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Abstract
Nuclear receptors (NRs) are key regulators of energy homeostasis, body development, and sexual reproduction. Xenobiot-
ics binding to NRs may disrupt natural hormonal systems and induce undesired adverse effects in the body. However, many 
chemicals of concerns have limited or no experimental data on their potential or lack-of-potential endocrine-disrupting 
effects. Here, we propose a virtual screening method based on molecular docking for predicting potential endocrine-disrupting 
chemicals (EDCs) that bind to NRs. For 12 NRs, we systematically analyzed how multiple crystal structures can be used to 
distinguish actives and inactives found in previous high-throughput experiments. Our method is based on (i) consensus dock-
ing scores from multiple structures at a single functional state (agonist-bound or antagonist-bound), (ii) multiple functional 
states (agonist-bound and antagonist-bound), and (iii) multiple pockets (orthosteric site and alternative sites) of these NRs. 
We found that the consensus enrichment from multiple structures is better than or comparable to the best enrichment from a 
single structure. The discriminating power of this consensus strategy was further enhanced by a chemical similarity-weighted 
scoring scheme, yielding better or comparable enrichment for all studied NRs. Applying this optimized method, we screened 
252 fatty acids against peroxisome proliferator-activated receptor gamma (PPARγ) and successfully identified 3 previously 
unknown fatty acids with Kd = 100–250 μM including two furan fatty acids: furannonanoic acid (FNA) and furanundecanoic 
acid (FUA), and one cyclopropane fatty acid: phytomonic acid (PTA). These results suggested that the proposed method can 
be used to rapidly screen and prioritize potential EDCs for further experimental evaluations.
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RAR​	� Retinoic acid receptor
RXR	� Retinoic X receptor
VDR	� Vitamin D receptor
ROR	� RAR-related orphan receptor
LXR	� Liver X receptor
EDC	� Endocrine-disrupting chemical
US-EPA	� United States environmental protection agency
PUFA	� Polyunsaturated fatty acids
HTS	� High-throughput in vitro screening
AUC​	� Area under the curve
RMSD	� Root mean square deviation

Introduction

Endocrine-disrupting chemicals (EDCs) are chemicals that 
can interfere with the natural hormonal systems in the body 
via various mechanisms, including altering the production, 
release, transport, binding, and metabolism of key hormones 
responsible for energy homeostasis, body development, and 
sexual reproduction (Weatherman et al. 1999; Sanderson 
2006; Bain et al. 2007; Reif et al. 2010; Huang et al. 2010; 
Soto and Sonnenschein 2010; Rotroff et al. 2013; Toporova 
and Balaguer 2020). Humans are exposed to many poten-
tial EDCs that can be found in the environment, food, and 
consumer products. Therefore, it is not surprising that the 
identification of potential EDCs has been a central focus in 
predictive toxicology. The European Commission in Regula-
tions, Registration, Evaluation, Authorization, and Restric-
tion of Chemical (REACH) (European Council 2006) has 
listed EDCs as important toxicological endpoints for chemi-
cal registrations (Nicolotti et al. 2014). Moreover, the United 
States Environmental Protection Agency (US-EPA) is also 
focusing on EDCs under the Endocrine Disruptor Screening 
Program (EDSP).

EDCs may disrupt normal functions of the endocrine 
system by interacting with nuclear receptors (NRs) (Dia-
manti-Kandarakis et al. 2009; Reif et al. 2010; Soto and 
Sonnenschein 2010; Schug et al. 2011; Rotroff et al. 2013). 
For example, bisphenol-A (BPA) and its analogs, heav-
ily used in the manufacture of polycarbonate plastics and 
epoxy resins, have been shown to bind to estrogen (ER) and 
androgen receptors (AR). The NR superfamily are ligand-
activated transcription factors that regulate various physi-
ological processes such as cell development, differentiation, 
proliferation, and metabolism. They are also associated with 
numerous pathologies such as reproductive abnormalities, 
inflammation, cardiovascular disease, and cancer. (Ribeiro 
et al. 1995; Bain et al. 2007). NRs are known to be activated 
by hormones, vitamins, fatty acids, and metabolites in the 
body. Members of this superfamily contain a N-terminal 
transactivation domain (NTD), a zinc-finger DNA binding 
domain (DBD), and a C-terminal ligand-binding domain 

(LBD). The binding of ligands with their associated NR 
transactive specific genes within a target tissue Ligand 
binding to its correlated NR results in the transactivation 
of specific genes within a target tissue (Weatherman et al. 
1999; Bain et al. 2007). NRs may be subdivided into three 
mechanistic classes. Class I NRs, also called steroid recep-
tors, include the ER, AR, progesterone receptor (PR), min-
eralocorticoid receptor (MR), and glucocorticoid receptor 
(GR). Class II NRs include the thyroid hormone receptors 
(TRα and β), peroxisome proliferator-activated receptors 
(PPARα, β, and γ), retinoic acid receptors (RARα, β, and γ), 
liver X receptors (LXRα and β), vitamin D receptor (VDR), 
and RAR-related orphan receptors (RORα, β, and γ) (Rob-
inson-Rechavi et al. 2003; Bain et al. 2007). The members 
of this subfamily heterodimerize with retinoid X receptors 
(RXRα, β, and γ). Class III NRs are a family of the orphan 
receptors. This NR class includes a group of proteins that 
share substantial sequence homology with known NRs but 
have not yet identified the ligands, such as small heterodimer 
partner (SHP), testicular receptor 2 and 4 (TR2 and 4), and 
estrogen-related receptor (ERRα, β, and γ).

Despite the known importance of NRs and their natural 
ligands in regulating endocrine systems, the relatively large 
number of proteins in this family (many of which are still 
poorly studied) and the huge numbers of potential EDCs 
with high human exposure levels have made the efforts to 
identify NR-bound EDCs to be very challenging. Tradi-
tional animal studies are expensive, time consuming, and 
low throughput (European Council 2006; Dix et al. 2007; 
Judson et al. 2008, 2009; Cohen Hubal et al. 2010; Knud-
sen et al. 2011; Kavlock et al. 2012). Thus, most previous 
work has been focused on a few well-characterized NRs, 
such as ER, AR, and PR, and a small number of chemi-
cals of concerned, such as BPA. To allow the screening of 
the biological activity of large numbers of chemicals more 
effective, US-EPA and several other agencies had initiated 
the Toxicity Forecaster (ToxCast) program and the Tox21 
consortium. Thousands of chemicals were screened and 
analyzed using high-throughput in vitro biochemical and 
cell-based assays that cover many key cellular pathways and 
biochemical targets relevant to toxicology (Dix et al. 2007). 
Several highly predictive in vitro cell-type-specific toxicity 
models based on phenotypic profiling have also been devel-
oped by the Agency for Science, Technology, and Research 
(A*STAR) from Singapore (Su et al. 2016; Lee et al. 2018; 
Paul Friedman et al. 2020; van der Ven et al. 2020; Hussain 
et al. 2020). These in vitro screening efforts have generated 
a large amount of invaluable bioactivity data for the tested 
chemicals, but many relevant environmental agents and/or 
food components are still not being tested. Therefore, com-
putational or in silico methods have the potential to bridge 
the gap and predict the bioactivities of relevant chemicals 
with little or without any experimental data.
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Most existing computational methods for predicting 
potential EDCs are based on quantitative structure–activity 
relationship (QSAR) models (Shi et al. 2001; Nicolotti et al. 
2008, 2009; Capuzzi et al. 2016) that require high chemical 
similarity to known binders (Capuzzi et al. 2016). However, 
the accuracy of these methods can be limited when applied 
to chemicals that belong to different scaffolds from known 
EDCs. To overcome this issue, protein structure-based dock-
ing or virtual screening can be employed, benefiting from 
the availability of three-dimensional structures of target 
receptors and providing insights into molecular recogni-
tion events. Such methods, primarily used in pharmaceuti-
cal ligand discovery programs, are intended to search large 
libraries of small molecules to suggest possible chemicals 
that can bind to a protein target with high affinity (Kitchen 
et al. 2004; Shoichet 2004; Nicolotti et al. 2008). To date, 
these approaches have not been widely used in toxicology, 
especially for the screening of potential EDCs from large 
numbers of chemicals. Given the enormous and fast-growing 
mass of protein structures and in vitro bioactivity data deter-
mined experimentally, structure-based docking or virtual 
screening method might provide an excellent tool to rapidly 
flag out potential EDCs for further experimental evaluations 
or confirmations of their adverse effects.

