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Mathematical models are routinely calibrated to experimental data, with
goals ranging from building predictive models to quantifying parameters
that cannot be measured. Whether or not reliable parameter estimates are
obtainable from the available data can easily be overlooked. Such issues of
parameter identifiability have important ramifications for both the predictive
power of a model, and the mechanistic insight that can be obtained.
Identifiability analysis is well-established for deterministic, ordinary differ-
ential equation (ODE) models, but there are no commonly adopted
methods for analysing identifiability in stochastic models. We provide an
accessible introduction to identifiability analysis and demonstrate how
existing ideas for analysis of ODE models can be applied to stochastic differ-
ential equation (SDE) models through four practical case studies. To assess
structural identifiability, we study ODEs that describe the statistical moments
of the stochastic process using open-source software tools. Using practically
motivated synthetic data and Markov chain Monte Carlo methods, we assess
parameter identifiability in the context of available data. Our analysis shows
that SDE models can often extract more information about parameters than
deterministic descriptions. All code used to perform the analysis is available
on Github.
1. Introduction
Stochastic mathematical models are rapidly becoming an essential tool for inter-
preting biological phenomena [1–7]. These models are necessitated, in part, by
increasing experimental interest in capturing finer-scale time-series observations
[8–12] as well as spatial information [13–18] rather than coarse-scale deterministic
trends (figure 1). As computational inference techniques for stochastic models
have improved [22–26], a fundamental question that often remains overlooked
is whether or not model parameters can be confidently estimated from the avail-
able data. Drug development, for example, often relies on the quantification of
cell growth rates from a proliferation assay (figure 1a–d) [27]. If a mean-field
model is applied to interpret the most frequently reported observation—cell
count data—only the net growth rate is identifiable, not the proliferation and
death rates [28,29]. Establishing the identifiability of model parameters is critical
as predictions, and parameter estimates, from a non-identifiable model may be
unreliable [30–33], with further analysis required to quantify prediction uncer-
tainty in non-identifiable models [34–36]. Identifiability should always,
therefore, be established before parameter estimation is attempted. Such identifia-
bility analysis is well-established for deterministic ordinary differential equation
(ODE) models [31,37–44], but there is a scarcity of methods available for the
stochastic models that are becoming increasingly important.
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Figure 1. (a–d ) Cell proliferation and death observed in vitro over 36 h in a proliferation assay [19]. Each snapshot has a field-of-view of 1440 × 1440 μm and the location
of each cell is indicated with a yellow marker. (e) Data from the early stages of the coronavirus pandemic comprising the observed number of (i) infected individuals, deaths,
and (ii) daily new case count in Australia during 2020 [20]. ( f ) Continuous glucose monitoring data from a single individual over three consecutive days [21].
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Stochasticity is fundamental to many processes [2,45–51].
Diabetic patients, for example, rely on the rapid interpretation
of highly volatile blood glucose measurements to determine
insulin input (figure 1f ) [52,53]. Data from the COVID-19 pan-
demic [1] is also volatile (figure 1e), and inferences of epidemic
data must often be drawn from a single, stochastic, time series.
Finally, for systems at equilibrium in the mean-field, such as
ion-channel data, models that account for system noise are
required to establish parameters [54,55]. Stochastic differential
equation (SDE) models of the Itô form are widely applied in
systems biology to describe stochastic phenomena [56–59].
SDE models can describe intrinsic noise in, for example, gene
expression [2,9,26] or a bio-chemical reaction network
[60]; extrinsic noise describing volatility in the environment
[51,56,61,62]; and model approximations and unknown effects
in so-called grey-box models [63,64]. Explicitly modelling this
variability in biological systems can often capture more infor-
mation about a process than a deterministic model is able
to [65–68]. Furthermore, SDE models can account for the
correlations inherent to time-series data and account for noise
that might otherwise obscure parameters. We demonstrate
how to establish parameter identifiability for SDE models
that encode information about the intrinsic noise of the process
[65]. Our focus is on SDE state-spacemodels that can be formu-
lated through the chemical Langevin equation (CLE), although
our analysis is applicable to any SDE of the Itô form. While
simulation [69], inference [70,71], and identifiability analysis
[72] can, formany stochastic systems, be conducted for discrete
Markov models, SDE approximations can offer a significant
computational advantage and have a long and extensive his-
tory of use in the systems biology literature. Furthermore, use
of reflected SDEs [73] can guarantee good agreement with
their discrete counterparts at boundaries [73,74].

