and reveal potential pertur-
bations to crucial neurodevelopmental processes, including 
neuronal and glial differentiation, and functional maturation. 
Metabolomics and gene expression were evaluated in control 
and FR-treated cultures at DIV14 and DIV21, after 7 and 
14 days of exposure, respectively.

Exposure to FRs altered several markers involved in neu-
ronal morphology and function, both at the gene and metab-
olome level. A decrease was observed in the mRNA levels of 
nf-200, an essential component of the axonal cytoskeleton. 
The synthesis of nf proteins and the timely suppression of 
nf gene expression are of functional importance for neuronal 
activity during the differentiation and maturation process 
of the CNS. Hence, nf-200, a late developing cytoskeleton 
protein, appears as a crucial element for neuronal function, 
since it is involved in the regulation of the axonal growth and 
is believed to provide nf stability and resistance to protein 
breakdown by retarding the slower axonal transport compo-
nent (Goldstein et al. 1987; Liu et al. 1994). The decrease 
in the expression of neurofilaments after exposure to FRs 
indicates a structural disruption that can disturb the axonal 
organization and may cause degeneration of the axons (Per-
rone Capano et al. 2001) and the onset of neuropathology. 
Decreased expression of genes involved in cytoskeleton 
organization in neurite formation alongside with altered 
locomotor behavior has also been observed in zebrafish lar-
vae after exposure to OPFR (Sun et al. 2016). Moreover, 
exposure to OPFR has previously been shown to affect neur-
ite outgrowth at similar concentrations as in this study (Behl 
et al. 2015; Hausherr et al. 2014) supporting our results. 
Neurite outgrowth is one of the most established in vitro 
developmental neurotoxicity tests (Bal-Price et al. 2018) 
covering one of the key processes of CNS development that 
if perturbed likely leads to adverse outcomes.

Moreover, genes involved in neuronal function such as 
synaptogenesis and receptor expression were altered after 
exposure to all OPFR. Synapsin1 (syn1) has a functional 
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Table 3   Whole transcriptome analyzes using KEGG, WikiPathways 
and Reactome after exposure to 1 µM IPP at 21DIV revealed alterna-
tions in genes belonging to four main mechanism, (1) neurotransmit-

ters, (2) immune response, cell cycle and (4) fatty acid metabolism 
and transportation

Group KEGG, WikiPathways, Reactome p-value (uncorrected) Matched Total Interpretation

1 Alcoholism  < 1E−12 46 175 ↓ VMAT1, postsynaptic neurotransmitter 
receptors, intracellular signal transduction

2,3 Systemic lupus erythematosus 3.40E−12 36 126 ↑ Complement cascades, membrane attacking 
complex, FC IgG receptors (macrophages), 
histones

1 Neuroactive ligand-receptor interaction 7.93E−07 47 289 ↓ Neurotransmitter receptors: 1.amine: ace-
tylcholine, epinephrine, 5-HT 2.peptides: 
angiotensin, Lipoxin A4, cholecystokinin, 
opioids, orexin, somastatin, tachykinin 
3.seretin like: vasoactive intesinal peptide, 
4.others: glutamate, GABA, nucleotides, 
aspartate, cystein, glycine, alanine, growth 
hormone

↑ Neurotransmitter receptors: 1.amine: trace 
amine 2.peptide: neuropeptide Y 3.pros-
tanoid (local

inflammation) 4.class B secretin like: vasoac-
tive intestinal peptide

1 Calcium signaling pathway 1.54E−06 34 183 ↓ Neurotransmitter receptors, calcium signal-
ing proteins—> leads to MAPK signaling 
pathways

1,2,3 Viral carcinogenesis 2.16E−05 36 234 ↓ MAPK, ↑ p53, PI3K, cell cycle, MHC-I
4 Rn_Statin_Pathway_WP145_79447 2.90E−05 8 19
1 Rn_GPCRs,_Class_A_Rhodopsin-like_