We have developed a structure-based virtual screening 
method to identify active EDCs against twelve human NRs 
(Weatherman et al. 1999; Bain et al. 2007; Huang et al. 
2010; Toporova and Balaguer 2020) with ToxCast NR 
activity data, as well as multiple (≥ 2) agonist-bound and 
antagonist-bound crystal structures of receptors. These NRs 
include AR, GR, PR, ERα, ERβ from the steroid receptor 
class, and PPARα, PPARγ, RARα, RORγ, VDR, RXRα, 
LXRβ from the thyroid/retinoid receptor class. Here, we 
present the method and its benchmark results using the 
ToxCast NR activity data, and its application to identify 
PPARγ-bound fatty acids. Only a few previous studies had 
used molecular docking or virtual screening to predict the 
potential toxicological effects of NR ligands (Trisciuzzi et al. 
2015, 2017). For example, Trisciuzzi et al. demonstrated 
that structure-based approaches, such as molecular docking, 
could be extended to exploratory toxicology studies, using 
ToxCast estrogenic potential and androgenic potential data 
(Trisciuzzi et al. 2015, 2017). Due to the aforementioned 
limitations, these studies focused only on one NR and failed 
to provide a complete picture of the capability of structure-
based methods for EDC prediction. Furthermore, the protein 
target’s flexibility is typically not taken completely into con-
sideration (Knegtel et al. 1997; Fradera et al. 2002; Carlson 
2002; McCammon 2005; Cavasotto and Singh 2008; Coz-
zini et al. 2008; Ma et al. 2009; Spyrakis and Cavasotto 
2015). In our current study, for each of the 12 selected recep-
tors, we included 2 agonist-bound and 2 antagonist-bound 
crystal structures, to systematically evaluate the utility of 

multiple receptor structures in EDC prediction using virtual 
screening.

To gain further insights on the use of virtual screening 
for EDC prediction, we explored the following questions. 
First, since multiple ligands are known for each receptor and 
ligand-based methods are orthogonal to the protein-based 
methods, we want to know whether the proposed method 
can better discriminate ToxCast actives from inactives when 
docking scores of screened chemicals are weighted by their 
chemical similarities to the known ligands. Second, given 
the fact that alternative binding pockets (ABP) have been 
confirmed for nuclear receptors such as AR and RORγ, we 
investigated the possible impact of virtual screening against 
ABPs on ToxCast active prediction accuracy. Lastly, we 
performed a case study on fatty acids to demonstrate how 
the proposed method can be used in practice. Fatty acids 
are a large group of food components that can be found 
naturally in seafood, nuts and seeds, and plant oils, but also 
increasingly be used as food additives. They play impor-
tant roles in human health and nutrition and some of them 
have been found active against nuclear receptors such as 
PPARγ (Kliewer et al. 1997; Xu et al. 1999; Kersten et al. 
2000; Sampath and Ntambi 2004; Manco et al. 2004; Bor-
doni et al. 2006; Madrazo and Kelly 2008; Marion-Letellier 
et al. 2016). However, only 14 of them have been experimen-
tally tested in the ToxCast program. We used the proposed 
method to screen 252 dietary-oriented fatty acids against 
PPARγ and experimentally verified that three of the top 
novel hits bind to PPARγ using surface plasmon resonance 
analysis. Together, our results demonstrate the feasibility 
of using virtual screening to prioritize suspected EDCs for 
further experimental evaluations.

Materials and methods

ToxCast chemical benchmarking database

The benchmarking database for all the NRs was obtained 
from the ToxCast database consisting of a curated reposi-
tory of chemicals with high-quality experimental data 
(https​://www.epa.gov/chemi​cal-resea​rch/toxic​ity-forec​
aster​-toxca​sttm-data). The Tox21/ToxCast database 
released in October 2015, containing information for 9076 
chemicals tested across 1193 different assays, including 
chemical names, CAS numbers, 2D structures, quality 
control grades, descriptions of the assays, and results 
summarized by AC50 values. These assays have been 
developed across multiple human and animal cell lines 
by several providers, including Attagene Inc. (ATG, one 
transactivation assay measuring reporter RNA transcript 
levels), NIH Chemical Genomics Center (Tox21, three 
transactivation assays measuring reporter protein level 

https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
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readouts), and NovaScreen (NVS, biochemical radioligand 
binding assays), BioSeek (BSK). In all assays, for each 
chemical–assay combination, a micromolar concentration 
was reported as the negative logarithm of the half-maximal 
activity concentration (pAC50), chemicals with “1” values 
for a given assay considered as active and with “0” values 
considered as inactive. For AR, PR, GR, PPARα, PPARγ, 
RARα, we selected chemicals that were screened in NVS 
assays because these chemicals were tested by biochemical 

radioligand binding assays that provide a measure of inter-
action between protein and ligands, as well as the degree 
of affinity (weak, strong, or no binding). For other nuclear 
receptors that do not have biochemical data we selected 
chemicals screened by cell-based assays, for RORγ, VDR, 
RXRα, and LXRβ from ATG and for ERα and ERβ from 
Tox21 (Table 1). Furthermore, we discarded chemicals 
without defined structures (e.g. mixtures, oils), chemi-
cals without a molecular description of their structure in 

Table 1   Nuclear receptor targets

AR androgen receptor, GR glucocorticoid receptor, PR progesterone receptor, ERα estrogen receptor alpha, ERβ estrogen receptor beta, PPARα 
peroxisome proliferator-activated receptor alpha, PPARγ peroxisome proliferator-activated receptor gamma, RARα retinoic acid receptor alpha, 
RORγ retinoid-related orphan receptor-gamma, VDR vitamin D receptor, RXRα retinoic X -receptor alpha
*For AR, PDB ID 2PIW was used for docking at alternative binding pocket 1 (ABP1), for other proteins another alternative pocket was extrapo-
lated based on AR allosteric site
# For RORγ, PDB ID 5C4T was used for docking at alternative binding pocket 2 (ABP2), for other proteins an alternative pocket was extrapo-
lated based on RORγ allosteric site

Protein Active structure PDB ID Inactive structure PDB ID Actives Inactives Assay

AR* 3L3X; 2AX9 3RLJ; 2OZ7 97 2561 Biochemical assay, single-readout assay that uses extracted 
gene-proteins from MCF7 in a cell-free assay. Measure-
ments 18 h after chemical dosing in a 96-well plate

GR 3K22; 6EL9 1NHZ; 4MDD 207 2351 Biochemical assay, single-readout assay that uses extracted 
gene-proteins in a cell-free assay. Measurements were 
taken 16 h after chemical dosing in a 96-well plate

PR 1SQN; 3KBA 2OVH; 4OAR 57 2403 Biochemical assay, single-readout assay that uses extracted 
gene-proteins from T47D in a cell-free assay. Measure-
ments were taken 18 h after chemical dosing in a 96-well 
plate

ERα 1X7R; 5U2D 1XP1; 2IOK 119 1651 Biochemical assay, single-readout assay that uses extracted 
gene-proteins from MCF7 in a cell-free assay. Measure-
ments 18 h after chemical dosing in a 96-well plate

ERβ 3OLL;1U3R 1L2J; 1NDE 198 1582 Biochemical assay, single-readout assay that uses extracted 
gene-proteins from MCF7 in a cell-free assay. Measure-
ments were taken 18 h after chemical dosing in a 96-well 
plate

PPARα 2P54; 1I7G 1KKQ; 2REW 68 1701 Biochemical assay, single-readout assay that uses extracted 
gene-proteins in a cell-free assay. After 1 h after chemical 
dosing in a 384-well plate

PPARγ 3BC5; 3VSO 5DWL; 5LSG 108 1660 Biochemical assay, single-readout assay that uses extracted 
gene-proteins in a cell-free assay. Measurements were 
taken 2 h after chemical dosing in a 384-well plate

RARα 3KMR; 3A9E 1DKF; 5K13 48 1717 Biochemical assay, single-readout assay that uses extracted 
gene-proteins in a cell-free assay. Measurements were 
taken 2 h after chemical dosing in a 384-well plate

RORγ# 3LOL; 4WLB 5NTK; 5K3N 57 3265 Cell-based assay, multiplexed-readout assay that uses 
HepG2, a human liver cell line, with measurements taken 
at 24 h after chemical dosing in a 24-well plate

VDR 3B0T:3AZ2 5XPL:5XUQ 951 2377 Cell-based assay, multiplexed-readout assay that uses 
HepG2, a human liver cell line, with measurements taken 
at 24 h after chemical dosing in a 24-well plate

RXRα 1MVC; 5LYQ 3NSQ; 2P1V 124 3204 Cell-based assay, multiplexed-readout assay that uses 
HepG2, a human liver cell line, with measurements taken 
at 24 h after chemical dosing in a 24-well plate

LXRβ 1P8D; 3KFC 6S4U; 6S4N 102 3226 Cell-based assay, multiplexed-readout assay that uses 
HepG2, a human liver cell line, with measurements taken 
at 24 h after chemical dosing in a 24-well plate
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SMILES (Simplified molecular-input line-entry system), 
and chemicals with less than 5 non-hydrogen atoms.

Protein structure database

The X-ray structures of the 12 NRs used in this benchmark-
ing study were retrieved from the RCSB PDB database 
(Table 1) (https​://www.rcsb.org/). For each NR, two agonist-
bound structures and two antagonist-bound structures with 
high resolution were selected. In addition, we included one 
more AR structure (PDB ID: 2PIW) and one more RORγ 
structure (PDB ID: 5C4T), each containing a ligand bound 
to a unique alternative binding pocket (ABP1 and ABP2, 
respectively). The best resolution crystal structure was used 
for the remaining NRs to extrapolate the AR and RORγ 
alternative binding sites.