A prerequisite for parameter estimation is that model par-
ameters be structurally identifiable [31,37–39,75–77]. Structural
identifiability refers to the question of whether a parameter
can be identified given an infinite amount of noise-free data.
A state-space model is said to be structurally identifiable if dis-
tinct values of the parameters imply distinct observed model
outputs (or in the case of a stochastic model, distinct observed
output distributions [78]), and vice versa [79–81]. Techniques
such as differential algebra [41,82,83] and transfer function
approaches [37,38] can establish structural identifiability in
ODE models. These approaches are also used to establish
identifiable relationships between parameters [38,84]—for
example, the net growth rate in a proliferation assay—which
can aid model design and model reduction [84–86]. Many of
these techniques have accessible implementations in symbolic
computation packages [41,87–90], meaning structural iden-
tifiability analysis does not require a detailed understanding
of the, often complex, underlying mathematical analysis [41].

When experimental data are considered, a more useful
question is that of practical identifiability or estimability
[31,81,87,91]. That is, can parameters in themodel be accurately
estimated given a finite amount of noisy experimental data?
This kind of analysis is routinely used in the field of experimen-
tal design to assess the nature of data required to adequately
identify biophysical parameters [32,54,58,92–94]. Practical
identifiability is established in conjunction with an inference
technique, such as profile or maximum likelihood [94–97] or
Markov chain Monte Carlo (MCMC) [32,54]. These techniques
provide information about the flatness (or otherwise) of the
likelihood function—in the Bayesian case, the posterior distri-
bution—that describes knowledge about the parameters after
the experimental data is taken into consideration. For determi-
nistic and simple stochastic models, this information can be
obtained directly from the Fisher information matrix [97,98].
Compared with structural identifiability, which is a property
of the model, practical identifiability is more nuanced
and additionally dependent upon prior knowledge; the
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Figure 2. We demonstrate identifiability in an SDE CLE description of four models: (a) a birth–death process; (b) a two-pool model; (c) an epidemic model; and
(d ) a β-insulin-glucose circuit. The coloured boxes indicate the observed quantity, which is coupled to a noisy observation process.
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experimental data; and consequentially, the experiment itself
[32,87]. For example, should the model and data provide
no more information about a parameter than that already
established in previous studies, the parameter may be classi-
fied as practically non-identifiable from the data and model
in question. For this reason, we take a Bayesian approach to
parameter estimation and encode existing knowledge about
the parameters in a prior distribution. Therefore, we classify a
model parameter as practically non-identifiable if it cannot be
uniquely established within a level of confidence not already
established from prior knowledge [31,32]. This question of
practical identifiability has not yet been demonstrated for
SDE models in systems biology.

Computational inference for stochastic models is a signifi-
cant challenge [25]. Unlike approaches to parameter estimation
for deterministic models, the likelihood function for a realistic
stochastic model is, generally, intractable [25]. Techniques
based on approximations, such as a linear noise approximation
[97] or approximate Bayesian computation [23,99–103], are
available for SDEs but are, naturally, approximations. Pseudo-
marginal methods [104,105], developed relatively recently, are
computationally costly, but provide an unbiased estimate of
the true likelihood function for partially observed time series
described by nonlinear stochastic models. In this review, we
use a pseudo-marginal MCMC approach, where we estimate
the likelihood with a particle filter, which we refer to as particle
MCMC [106–108]. There are many excellent articles and reviews
of inference for stochastic models in systems biology
[23,25,108,109], so we do not focus on the details of our
implementation here. Despite the established importance of
identifiability, it is all too common in parts of the inference litera-
ture to draw the standard assumption that themodel parameters
are identifiable: we note that all the aforementioned review
articles make no mention of identifiability. The computational
cost of inference for stochastic models, in itself, motivates us to
consider identifiability. For example, identifiability can guide
model selection: if both a deterministic and stochastic descrip-
tion of a process are practically non-identifiable, the cheaper
deterministic model may, in some cases, be adequate for
parameter estimation. Where structural non-identifiability is
detected, practical non-identifiability necessarily follows and
does not need to be established separately.