WP473_72158
3.52E−05 36 229 ↓ Neurotransmitter receptors

Rn_D-Glucose-Ins1-Rxra_WP2043_71283 4.65E−05 9 25
4 Biosynthesis of unsaturated fatty acids 1.35E−04 9 27
1 Rn_Monoamine_GPCRs_WP276_48267 1.42E−04 10 33 ↓ Neurotransmitter receptors

Rn_Endochondral_Ossification_
WP1308_72214

1.66E−04 14 61

4 PPAR signaling pathway 2.91E−04 16 78 Lipids metabolism and transportation
3 Rn_Cell_cycle_WP429_41778 7.93−04 16 88 ↓↑ Cyclins D, A, B
4 Rn_Cholesterol_metabolism_WP632_77527 1.39E−03 7 23
1 Rn_Peptide_GPCRs_WP131_71770 2.06E−03 13 69 ↓ Neurotransmitter receptors
4 Rn_Adipogenesis_WP155_41714 2.15E−03 20 130 Fatty acid metabolism and transportation
1,2 Cell adhesion molecules (CAMs) 2.44E−03 24 172 ↑ MHC-I, Myelin associated glycoprotein, ↓ 

neuronreceptors, epithelium cells receptors
1 Cocaine addiction 2.91E−03 10 47 ↓ VMAT1, postsynaptic neurotransmitter 

receptors, intracellular signal transduction
1,2 Type I diabetes mellitus 3.07E−03 13 75 ↓ Glutamate metabolism, ↑ MHC-I
1 Alanine, aspartate and glutamate metabolism 3.90E−03 8 36 ↓ Peptide neurotransmitter metabolism
1 Amphetamine addiction 4.07E−03 12 65 ↓ VMAT1, postsynaptic neurotransmitter 

receptors, intracellular signal transduction
Rn_Spinal_Cord_Injury_WP2433_78470 4.07E−03 16 102

1 Rn_GPCRs,_Other_WP409_41752 4.45E−03 13 75 ↓ Neurotransmitter receptors
Taurine and hypotaurine metabolism 5.28E−03 4 10
Rn_SIDS_Susceptibility_Pathways_

WP1304_41670
5.39E−03 11 60

Rn_Cardiovascular_Signaling_
WP590_41785

6.74E−03 8 38

1 Vascular smooth muscle contraction 7.02E−03 18 124 ↓ Neurotransmitter receptors
2 Graft-versus-host disease 7.91E−03 11 66 No toll-like receptor, TNFa, IL-1 deregulation 

but ↑ of FasL and Fas and MHC-I
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role during neuronal development and playing an important 
part in the formation of synapses and in the regulation of 
neurotransmitter release by control of the amount of synaptic 
vesicles ready for exocytosis at the axon terminal (Evergren 
et al. 2007; Ferreira and Rapoport 2002). The decrease in 
the expression of syn1 after exposure to OPFRs could impact 
the neuronal function and be linked to a defective neuron 
signaling system or even death. Previously, the expression of 
another synaptogenesis marker syn2a has been shown to be 
downregulated after exposure to OPFRs in zebrafish larvae 
(Sun et al. 2016) supporting disruption of neuronal signal-
ing. Indeed, exposure to all FR used in this study has previ-
ously shown to decrease the neural network activity in rat 
primary cortical cultures acutely (Behl et al. 2015). Expo-
sure to IPP and BDE-47 during development also showed 
decrease in activity in the network formation assay (NFA) 
(Shafer et al. 2019). However, exposure to TMPP, IDDP and 
TPHP did not induce any changes. The decreased activity 
(~ 6–16 µM) was reported close to the highest concentrations 
tested in the NFA (20 µM) and it is possible that a change 
in activity would be observed in the NFA if higher concen-
tration had been tested. The decrease in syn1 in the rat 3D 
model is clearly at lower concentrations (1 µM). The window 
of development, cell populations, exposure scenario and cul-
ture condition (2D vs. 3D) differ between these studies and 
could contribute to the vulnerability. Additional experiments 
need to be performed to understand if the effects observed 
in the rat 3D brainsphere model also leads to functional 
changes. Still, the decrease in levels of the metabolites NAA 
and L-aspartic acid observed in this study is a clear indica-
tion of neuronal damage and impaired neuronal function. 
NAA is a common biomarker used in patients to diagnose 
stroke and neurodegenerative disorders (Alakkas et al. 2019; 
Baslow et al. 2003) and is produced from l-aspartic acid and 
acetyl-coenzyme A (Ariyannur et al. 2010).