Fatty acid prediction database

The fatty acid (FA) library is curated from various sources 
such as lipidbank (https​://lipid​bank.jp/), seed oil fatty acid 
database (SOFA), (Matthäus 2012) and lipidHome (Fos-
ter et al. 2013). The fatty acids can be categorized into 
10 groups, based on their chemical structures, includ-
ing saturated, unsaturated, branched, hydroxy, keto, thia, 
epoxy, cyclopropane, acetylenic and furanoid fatty acids. 
Their chain lengths range from medium (C6–C12), long 
(C13–C21), to very long (C22 and above). The majority of 
fatty acids occur naturally in the diet and in the body. For 
each of the 252 fatty acids, the name, the number of carbon 
atoms, and dietary source are summarized in Table S1.

Molecular docking

All the protein structures were preprocessed by the protein 
preparation wizard module (Protein Preparation Wizard, 
Schrödinger, LLC, NewYork, NY). The 3D structures for all 
the ToxCast chemicals and fatty acids were prepared using 
LigPrep (LigPrep, Schrödinger, LLC, New York, NY). Then 
molecular docking was performed using the Glide module 
(Glide, Schrödinger, LLC, New York, NY). Firstly, to set up 
receptor grid, the Receptor Grid Generation Panel within the 
Glide suite was used to define one cubic grid box (15 Å per 
side) as the inner-box and another cubic box (20 Å per side) 
as the outer-box, both centering at the centroid of the crystal 
ligand. The OPLS3e force field was employed for identifying 
and ranking the docking poses.

Chemical similarity‑weighted scoring scheme

Known ligands of the 12 NRs were extracted from ChEMBL 
(https​://www.ebi.ac.uk/chemb​l/), using a filter that bind-
ing affinity value (Ki, Kd, EC50 and IC50) was less than 

100 μM. The linear fingerprints (daylight method) of the 
ToxCast chemicals and extracted ChEMBL ligands of the 
12 NRs were generated and compared using canvas module 
(Canvas, Schrödinger, LLC, New York, NY) yielding the 
Tanimoto coefficient (Tc) metrics. For each ToxCast chemi-
cal included for one specific NR, multiple Tc values were 
generated with respect to various ligands of that NR, and 
the highest Tc value was used for that chemical. The chemi-
cal similarity-weighted scoring scheme was constructed by 
applying conditional weighting factor to the docking score of 
a chemical based on its Tc value, as stated in Eq. 1 (Fig. 1).

 

Evaluation of virtual screening results

The accuracy of the virtual screening was assessed using 
enrichment factor (EF) and logarithmic area under curve 
(logAUC), as described in Eqs. 2 and 3 (Fan et al. 2009, 
2012; Mysinger and Shoichet 2010; Mysinger et al. 2012; 
Lim et al. 2018). The EF is the concentration of the true 
positives among the top-scoring docking hits compared to 
their concentration throughout the entire database:

In this study, EF1 (enrichment factor at 1% of the ranked 
database) was measured. To quantify the enrichment inde-
pendently of the arbitrary value of Nsubset, we also calculated 
the area under the enrichment curve with x-axis on a loga-
rithmic scale to favor early enrichment (logAUC):

where ∆x is 0.1. A random selection of true positives from 
the database will yield a logAUC value of 14.5 while a 
mediocre selection picking twice as many ToxCast actives 
than random yields a logAUC value of 24.5. Both EF1 and 
logAUC were considered significantly different, when one 
value is over 10% larger (better) or smaller (worse) than 
the other, otherwise these two values are considered to be 
comparable.

For each NR, both EF1 and logAUC were computed for 
each receptor structure, as well as consensus over multiple 
receptor structures. The consensus score was calculated by 
ranking each compound in the database using its best energy 

(1)

E�
DOCK

= (1 + i)*EDOCK

⎧
⎪⎨⎪⎩

i = 0.25 if Tc > 0.7

i = 0.10 if 0.3 ≤ Tc ≤ 0.7

i = 0 if Tc < 0.3

.

(2)EFsubset =

(
Activeselected∕Nsubset

)
(
Activetotal∕Ntotal

) .

(3)

logAUC =
1

log10100∕0.1

100∑
0.1

Activeselected (x)

Activetotal
Δx and x = log10

Nsubset

Ntotal

,

https://www.rcsb.org/
https://lipidbank.jp/
https://www.ebi.ac.uk/chembl/
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across all receptor structures (Fan et al. 2009; Lim et al. 
2018).

Experimental assays

Protein expression and purification

PPARγ ligand binding domain (204–477) was cloned into 
pGEX-6p-1 vector (GE Healthcare) and expressed as GST 
fusion protein in E. Coli-BL21(DE3) strain (Agilent Tech-
nologies). The protein was firstly purified using a glutathione 
Sephararose 4B column, followed by PreScission protease 
cleavage to remove the GST-tag. The cleaved fusion pro-
tein was further purified to homogeneity by desalting, glu-
tathione Sephararose 4B and Supperdex 75 (GE Healthcare) 
columns. The finally collected protein in 20 mM Tirs, pH8.0, 
150 mM NaCl and 2 mM DTT was concentrated to 20 mg/
ml. The purity was checked by SDS-PAGE and protein was 
stored at − 80 °C for use.

Surface plasmon resonance (SPR) analysis

PPARγ (0.05 mg/ml) were coupled onto CM5 sensor chips 
according to amine coupling procedure from the manufac-
turer’s manual. The final immobilization level of PPARγ was 
about 6500 resonance units (RUs). A reference channel was 

generated at same conditions without protein injection and 
used as a blank control to correct the instrument or buffer 
artifacts. Fatty acids were dissolved in DMSO and diluted 
with concentration ranging from 0.78 to 50 μM, and injected 
at a flowrate of 40 μL/min. Each sensorgram consists of 
an association phase (120 s), indicating the binding of the 
injected compound to the protein, followed by a dissocia-
tion phase (300 s) during which the running buffer (10 mM 
phosphate buffer, 150 mM NaCl, 5% DMSO, 0.05% Tween 
20, pH 7.4) is passed over and the bound compounds were 
eluted from the chip surface. The Kd was calculated by 
steady-state binding fitting method in Biacore T200 evalu-
ate the software.

Results and discussion

Cognate ligand docking

To evaluate the accuracy of the docking method, we first 
docked the cognate ligands (ligands that bind to proteins 
in crystal structures) back into respective crystal structures 
of each target. Root mean square deviation (RMSD) was 
calculated between the ligand docking pose and its crystal 
structure. The RMSD values are shown in Table S2. We 
found that the current docking method reproduced the ligand 

Fig. 1   Work-flow of in silico toxicity prediction targeting nuclear receptors
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crystal structures accurately (RMSD < 2.0 Å in 49 out of 50 
structures, RMSD < 2.5 Å in all 50 structures).

Virtual screening and ToxCast active enrichment

NRs are a family of ligand-regulated transcription factors, 
whose activities are mediated by a number of extracellular 
lipophilic ligands, including many key steroid hormones 
and metabolites in the endocrine systems. These receptors 
also exist in two distinct functional states: agonist-bound 
(active) state and antagonist-bound (inactive) state. We 
docked ToxCast actives and inactives to both functional 
states of the 12 NRs in this study, considering two NR 
structures for each functional state (in total 48 structures, 
Table 1). First, we assessed the ToxCast active enrichment 
measured by EF1 and logAUC, from docking against a 
single receptor structure (Table 2). All the docking screens 
outperformed the random selection, with 55% structures 
outperformed the mediocre selection (twice better than 

random). For example, two known EDCs, Bisphenol A 
(BPA) and Diallyl phthalate (DAP), are ranked 63 and 254, 
respectively, out of 1770 chemicals against ER; and are 
ranked 173 and 128 out of 1768 chemicals against PPARγ 
in best-performing structures, respectively.

Consensus over multiple receptor structures

In virtual screening against single structures, the struc-
tural flexibility of the protein target and associated ligand 
selectivity are often not fully considered. To better take 
this into account, for each of 12 NRs, we included two 
active structures and two inactive structures. The consen-
sus enrichments from 2 structures of each functional state 
and from 4 structures of two functional states were calcu-
lated separately.

Table 2   ToxCast active enrichment from every single structure, and the consensus over multiple structures

Consensus logAUC/EF1, logAUC/EF1 calculated from consensus docking scores from two structures of a single functional state (active or inac-
tive state). Total consensus logAUC/EF1, logAUC/EF1 calculated from consensus docking scores from four structures (2 active and 2 inactive 
structures.) Consensus logAUC/EF1 (and Total consensus logAUC/EF1) is in bold/italic font when it is 10% larger/smaller than that from the 
best performing structure, and in a normal font in rest cases where it is considered to be comparable

Receptor Active structures Inactive structures Total consen-
sus logAUC 
(EF1)PDB ID logAUC (EF1) Concensus 

logAUC (EF1)
PDB ID logAUC (EF1) Consensus 

logAUC (EF1)

AR 3L3X 35.3 (9.4) 35.5 (11.5) 3RLJ 24.8 (0.0) 24.8 (3.1) 27.9 (11.5)
2AX9 28.4 (5.2) 2OZ7 25.5 (3.1)

GR 3K22 29.3 (7.6) 28.3 (4.7) 1NHZ 29.5 (9.4) 29.6 (4.7) 32.5 (9.4)
6EL9 28.3 (4.7) 4MDD 24.3 (3.5)

PR 1SQN 31.1 (15.8) 34.0 (13.0) 2OVH 35.6 (8.8) 39.2 (10.6) 40.0 (13.0)
3KBA 30.8 (8.8) 4OAR 32.9 (8.8)

ERα 1X7R 32.9 (11.6) 31.0 (7.6) 1XP1 31.7 (12.6) 33.5 (10.1) 33.5 (12.6)
5U2D 28.2 (8.4) 2IOK 30.2 (5.9)

ERβ 3OLL 28.2 (8.1) 31.7 (9.2) 1L2J 31.0 (11.7) 34.2 (12.7) 34.5 (11.7)
1U3R 28.4 (8.1) 1NDE 31.1 (8.1)

PPARα 2P54 21.2 (7.9) 27.8 (7.9) 1KKQ 29.6 (5.3) 29.6 (5.3) 30.1 (7.9)
1I7G 27.4 (7.9) 2REW 26.6 (5.3)

PPARγ 3BC5 20.9 (2.8) 21.0 (3.7) 5DWL 20.4 (2.8) 22.1 (4.4) 23.6 (4.8)
3VSO 18.2 (3.7) 5LSG 21.0 (4.6)

RARα 3KMR 20.3 (0.0) 21.4 (2.4) 1DKF 21.8 (2.4) 23.5 (2.4) 23.0 (2.4)
3A9E 24.0 (0.0) 5K13 25.1 (2.4)

RORγ 3LOL 20.1 (2.4) 20.8 (3.6) 5NTK 20.7 (1.2) 21.7 (1.9) 23.9 (3.6)
4WLB 21.0 (3.6) 5K3N 21.4 (1.2)

VDR 3B0T 21.3 (1.8) 23.8 (2.5) 5XPL 20.4 (2.0) 21.3 (2.4) 22.9 (2.5)
3AZ2 21.7 (2.2) 5XUQ 19.8 (1.4)

RXRα 1MVC 20.7 (4.6) 24.1 (4.6) 3NSQ 20.1 (3.1) 27.6 (7.7) 28.0 (9.2)
5LYQ 21.5 (3.1) 2P1V 24.2 (9.2)

LXRβ 1P8D 18.9 (3.1) 21.3 (5.2) 6S4U 18.2 (1.0) 21.2 (4.2) 21.9 (5.2)
3KFC 18.8 (4.2) 6S4N 19.0 (2.1)
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Single functional state

First, for each NR, we compared the consensus enrichment 
(logAUC and EF1) over 2 receptor structures of a single 
functional state (either active or inactive) and the corre-
sponding enrichments from single structure screening. Out 
of the 24 functional states of 12 NRs, consensus logAUC 
values are better, comparable to, and worse than that from 
the better performing structure in 33.3%, 62.5%, and 4.2% 
of cases, respectively; similarly, consensus EF1 values are 
better, comparable to, and worse than that from the best 
performing structure in 37.5%, 37.5% and 25.0% cases, 
respectively (Table 2). We note that the consensus enrich-
ment values (both logAUC and EF1) in each of these worse 
cases, are still better than or comparable to that from the 
other structure in the same functional state.

Dual functional states

Second, for each NR, we calculated the total consensus 
enrichment (logAUC and EF1) over 4 receptor structures 
of both functional states. Out of 12 NRs, total consensus 
logAUC values are better than, comparable to, and worse 
than that from the best performing structure in 58.3%, 
33.3%, and 8.3% of cases, respectively; similarly, total con-
sensus EF1 values are better, comparable to, and worse than 
that from the best performing structure in 25.0%, 66.7% and 
8.3% cases, respectively (Table 2; Fig. 2). We note that the 
total consensus enrichment values (both logAUC and EF1) 
in each of these worse cases are still better than or compa-
rable to that from the second-best performing structure of 
that NR. When the consensus score over multiple structures 
was applied, the ranks of known EDCs were often improved 
in comparison to that from the best performing structure. 
For example, the rank of BPA against ERα and PPARγ has 
improved from 63 and 173 (the best performing structures) 
to 29 and 64, respectively; while the rank for DAP against 
ERα and PPARγ has improved from 254 and 128 to 88 and 
67, respectively.

ToxCast active selectivity by different functional states

To further understand whether docking against active or 
inactive structures confers any selectivity or not, we exam-
ined the docking screens in detail. Significant differences 
(10%) between consensus logAUC values from active and 
inactive structures were observed in AR, PR, RXRα, and 
RARα. In PR, RXRα, and RARα, inactive structures yielded 
higher consensus logAUC values than active structures; 
while in AR, it is the opposite—the consensus logAUC value 
from active structures (35.5) is higher than that from inac-
tive structures (24.8). In AR and RXRα, we also observed a 
similar trend in consensus EF1 as their consensus logAUC. 

In AR, The significant differences in logAUC and EF1 are 
due to the fact that among ToxCast actives of AR, 38% of 
these ToxCast actives are known AR agonists (Kleinstreuer 
et al. 2017; Lynch et al. 2017). These observations suggest 
possible selectivity of ToxCast actives by active or inac-
tive structures of these receptors. For instance, the ToxCast 
active tetrahydroxybenzophenone was ranked 14 in one 
active structure of AR (PDB ID: 3L3X, Fig. 3a) but only 
669 in one inactive structure of the same receptor (PDB 
ID: 2OZ7). In contrast, the ToxCast active triconazole, was 
ranked 1565 and 4 in these two AR structures, respectively 
(Fig. 3b). We presume that these opposite trends may be 
due to conformational changes in TRP741, MET745, and 
MET895. In that active structure, these residues are stacked 
against each other, resulting in a smaller binding site that 
favors tetrahydroxybenzophenone over triconazole. Com-
pared to their orientations in that active structure, these 
residues are further away from each other in that inactive 
structure, resulting in a larger binding site that favors tri-
conazole over tetrahydroxybenzophenone.

These results on consensus ToxCast active enrichment 
are very promising, as simply by taking the consensus it will 
very likely approach the potential EDC recognition ability 
of the best or second-best performing structure that would 
often be difficult to know in advance in real applications. 
This could be because different structures of each recep-
tor complement different groups of ToxCast actives but not 
the inactives so that a consensus selection relying on the 
best docking score of each chemical derived using multiple 
receptor structures from two functional states could rescue 
certain potential EDCs that would be missed by a single 
receptor structure.

Hybrid scoring scheme

Enrichment based on chemical similarity index

In this study, we also performed virtual screening of 12 
targets using the chemical similarity index (Tc, 2D finger-
prints) of the chemicals with known binders (extracted from 
ChEMBL). We generated the Tc values with known binders 
from ChEMBL as mentioned in the methods section, then 
calculated their logAUC values based only on Tc values. 
The consensus logAUC values from 4 receptor structures 
using only Tc values of chemicals are worse than those using 
docking scores in 11 out of 12 NRs (91.6%), only compa-
rable in the case of PR (Fig. 4). The performance of virtual 
screening using only Tc values, however, still yielded con-
sensus enrichment better than random selection in 10 NRs. 
Since ligand-based (chemical similarity) and structure-based 
(docking) approaches are not completely correlated and both 
methods have reasonable enrichment potential (Ewing et al. 
2006; Sastry et al. 2010; Kortagere et al. 2010; Huang et al. 
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2016; Cleves and Jain 2020), we explored an arbitrary com-
bination of both approaches to enhance the overall enrich-
ment. The assumption is that the respective errors in their 
enrichment are somewhat unlinked and that the integrated 
method may have a synergistic advantage.