In the rat brainsphere model, we also observed that neuro-
transmitters and mRNA levels of their receptors were altered 
due to exposure to the selected FR. The strongest effect was 
noted in the expression of the glutamate NMDA receptor, 
where subunits grin1 and grin2a were significantly down-
regulated at non-cytotoxic concentrations, especially after 
exposure to IPP and TMPP. The switch in subunit 2b–2a 
during development is crucial for proper maturation of the 
brain, as it is involved in neuronal function and synaptogen-
esis (Liu et al. 2004; Luthi et al. 2001). Interestingly, the 
expression of subunit grin2c was significantly increased after 
FR exposure and could be a sign of altered receptor affinity 

to the neurotransmitters (Yi et al. 2020). It was previously 
observed that exposure to TMPP reduces the response to 
glutamate in mouse cortical neurons (Hausherr et al. 2014). 
In this study, we observed a clear decrease in glutamate 
(l-glutamic acid) and the glutamate derivate α-ketoglutaric 
acid after the exposure to FR, which supports such theory. 
This was already observed at the lowest concentration 
(0.1 µM) and at the early time point (DIV14), indicating 
that this could be one of the mechanisms of the tested OPFR. 
Moreover, it is well documented that the NMDA receptor is 
a potential target during brain development and its inhibition 
can lead to decreased synaptogenesis, decreased neuronal 
network formation and ultimately impairment of learning 
and memory abilities (AOP 12, https​://aopwi​ki.org/aops/12 
and AOP 13, https​://aopwi​ki.org/aops/13) (Sachana et al. 
2018; Spinu et al. 2019; Wang et al. 2018). The altered 
gene expression of subunits of the NMDA receptor and the 
reduction in glutamate are therefore of high concern and of 
importance to investigate further.

GABA is the principal inhibiting neurotransmitter in 
the mature brain, but also exerts excitatory actions during 
the formation of the CNS (Ben-Ari et al. 2007; Li and Xu 
2008). It is implicated in the proliferation of neural pro-
genitor cells (Haydar et al. 2000), migration (Luhmann et al. 
2015), differentiation (Barbin et al. 1993; Ganguly et al. 
2001), outgrowth of neurites (Maric et al. 2001), and synap-
togenesis (Ben-Ari 2002). The neurotransmitter GABA was 
decreased after exposure to IPP, IDDP and TMPP along-
side with decreased expression of GABAA receptor subunit 
alpha1 (gabra1), but to a lower degree than glutamate and 
its receptor and mainly after prolonged exposure (14 days). 
Moreover, two isoforms of glutamate decarboxylase (gad1 
and gad2), which are the enzymes responsible for catalyz-
ing GABA synthesis from glutamate, were significantly 
decreased. This likely contributes to the decrease seen in 
GABA levels, but can also be a secondary effect due to 
the decrease in glutamate levels. Inhibition of the GABAA 
receptor has previously been suggested to contribute to the 
toxicity of TMPP (Gant et al. 1987) and TPHP (Flaskos et al. 
1998; Gant et al. 1987). Reduction of GABAergic neurons 
is one key event identified in AOPs (AOP 10, https​://aopwi​
ki.org/aops/10 and AOP 54 https​://aopwi​ki.org/aops/54) for 
neurotoxicity and developmental neurotoxicity (Bal-Price 
et al. 2015b; Spinu et al. 2019; Westerholz et al. 2010) and 
could contribute to the toxicity of OPFR. Moreover, the ratio 
of glutamate/GABA has shown to be disturbed in autistic 
children (Gaetz et al. 2014; Gogolla et al. 2009; Rippon et al. 

Table 3   (continued)

Group KEGG, WikiPathways, Reactome p-value (uncorrected) Matched Total Interpretation

2 Autoimmune thyroid disease 8.40E−03 12 76 ↑ of FasL and Fas and MHC-I

https://aopwiki.org/aops/12
https://aopwiki.org/aops/13
https://aopwiki.org/aops/10
https://aopwiki.org/aops/10
https://aopwiki.org/aops/54
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2007; Rubenstein and Merzenich 2003), raising a concern 
for OPFR as replacements, especially in children products, 
particularly as exposure to organophosphate pesticides and 
PBDEs is a suggested environmental risk factor for autism 
(Mostafalou and Abdollahi 2018; von Ehrenstein et al. 2019; 
Vuong et al. 2018; Ye et al. 2017).

Furthermore, decreases in the neurotransmitter dopamine 
and genes related to dopamine transportation were observed. 
It is known that dopaminergic neurons are more vulnerable 
to oxidative stress, which has been identified as potential 
mechanisms in the toxicity of some FR (Hendriks et al. 
2014; Pellacani et al. 2014; Tagliaferri et al. 2010; Wu et al. 
2016). Genes involved in oxidative stress were not altered 
in our transcriptomics data (data not shown), but the time 
points of sample collection might not be optimal to observe 
these effects.

Astrocytes are considered key participants in the brain 
maturation for providing neuronal structural, trophic and 
metabolic support, synthesis of growth factors and defense 
mechanisms, and for influencing synapse formation (Barker 
and Ullian 2008). Thus, the adverse effect of chemicals on 
astrocytes may interfere with the morphological develop-
ment and functional performance of neurons in the CNS. 
Aiming to assess glial toxicity due to FR exposure, the gene 
expression of two specific markers for mature astrocytes 
were evaluated: glial fibrillary acidic protein (gfap) and 
the calcium–zinc-binding protein s100 beta (s100β). Both 
genes were significantly upregulated after exposure to all 
OPFRs. Gfap is necessary for many important processes in 
the CNS correlated with neuronal survival (Liedtke et al. 
1996; Tardy et al. 1990). Increased gfap is an indication 
of gliosis/activated astrocytes, a common response of glial 
cells to neuronal injury and implicated in several neurologi-
cal disorders such as schizophrenia, bipolar disorder and 
depression (Johnston-Wilson et al. 2000). In the developing 
CNS, s100β is believed to give support to growth, survival 
and differentiation of neurons (Wang and Bordey 2008), but 
also to play an important role in the recovery of the CSN 
after injury (Yardan et al. 2011). It is used as a biomarker of 
brain damage and as a parameter of activation of astrocytes 
(Esposito et al. 2006). The elevated level of s100β may also 
by itself produce adverse effects, including overgrowth of 
dystrophic neurites (Griffin et al. 1995), and is related to the 
occurrence of various neuropathologies (Yardan et al. 2011). 
The data from a study on zebrafish exposed to OPFRs are in 
concordance with our results by showing an increase in gfap 
expression (Sun et al. 2016).

In addition, the gene expression of the neural precur-
sor marker nestin was significantly upregulated after the 
exposure to OPFRs. In the normal course of neurodevelop-
ment, astrocytes and neurons differentiate from neural pre-
cursor cells leading to a decrease in expression of nestin 
over time (Shaltouki et al. 2013). However, upon injury to 

the CNS, it is transiently re-expressed in activated astro-
cytes (Brook et al. 1999; Chen et al. 2002; Michalczyk 
and Ziman 2005) and is therefore recognized as a sensi-
tive marker for activated astrocytes (Hogberg et al. 2010, 
2009). The upregulation of nestin in reactive astroglia has 
been observed in several diseases, e.g., cerebral ischemia, 
hippocampal excitotoxicity lesions, traumatic brain injury, 
and after MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridine) exposure (Chen et al. 2002; Wei et al. 2002). It 
is likely that the increase in nestin expression observed in 
this study is due to reactivated astrocytes as also other glia 
markers were increased.