Chemical similarity‑weighted scoring scheme

To combine both chemical similarity and docking 
approaches, we implemented a hybrid scoring scheme 
(Eq. 1), resulting in a new score (E’DOCK) for each chemical. 
With our hybrid scoring scheme, improved and comparable 

logAUC values are observed in 39.6% and 60.4% of screen-
ing against the 48 structures used for the 12 NRs, with 
respect to those using original docking scores (EDOCK) 
(Table 3). For early enrichment (EF1), the hybrid scoring 
scheme led to an improvement in more cases (64.6%) and 
the rest remain comparable. Out of the 24 functional states 
of 12 NRs, the consensus logAUC of single functional state 
with E’DOCK are better than and comparable to the logAUC 
with E’DOCK from the more enriching structure in 29.2% and 
70.8% of cases, respectively, while better than and compara-
ble to the consensus logAUC of single functional state with 
EDOCK in 25.0% and 75.0% of cases, respectively. Similarly, 

Fig. 2   ToxCast active enrichment plots for 12 nuclear receptors, 
including random selection as reference (dotted line, grey), the 
enrichment from the best performing structure of each NR (solid 

line, grey), the consensus enrichment over 4 structures (2 active and 
2 inactive structures) with EDOCK (dotted line, black) and with E’DOCK 
(solid line, black)
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the consensus EF1 of single functional state with E’DOCK 
are better than, comparable to, and worse than the EF1 with 
E’DOCK from the more enriching structure in 25.0%, 41.7%, 
and 33.3% of cases, respectively, while better than and com-
parable to the consensus EF1 of single functional state with 
EDOCK in 62.5% and 37.5% of cases, respectively. Consider-
ing all 4 receptor structures together, the total consensus 
logAUC with E’DOCK are better than and comparable to the 
logAUC from the most enriching structure with E’DOCK in 
33.3% and 66.7% of cases, respectively, while better than 
and comparable to the total consensus logAUC with EDOCK 

in 8.3% and 91.7% of cases, respectively. Similarly, the total 
consensus EF1 with E’DOCK are better than, comparable to, 
and worse than the EF1 with E’DOCK from the most enrich-
ing structure in 25.0%, 33.3%, and 41.7% of cases, respec-
tively, while better than, comparable to, and worse than the 
total consensus EF1 with EDOCK in 50.0%, 33.3%, and 16.7% 
of cases, respectively.

These comparisons between results from E’DOCK 
and EDOCK indicate that we can expect improved over-
all enrichment (logAUC) and more commonly improved 
early enrichment (EF1), without detrimental effects on 

Fig. 3   a Tetrahydroxybenzophe-
none docked in the active struc-
ture of AR (PDB ID 3L3X), 
b Triticonazole docked in the 
inactive structure of AR (PDB 
ID 2OZ7), c Nilutamide in PR 
(PDB ID: 1SQN), docking rank 
enhanced to 49 from 292 after 
applying the hybrid scoring 
scheme, d Esfenvalerate in GR 
(PDB ID: 4MDD), docking 
rank enhanced to 16 from 117 
after applying the hybrid scor-
ing scheme, e Morin, docked 
at alternate binding pocket 1 
(ABP1) of PPARa (PDB ID: 
2P54), f 5HPP-33, docked 
at alternate binding pocket 2 
(ABP2) of RORγ (PDB ID: 
5C4T)
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the rest, when the hybrid scoring scheme is applied to 
docking results from single structures or from a consensus 
over multiple structures in the same functional state. For 
example, in the case of PR, the logAUC with E’DOCK is 
improved by 10%, 14%, 15% and 12% in the 4 structures 
(PDB ID: 1SQN, 3KBA, 2OVH, and 4OAR), respectively; 
and the EF1 with E’DOCK was improved by 78%, 239%, 
219%, and 180%, respectively. These significant improve-
ments are due to the fact that among ToxCast actives of 

PR, 37% of these ToxCast actives are chemically similar 
to the known ChEMBL ligands of PR (Tc ≥ 0.3), reflected 
by the improved ranks of these 57 chemicals with E’DOCK 
(Table S3). In particular, the rank of a cancer drug Niluta-
mide (ToxCast active, T00001559, Tc = 0.49) is enhanced 
from 292 (with EDOCK) to 49 (with E’DOCK) against the 
active structure 1SQN (Fig. 3c). In the case of GR, the 
logAUC of the 4 structures (PDB ID: 3K22, 6EL9, 1NHZ, 
and 4MDD) are comparable to those with EDOCK. However, 

Fig. 4   Comparison between 
ToxCast actives enrich-
ment (logAUC) of chemical 
similarity-based screening 
(orange), consensus enrichment 
over 4 structures (2 active and 2 
inactive structures) with EDOCK 
(blue) and with E’DOCK (grey)
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Table 3   ToxCast active enrichment generated using the hybrid scoring scheme

Receptor Active structures Inactive structures Total consensus
logAUC (EF1)PDB ID logAUC (EF1) Concensus logAUC (EF1) PDB ID logAUC (EF1) Consensus logAUC (EF1)

AR 3L3X 35.4 (11.5) 32.3 (11.5) 3RLJ 28.1 (1.0) 27.5 (4.2) 35.4 (11.5)2AX9 28.9 (5.2) 2OZ7 26.8 (3.1)
GR 3K22 29.8 (12.9) 29.1 (9.4) 1NHZ 29.8 (11.7) 29.9 (6.4) 32.2 (9.4)6EL9 29.0 (11.1) 4MDD 25.2 (5.9)
PR 1SQN 34.1 (28.1) 37.3 (27.8) 2OVH 41.1 (28.1) 39.4 (24.3) 39.4 (24.8)3KBA 35.0 (29.8) 4OAR 36.7 (24.6)
ERα 1X7R 36.7 (19.3) 36.0 (12.6) 1XP1 31.8 (21.9) 36.4 (12.6) 36.3 (18.5)5U2D 34.2 (15.2) 2IOK 33.2 (18.5)
ERβ 3OLL 32.7 (15.2) 33.0 (16.5) 1L2J 34.8 (17.9) 35.0 (12.7) 35.1 (17.9)1U3R 33.2 (16.5) 1NDE 35.0 (17.9)
PPARα 2P54 23.1 (7.9) 30.4 (7.9) 1KKQ 27.7 (5.3) 27.8 (5.3) 32.5 (5.3)1I7G 27.2 (7.9) 2REW 28.4 (5.3)
PPARγ 3BC5 20.0 (2.8) 22.1 (4.6) 5DWL 21.0 (3.7) 23.6 (4.8) 24.0 (4.8)3VSO 18.3 (3.7) 5LSG 21.1 (4.6)
RARα 3KMR 20.3 (0.0) 24.2 (5.6) 1DKF 22.5 (2.4) 24.7 (8.3) 24.3 (5.6)3A9E 24.1 (2.4) 5K13 24.0 (2.4)
RORγ 3L0L 21.5 (3.6) 22.6 (4.8) 5NTK 22.1 (2.4) 24.2 (1.8) 23.1 (4.8)4WLB 22.9 (4.8) 5K3N 23.4 (2.4)
VDR 3B0T 21.4 (1.8) 24.0 (2.5) 5XPL 20.9 (2.0) 21.8 (2.1) 23.7 (2.5)3AZ2 22.0 (2.2) 5XUQ 20.2 (1.4)
RXRα 1MVC 23.3 (10.8)

26.7 (4.6)
3NSQ 23.8 (4.6)

27.8 (9.2) 27.1 (4.6)5LYQ 24.1 (7.7) 2P1V 23.9 (10.8)
LXRβ 1P8D 21.2 (5.2)

23.5 (6.3)
6S4U 20.4 (3.1)

22.6 (5.2) 23.7 (6.3)
3KFC 21.3 (5.2) 6S4N 21.4 (5.2)

logAUC/EF1, Consensus logAUC/EF1, and Total consensus logAUC/EF1 from the orthosteric pocket are calculated, compared, and marked in 
the same manner as in Table 2, except that the hybrid score (E’DOCK) is used in the calculation instead of the original docking score (EDOCK). 
These values are also compared to the counterparts in Table 2, and highlighted with straight or waved underline when they are better or worse 
than the counterparts in Table 2
Consensus logAUC/EF1 (and Total consensus logAUC/EF1) is in bold/italic font when it is 10% larger/smaller than that from the best perform-
ing structure, and in a normal font in rest cases where it is considered to be comparable
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the EF1 with E’DOCK was improved by 70%, 136%, 24%, 
and 68%, respectively. Among ToxCast actives of GR, only 
18% of these ToxCast actives are chemically similar to the 
known ChEMBL ligands of GR. In particular, the rank 
of a pyrethroid insecticide Esfenvalerate (ToxCast active, 
T00001302, Tc = 0.69) is enhanced from 117 (with EDOCK) 
to 16 (with E’DOCK) against the inactive structure 4MDD 
(Fig. 3d). We also investigated the performance of known 
EDCs, when the hybrid scoring scheme was applied to the 
docking results, the scores and ranks were often improved. 
For example, the ranks based on total consensus scores of 
BPA against ERα and PPARγ are improved from 29 (with 
EDOCK) to 11 (with E’DOCK) and from 64 (with EDOCK) 
to 21 (with E’DOCK), respectively; and the ranks of DAP 
against ERα and PPARγ are improved from 88 (EDOCK) to 
34 (with E’DOCK) and from 67 (with EDOCK) to 14 (with 
E’DOCK), respectively.

When the total consensus E’DOCK (over all the 4 struc-
tures of each NR) was applied, at least 4 and 14 ToxCast 
actives are detected among the top-ranked 20 ToxCast 
chemicals (20% and 70%) for 10 and 5 NRs, respectively 
(Table S4). The numbers of ToxCast actives in the top-
ranked 20 ToxCast chemicals using the total consensus 
E’DOCK, are higher than, equal to, and lower than those 
using the EDOCK from the most enriching structures in 
75.0%, 16.7%, and 8.3% of cases, respectively; while 
higher than, equal to, and lower than those using the total 
consensus EDOCK in 50.0%, 33.3%, and 16.7% of cases, 
respectively. Considering the marginal but systematic 
improvement in ToxCast active enrichment, the combina-
tion of consensus over multiple structures and hybrid scor-
ing scheme is probably the optimal method for potential 
EDC recognition, when both multiple receptor structures 
and known ligands are available for the target protein.

Alternative pockets

Our previous results emphasized the importance of using 
multiple structures, hybrid scoring scheme in the recogni-
tion of ToxCast actives of 12 NRs. However, these calcula-
tions were done with the assumption that these actives bind 
only to the orthosteric binding pocket (OBP). However, AR 
(Lack et al. 2011; Lallous et al. 2016) and RORγ (Song et al. 
2016) have been previously reported to have alternate bind-
ing pockets ABP1 and ABP2, respectively. In AR, the ABP1 
(PDB ID: 2PIW) is also known as binding function 3 site 
(BF3), that is a hydrophobic site located at the junction of 
H1, the loop of H3-5, and H9, adjacent to activation func-
tion site (AF2, cofactor binding site). In RORγ, the ABP2 
(PDB ID: 5C4T) consists of H4, H5, H11 and the reposi-
tioned H12 in its agonistic state, adjacent to the AF2 site 
but distal to OBP. Ligands binding to these ABPs have been 
implicated in the activation/inactivation mechanism in these 

nuclear receptors (Lack et al. 2011; Song et al. 2016; Lal-
lous et al. 2016). In this study, we extrapolated ABP1 of AR 
and ABP2 of RORγ to the best resolution structure of each 
of the remaining 11 NRs, respectively, because both ABP 
conformations vary little among the 4 receptor structures 
of each NR used in this study. Thereafter, ToxCast actives 
and inactives were docked to ABP1 and ABP2 of each NR.

11 and 3 docking screens at ABP1 (confirmed in AR, 
predicted in the rest 11 NRs) outperformed (≥ 10%) ran-
dom and mediocore selection, respectively; while only 4 
docking screens at ABP2 (confirmed in RORγ, predicted in 
the rest 11 NRs) outperformed random selection (Table 4). 
In comparison to the results from OBP, docking against 
ABP1 in 6 NRs yielded better (PPARα) or comparable 
(GR, PPARγ, RORγ, VDR, RXRα) performance and all the 
rest are worse. Combining results from OBP and ABP(s) 
together, the consensus logAUC of OBP + ABP1 are better 
than, comparable to, and worse than that from the logAUC 
of OBP in 25%, 58% and 17% of NRs, respectively; the 
consensus EF1 of OBP and ABP1 are better than, compa-
rable to, and worse than that from the EF1 of OBP in 33%, 
50% and 17% of NRs, respectively. The consensus logAUC 
and EF1 of OBP + ABP1 + ABP2 presented the same per-
formance. These results suggest that consensus over OBP 
and ABP(s) may in non-negligible number of cases lead to 
reduced accuracy in ToxCast active prediction, therefore, 
caution should be taken for including ABP-targeted dock-
ing screens in the prediction of potential EDCs, especially 
when ABPs are only predicted. In the meantime, we note 
that in 8 NRs more than 10% ToxCast actives received better 
docking scores from ABP1 than those from OBP, with the 
highest ratio from PPARα (35%). These 8 NRs include 5 out 
of the 6 NRs that showed better ToxCast active enrichment 
from ABP1 than that from OBP, indicating ABP1 should be 
considered in chemical toxicity prediction at least for these 
5 NRs (PPARα, GR, PPARγ, RORγ, RXRα). For example, 
in the case of PPARα, where the logAUC values from OBP 
and ABP1 are 21.2 and 28.5, respectively, and the consensus 
logAUC is enhanced to 32.6, three ToxCast actives includ-
ing econazole, morin, and apomorphine, have much better 
docking scores (data not shown) and ranks from ABP1 (12, 
15, and 61) than those from OBP (996, 445, and 1323), 
respectively. In ABP1, the docked morin formed hydrogen 
bond interactions with PRO295, GLY296, ASN299, and 
LYS399 using its hydroxy/keto groups, and pi–pi stacking 
interaction with HIS396 using its phenyl ring (Fig. 3e). In 
addition, docking screens against ABP(s) may still be ben-
eficiary even when the enrichment values from ABP(s) are 
worse than those from OBP. For example, in the case of AR, 
the logAUC values from OBP are much better than those 
from ABP1, and only 7.0% of ToxCast actives have better 
docking scores from ABP1 than those from OBP (Table 4). 
However, ToxCast actives Nitrilotriacetic acid, lactofen, and 
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bensulide received better docking scores (data not shown) 
and ranks (61, 88, 168) from ABP1 than those from OBP 
(231, 447, 884). Similarly, in the case of RORγ, the logAUC 
values from OBP are much better than those from ABP2, 
and only 4.8% of ToxCast actives have better docking 
scores from ABP2 than those from OBP. However, ToxCast 
actives 5HPP-33 (thalidomide derivative), parafuchsin, and 
reservertol received better docking scores (data not shown) 
and ranks (16, 38, 143) from ABP2 than those from OBP 
(1578, 1657, 808). In ABP2, the docked 5HPP-33 formed 
hydrogen bonding interactions with ALA497 and PHE498 
using its hydroxy group (Fig. 3f). Similar receptor-ligand 
interactions can be seen in the RORγ crystal structure solved 
with bound ABP2 ligand (PDB ID: 5C4T). 

Prediction of novel fatty acids binding to PPARγ

PPARγ is one of the three PPAR isoforms (α, β, and γ). It 
is involved in transcriptional regulation of glucose and lipid 
metabolism (Yu et al. 1995; Lemberger et al. 1996; Des-
vergne and Wahli 1999; Tyagi et al. 2011), and mainly regu-
lates adipose differentiation. Numerous natural endogenous 
and dietary lipids and their metabolites act as PPARγ acti-
vators, including polyunsaturated fatty acids (PUFAs) such 
as docosahexaenoic acid (DHA), and eicosapentanoic acid 

(EPA). The PUFAs and saturated fatty acids play important 
roles in membrane structure, bioactive compound produc-
tion, and cellular signaling processes. Nowadays, they are 
increasingly consumed as food additives and supplements, 
while the consumption of saturated fats and unsaturated 
fats is considered to be harmful and beneficial, respectively. 
Therefore, it is important to recognize dietary fatty acids that 
can activate PPARγ through binding. Such discovery is very 
useful for the hazard or risk assessments of food products 
and prioritize specific food components and/or additives for 
further experimental assessments.

In the benchmarking of ToxCast chemicals, the enrich-
ment of PPARγ actives using four PPARγ structures and 
the hybrid scoring function E’DOCK is only 24.0 for logAUC 
and 4.8 for EF1 (Table 3). To facilitate PPARγ ligand iden-
tification out of fatty acids, we attempted to improve the 
existing docking-based potential EDC prediction method, 
following the same philosophy that consensus enrichment of 
more structures will be better than or comparable to that of 
fewer structures. Given the 222 crystal structures determined 
for PPARγ, we added two more agonist-bound structures 
and two more antagonist-bound structures to the PPARγ 
structure dataset, in total 8 structures that were solved in 
complex with drug-like molecules but not fatty acids. When 
the ToxCast library was screened against these 8 structures 

Table 4   ToxCast active enrichment from allosteric pockets, and the consensus over different pockets

logAUC(EF1) from OBP, logAUC (EF1) from the orthosteric binding pocket in the structure of the best resolution. Consensus1 logAUC/EF1, 
Consensus logAUC/EF1 from OBP and ABP1. Consensus2 logAUC/EF1, Consensus logAUC/EF1 from OBP, ABP1, and ABP2. ToxCast 
actives% favoring ABP1, the percentage of ToxCAST actives that were scored better by ABP1 than OBP. Consensus1 logAUC/EF1 or Consen-
sus2 logAUC/EF1 are highlighted in bold or italic fonts when they are > 10% better or worse than logAUC (EF1) from OBP
*For AR, the reported alternative binding pocket (ABP1) (PDB ID: 2PIW) was used for docking, the ABP1 in each of the other 11 NRs was 
derived by superposing the best resolution structure onto 2PIW
# For RORγ, the reported alternative binding pocket (ABP2) (PDB ID: 5C4T) was used for docking, the ABP2 in each of the other 11 NRs was 
derived by superposing the best resolution structure onto 5C4T
Consensus1 logAUC/EF1 or Consensus2 logAUC/EF1 are highlighted in bold or italic fonts when they are >10% better or worse than logAUC 
(EF1) from OBP

Receptor logAUC (EF1) 
from OBP

logAUC (EF1) 
from ABP1

Consensus1 
logAUC (EF1)