As a response to injury or chemical insult, glia cells 
(astrocytes and microglia) become activated and begin to 
produce different proinflammatory and neurotoxic sub-
stances such as cytokines and free radicals (Bal-Price and 
Brown 2001). TNF-α is a cytokine considered to be a pri-
mary proinflammatory mediator capable of playing a dual 
functional role by promoting tissue regeneration/growth 
and destruction (Wajant et al. 2003). IL-6 is another factor 
that exerts distinct functions on the CNS by participating 
in inflammatory responses and infections, and modulating 
neural processes (Abreu et al. 2018; Scheller et al. 2011). 
It has been shown that IL-6 influences the differentiation 
of neurons and astrocytes (Oh et al. 2010), but it can also 
be neurotoxic and cause neuronal death (Brown and Bal-
Price 2003; Conroy et al. 2004). The overexpression of 
IL-6 has been linked to the onset of neurodevelopmental 
and neurodegenerative diseases and mental disorders such 
as schizophrenia and autism (Conroy et al. 2004; Smith 
et al. 2007; Wei et al. 2012). We observed a significant 
upregulation of the il-6 mRNA after exposure to most 
OPFR at DIV21. After exposure to IPP, the gene expres-
sion of tnf-α was also increased. This indicates the onset of 
an inflammatory response in the 3D model after exposure 
to OPFR, possible as a secondary effect due to neuronal 
injury. Only exposure to TMPP led to possible microglia 
proliferation and activation as shown by upregulation in 
the csf1r and aif1 gene expression. It should be noted that 
the experimental setup is not ideal to detect an inflamma-
tory response, as cytokine release is rapid within hours 
after a trigger and our focus was on prolonged effects 
on development after long-term exposure. In addition, 
the microglia population, that is mainly responsible for 
cytokine release, is minor in the model; thus the cytokines 
levels can be close to the detection limits. However, tran-
scriptomics data for IPP showed a clear increase in genes 
involved in inflammatory pathways and implies that the 
immune system plays a role in the the toxicity of OPFR. 
Moreover, AOP 13 (https​://aopwi​ki.org/aops/13) links 
NMDA receptor inhibition during brain development to 
neuroinflammation and impairment of learning and mem-
ory (Villeneuve et al. 2018). Critical effects observed in 

https://aopwiki.org/aops/13
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this study were decreased gene expression of the NMDA 
receptor and glutamate levels that can be linked to the 
observed neuroinflammation.

This is the first time that potential underlying 
pathway(s) associated with developmental neurotoxicity 
of these OPFR have been investigated by utilizing a three-
dimensional rat primary neural model. Although there are 
some limitations with the cell model including but not 
limited to kinetics, metabolism, being non-human, none-
theless it is valuable in showing how alternate streams 
may aid toward mechanistic understanding of classes of 
compounds. The advent of human brainspheres (Pamies 
et al. 2017) now enables similar studies in human cell 
models (Pamies et al. 2018; Zhong et al. 2020) work on 
FR is ongoing. This model also captures several end points 
that are not currently evaluated in traditional DNT guide-
line studies including, but not limited to the role of neu-
rotransmitters and critical receptors that have previously 
been implicated in neurodevelopment (e.g. glutamate and 
GABA). Importantly, using in vitro to in vivo extrapola-
tion, these findings suggest that activity is noted at rel-
evant human exposures (within model constraints) (Blum 
et al. 2019). Studies are underway at the National Toxi-
cology Program to evaluate a couple of these compounds 
using traditional guideline DNT studies to help provide 
in vivo anchors. Nonetheless, it is not feasible or practical 
to perform guideline studies on every member of a class 
of compounds. Hence, approaches such as these in com-
bination with other assays using a DNT battery (Aschner 
et al. 2017; Bal-Price et al. 2018; Behl et al. 2015; Fritsche 
et al. 2017) complement traditional animal testing by pro-
viding guidance on prioritization, and shedding light on 
possible mechanistic understanding which may contribute 
to putative AOPs, which is currently not a part of standard 
guideline DNT testing.
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