ToxCast actives% 
favoring ABP1

logAUC (EF1) 
from ABP2

Consensus2 
logAUC (EF1)

ToxCast 
actives% favor-
ing ABP2

AR* 35.3 (9.4) 22.4 (1.0) 31.4 (10.8) 7.0 16.2 (1.0) 31.3 (10.8) 6.1
GR 29.3 (7.6) 27.0 (5.3) 32.6 (7.6) 19.0 15.4 (2.4) 32.4 (7.6) 5.4
PR 31.1 (15.8) 27.1 (10.5) 33.1 (17.6) 12.5 19.2 (4.4) 33.2 (17.6) 6.2
ERα 31.7 (12.6) 23.3 (4.2) 27.1 (12.6) 7.5 14.5 (2.1) 27.2 (12.6) 3.6
ERβ 28.2 (8.1) 23.3 (2.8) 31.0 (9.0) 12.5 14.6 (2.8) 30.9 (9.0) 3.6
PPARα 21.2 (7.9) 28.5 (5.3) 32.6 (7.9) 35.0 13.8 (2.7) 32.4 (7.9) 4.0
PPARγ 21.0 (4.6) 21.0 (2.8) 22.6 (3.7) 21.6 15.6 (2.8) 23.2 (3.7) 3.4
RARα 25.1 (2.4) 21.0 (4.8) 23.6 (3.6) 11.4 14.8 (2.4) 23.2 (3.6) 3.8
RORγ# 22.9 (4.8) 22.4 (3.6) 24.2 (3.6) 12.2 16.1 (1.2) 24.0 (3.6) 4.8
VDR 21.3 (1.8) 19.4 (2.4) 21.7 (1.8) 4.2 16.9 (1.1) 21.8 (1.8) 3.4
RXRα 20.7 (4.6) 22.2 (4.6) 25.1 (4.6) 16.8 15.0 (2.3) 21.2 (4.6) 4.5
LXRβ 19.0 (2.1) 14.8 (0.0) 19.0 (2.1) 1.0 15.4 (2.1) 19.0 (2.1) 1.0
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with E’DOCK (only considering OBP), a better ToxCast 
active enrichment was achieved (logAUC = 28.9, EF1 = 7.4) 
(Table S5). The two EDCs BPA and DAP, that are known to 
bind and activate PPARγ, are now ranked 9 and 11 (previ-
ously ranked 11 and 14) out of the 1768 ToxCast chemicals, 
respectively. These results pushed the upper limit of the pre-
diction accuracy of our computational method, suggesting 
again the beneficial effect of the usage of multiple structures.

Fatty acid docking analysis

Thereafter, we applied this improved method to predict 
dietary fatty acids that bind to PPARγ and likely activate 
the receptor. A fatty acid database of 252 fatty acids was 
screened against the 8 structures of PPARγ. In the top-
ranked 25 fatty acids, we found that the fatty acids belong 
to 5 classes, including 8 furan fatty acids, 2 cyclopropyl fatty 
acids, 5 oxo fatty acids, 3 very long-chain fatty acids, and 
7 PUFAs (Table S7). These fatty acids are well accommo-
dated in the manner similar to known binders such as DHA 
and EPA. Based on E’DOCK scores and chemical diversity, 7 
unknown fatty acids belonging to different fatty acids classes 
were shortlisted for testing from top-ranked 25 fatty acids, 
including 2 furan fatty acids (furannonanoic acid (FNA), 
and furanundecanoic acid (FUA)), 1 cyclopropyl fatty acid 
(phytomonic acid (PTA)), 1 oxo fatty acid (ricinoleic acid 
(ROA)), 3 PUFAs (eicosatrienoic acid (ESA), pinolenic acid 
(PLA), and docosapentaenoic acid (DPA)). The very long-
chain fatty acids are commercially not available so we did 
not select them. These 7 unknown fatty acids and 2 known 
PPARγ binders/activators (eicosapentaenoic acid (EPA) and 
docosahexaenoic acid (DHA)) as control were selected for 
testing, in total 9 fatty acids.

To date, 28 crystal structures of PPARγ were solved in 
complex with fatty acids. Structure analysis showed that the 
carboxyl group in these fatty acids can form hydrogen bonds 
with SER289, HIS323, HIS449, and TYR473, which are 
reported to be vital for producing the maximum activity of 
compound through a direct stabilization of helix H12 and 
are responsible for the PPARγ transactivation activity (Itoh 
et al. 2008; Farce et al. 2009; Guasch et al. 2011). In addi-
tion, these fatty acids also form close contacts with PHE282, 
CYS285, GLN286, ARG288, VAL290, GLU295, LYS319, 
TYR327, MET334, VAL339, SER342, TYR355, PHE 363, 
MET364, LYS367, and LEU453 (hot-spots). The docking 
poses of the 9 shortlisted fatty acids show similar binding 
patterns as those observed in the 28 crystal structures. For 
example, the terminal carboxyl group of FNA forms hydro-
gen bonding interactions with SER289, HIS323, TYR327 
and TYR473, and its unsaturated chain forms hydrophobic 
interactions with PHE282, CYS285, GLN286, MET364 
and LEU453 (Fig. 5a and b). The docking scores of FNA, 
FUA, and PTA are better than those of DPA, ESA, PLA, and 

ROA probably because the furan rings in FNA and FUA, and 
the cyclopropane ring in PTA form more favorable hydro-
phobic interactions with CYS285, MET364, and VAL339 
in comparison to the linear chains in other four fatty acids 
(Table 5).

PPARγ binding verification

We tested the binding of fatty acids to PPARγ through SPR 
analysis. As predicted, all the tested fatty acid exhibited 
weak binding to PPARγ with the calculated affinities (Kd) 
ranging from micromole to millimole. Specifically, EPA 
and DHA, which have been reported to activate PPARγ 
(Xu et al. 1999), showed a similar binding affinity with 
Kds of ~ 600 µM. The FNA (Fig. 5c and d), FUA, and PTA 
exhibited stronger binding than DHA and EPA (Fig. S1), 
while DPA, ESA, PLA and ROA showed weaker bind-
ing than DHA, which was well supported by their dock-
ing scores (Table 5). The higher binding affinity from PTA, 
FNA, and FUA are likely due to presence of a hydropho-
bic carbon ring (furan in FNA and FUA, cyclopropane in 
PTA) that forms more favorable hydrophobic interactions 
with CYS285, MET364, VAL339, and LEU453 compared 
to other four linear chain fatty acids, and the lower affinities 
of DPA, ESA, PLA and ROA are probably due to reduced 
carbon chain or degree of saturation.. Long-chain fatty acids 
(LCFA), such as DHA and EPA, have been identified as 
endogenous ligands of PPARγ and can regulate the lipid 
metabolism through modulating the transcriptional activ-
ity of PPARγ (Xu et al. 1999; Itoh et al. 2008). However, 
the LCFA can be pushed out of the orthosteric pocket by 
synthetic ligands, as their affinities are much lower than 
synthetic ligands (Itoh et al. 2008). This notion agrees well 
with our result that the LCFAs displayed weak binding to 
PPARγ in molecular docking and SPR assays. Mutations in 
these fatty acid-binding residues have been found to be asso-
ciated with various metabolic and inflammatory diseases, 
such as obesity (Ristow et al. 1998; Beamer et al. 1998), 
Insulin resistance, diabetes (Barroso et al. 1999; Majithia 
et al. 2014), hypertension (Barroso et al. 1999), lipodystro-
phy (Francis et al. 2006; Miehle et al. 2016), dyslipidaemia 
(Capaccio et al. 2010), colon and bladder cancer (Sarraf 
et al. 1999; Liu et al. 2019). For example, the V290M muta-
tion is associated with severe insulin resistance, diabetes 
mellitus, and hypertension (Fig. 5e, f) (Barroso et al. 1999). 
This mutant inhibits PPARγ function in a dominant-negative 
manner, markedly attenuating the transcriptional function 
of PPARγ. Other PPARγ-deficient hot-spot residue muta-
tions in the fatty acid-binding site are associated with colon 
cancer such as Q286P, K319X, R288H/A, S289C (Sarraf 
et al. 1999) and with lipodystrophy (Francis et al. 2006; 
Miehle et al. 2016) such as Y355X, Y473A, R165T and 
L339X. For two of these mutants Y355A and V290M, we 
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constructed their structures using the “mutate” option pre-
sent in Maestro, Schrödinger, and attempted to estimate the 
binding affinity of the selected fatty acids against these two 
mutants using docking analysis. The results showed that all 
the 9 tested fatty acids consistently received worse docking 
scores from mutant structures with respect to their dock-
ing scores from the wild type structure. For example, FNA 
received a docking score of − 11.19 from wild type structure 
but only − 8.65 and − 9.31 from Y355A and V290M mutant 

structures, respectively (Table S8). These results suggest 
that we may expect weaker binding of these fatty acids to 
the PPARγ mutants Y355A and V290M, and subsequently 
reduced transcriptional activity with respect to that of the 
wild type PPARγ. The long-term malfunction of PPARγ 
may lead to an increased risk of metabolic disorders such as 
insulin resistance, diabetes mellitus, or partial lipodystrophy 
(Barroso et al. 1999; Francis et al. 2006).

Fig. 5   a Binding pose of FNA at PAPRγ binding site, b 2D FNA-
PPARγ interaction diagram, c Surface plasmon resonance (SPR) 
assay of specific binding affinities of FNA to immobilized PPARγ 
on the CM5 sensor chip surface, sensorgram overlay and d equilib-

rium binding curve of FNA to PPARγ LBD, e Functional patterns of 
PPARγ, involved in adipocyte differentiation, lipid metabolism and 
glucose homeostasis, f Pathophysiology effects of PPARγ



370	 Archives of Toxicology (2021) 95:355–374

1 3

Confirmed fatty acids in diets

Among the fatty acids that exhibited higher affinity to 
PPARγ than endogenous ligands such as DHA and EPA, 
FNA (9M5) was reported to enhance adipogensis (Lauvai 
et al. 2019), and to promote significantly more lipid accu-
mulation than PUFAs like DHA and EPA even at lower 
concentrations, consistent with our results. However, it is 
currently unknown if FNA can directly interact with and 
activate PPARγ. Our study provides a plausible mechanism 
that can explain the observed phenotypic effects of FNA. 
Due to its strong binding affinity experimentally verified in 
our study, FNA could outcompete natural activators such 
as oelic, linoleic, lauric and arachidonic acid upon bind-
ing to PPARγ. The same behaviour could be observed in 
related analogues of FNA and FUA (Table S6) such as 9D5, 
11D5 and 7D5. These furan fatty acids are primarily found 
in a wide range of diets such as fish liver oil (at the level of 
1–6%) and freshwater fish liver oil (up to 25%), plant oils, 
fruits (e.g. lemon, olives, strawberry), vegetables (e.g. cab-
bage and potato), and mushrooms (Spiteller 2005; Xu et al. 
2017). Similarly, PTA as a stronger binder of PPARγ, than 
DHA and EPA, is also found in various dietary products 
such as milk (Caligiani et al. 2014), rapseed oil (Berdeaux 
et al. 2010), mushrooms, and probiotics (e.g. lactobacillus 
lipids) (Karine Pedneault et al. 2006; Nandakumar and Tan 
2008). Although PTA is saturated fatty acid, it can be highly 
reactive because of its highly strained cyclopropane ring at 
11, 12-position. In particular, strained cyclopropane rings 
can react with thiol/sulfur groups (i.e. with active cysteine 
residues in receptors). In PPARγ active site, we noticed a 
reactive cysteine (CYS285), which can form covalent bond 
with the strained cyclopropane ring of PTA, like 15d-PGJ2 
(endogenous ligand), which activates PPARγ through cova-
lent bond formation with CYS285 (Liberato et al. 2012). 
This could partially account for the relatively high affinity 
of PTA against PPARγ. Other fatty acids chemically similar 

to PTA could resemble its strong interaction against PPARγ, 
such as dihydro sterculic acid and cyclopropenoic acid deriv-
atives (e.g. sterculic acid and malvalic acid). Dihydrostercu-
lic acid and sterculic acid are available in sterculia foetida 
(~ 50%) and cotton-seed oil (2%). The sterculia foetida oil 
diet for rats showed healthy effects such as reduced repro-
ductive function, retarted growth, and weight gain (Nixon 
et al. 1974; Eisele et al. 1977; Matlock et al. 1985; Peláez 
et al. 2020). Similar impact can be anticipated for PTA as 
it is chemically similar to sterculic acid and shows high 
binding affinity against PPARγ. Among the fatty acids we 
selected, DPA is also confirmed to bind to PPARγ, weaker 
than DHA and EPA. DPA is a ω-3 fatty acid that belongs to 
PUFA family; it is a metabolic product of the parent fatty 
acid is α-linolenic acid.

Conclusions

Overview

In this study, we constructed an in silico method for potential 
EDC prediction, based on molecular docking. This method, 
when evaluated on 12 nuclear receptors (NRs), showed the 
reasonable capability to recognize ToxCast actives out of 
inactives (logAUC values range from 21.8 to 39.4, EF1 val-
ues range from 1.8 to 24.3, see Table 3), nearly 2 to 10 times 
better than random selection. These results suggest aspects 
to better exploit structure-based approaches in potential 
EDC prediction: consensus over docking screens against 
multiple protein structures, chemical similarity-weighted 
docking scores, alternative binding sites (ABPs).

Consensus over multiple receptor structures

Consensus enrichment scores over multiple receptor struc-
tures covering both agonist-bound and antagonist-bound 

Table 5   Docking and binding 
assay data for 9 tested fatty 
acids

*Chip coupled with 12000RU ligand (PPARγ LBD) was used for FUA binding analysis. RU response units. 
Chi2 is a measure of the average deviation of the experimental data from the fitted curve. Lower Chi2 val-
ues indicate a better fit; Rmax, the amount of ligand (in RUs) immobilized

No. Fatty acids Hybrid score Kd (μM) Rmax (RU) Chi2

1. Furannonanoic acid (FNA) − 11.19 135.7 38.55 0.62
2. Furanundcanoic acid (FUA)* − 11.16 248.7 459.3 12.5
3. Docosahexaenoic acid (DHA) − 11.14 593 281 1.14
4. Eicosapentaenoic acid (EPA) − 10.12 629.4 136 1.27
5. Doceapentaenoic acid (DPA) − 10.10 3960 2167 0.08
6. Eicosatrienoic acid (ESA) − 10.01  > 10,000.00  > 10,000.00 3.19
7. Phytomonic acid (PTA) − 9.89 102.9 33.28 0.1
8. Ricinoleic acid (ROA) − 9.70  > 10,000.00  > 10,000.00 0.16
9. Pinolenic acid (PLA) − 9.27  > 10,000.00  > 10,000.00 0.74
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states, computed by selecting the best docking score for each 
chemical, can perform consistently better than or compara-
ble to best-performing single structure (Table 2). When the 
performance of each crystal structure in EDC recognition is 
not known, the consensus selection over multiple receptor 
structures is the most suitable method for potential EDC 
prediction.

Hybrid scoring including ligand information

The hybrid (chemical similarity-weighted) scoring approach 
can perform better than both the protein-based (dock-
ing) approach and the ligand-based (chemical similarity) 
approach (Table 3; Fig. 4), when applied to results from 
every single structure, and to that from consensus over mul-
tiple structures. The proposed method, combining consensus 
over multiple structures and hybrid scoring scheme, could 
be an optimal approach for potential EDC prediction, when 
both protein structure and ligand information are available 
for the target.

Alternative binding site

ToxCast actives can be better scored (from 1 to 35%) by 
ABPs than the orthosteric binding site (OBP) (Table 4), 
therefore, we recommend to take ABPs into account in 
potential EDC prediction especially when ABPs have been 
verified by experiments. However, it may not be straight-
forward to use the consensus over OBP and ABP(s) in the 
high-throughput in silico prediction, as reduced accuracy are 
observed in some cases.

Fatty acids identified as PPARγ ligands

The in silico method was applied to the identification of 
novel fatty acids binding to PPARγ, which is a key protein 
in transcriptional regulation of glucose and lipid metabo-
lism, and involved in various metabolic and inflammatory 
diseases. A total of 7 fatty acids were predicted as ligand 
(likely activator) candidates, 4 out of which were verified 
by subsequent binding tests, including 3 fatty acids (FNA, 
FUA and PTA) of better binding affinity (Kd = 100–250 μM) 
than DHA and EPA. Mutations of binding site residues of 
these fatty acids have been found in cancer, diabetes, and 
hypertension.

Future perspectives

In silico prediction of chemical toxicity and understand-
ing the molecular initiating events remain major challenges 
in toxicology. In this study, we showed on 12 NRs that a 
virtual screening method based on molecular docking can 
contribute to addressing these challenges. The utility of this 

method can be enlarged by including all 45 NRs that have at 
least one crystal structure solved (out of 48 identified NRs) 
(Lagarde et al. 2014; Weikum et al. 2018). In addition, only 
the ligand-binding domains (LBDs) of NRs were targeted 
in this study. However, it has been suggested that the DNA 
binding domains (DBDs) of NRs and even the DNA sites 
recognized by NRs can also be targeted by ligands (Bro-
die 2005; Meijsing et al. 2009; Li et al. 2014; Dalal et al. 
2014; Shizu et al. 2018; Frank et al. 2018; Pal et al. 2019; 
Veras Ribeiro Filho et al. 2019). Thus we expect that the 
application of our in silico method to these new molecu-
lar interfaces will also facilitate potential EDC prediction. 
Subsequent in vitro assessments may be performed to better 
understand the toxicodynamics of these suspected EDCs, 
establish their concentration-dependent effects to cellular 
functions, and assess if they may pose acceptable or unac-
ceptable risks to the relevant exposed human populations.
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