The focus of this review is to provide an accessible guide to
establishing identifiability in SDE models in biology. To do
this, we analyse identifiability in SDE descriptions of four
case study models, shown in figure 2. The simplest model we
consider is a birth–death process (figure 2a) that is routinely
used to describe cell proliferation and death in a range of
in vitro and in vivo biological systems, such as that shown in
figure 1a. We demonstrate that, from cell count-data, the cell
proliferation and death rates are structurally non-identifiable
for a routinely employed ODE model, but can be identified
for an SDE model. Next, we consider two multi-state models
where only partial observations of the system are available.
First, a two-pool model (figure 2b) that can describe, for
example, the decay of human cholesterol while it transfers
between two organs [38,110]. We assume that data from the
two-pool model comprises several time-series observations of
the substance concentration in a single pool. Second, an epi-
demic model (figure 2c) [111–113] describes individuals
infected owing to interactions between susceptible and infec-
tious individuals. We model a testing procedure such that
unknown proportions of the number of infectious and recov-
ered individuals are observed, and inferences are drawn from
a single time series. The last model we consider is a nonlinear
SDE model for insulin regulation by β-cells (figure 2d )
[114,115]. This type of model can describe the volatility associ-
ated with data from a continuous glucose monitoring device
(figure 1f) [21]. The equivalent ODE description of the β-insu-
lin-glucose circuit is not structurally or practically identifiable
[116], and we demonstrate how the analysis for the ODE
description can inform a parameter transformation to aid
identifiability analysis for the SDE model.

We demonstrate two main approaches to assess identifia-
bility in SDE models. First, we assess structural identifiability
through a surrogate model, taken to be a system of ODEs that
describe the time-evolution of the statistical moments of
the SDE [117–121]. This allows us to apply the established
open-source structural identifiability software package
DAISY (written for the freeware REDUCE software) to the
SDE models through the moment equations. We repeat this
analysis in the more recent open-source software package
GenSSI2 [122,123], written for MATLAB, which can be more
efficient for nonlinear systems. We interpret these results as
a proxy for identifiability of the SDE model itself. While
this approach is not always conclusive, it can provide a
rapid preliminary screening tool and allows direct compari-
son of identifiability for an SDE model, which contains
information about the mean, variance and higher moments;
to identifiability for a corresponding ODE model that is typi-
cally assumed to describe an approximation of the mean. We
only apply this approach where an exact system of moment
equations can be derived, which occurs when the reaction
rates are polynomial. For more complex stochastic models
containing terms such as Hill functions, as found in the
β-insulin-glucose circuit model, an exact system of moment
equations cannot be derived, we do not apply the moment
dynamics approach in this case. Second, we assess practical
identifiability using the full SDE models through MCMC
[32,54], first demonstrating how practical identifiability can
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be cheaply established from a naive proposal kernel. To com-
pute credible intervals for each parameter, and visualize
potential correlations between parameters, we produce
results using a tuned proposal kernel where we can be
more certain of convergence.

The outline of this review is as follows. In §2, we establish
the types of SDE models and observation processes that
we consider, and then outline the techniques used to
generate synthetic data. Following this, in §2.2, we summar-
ize moment closure techniques for SDEs and describe how
we implement the software tools DAISY and GenSSI to
assess for structural identifiability. Next, in §2.3, we provide
a brief overview of our implementation of the particle
MCMC algorithm. Full details of particle MCMC for SDE
models can be found in the existing literature [108,109] and
as supporting material. In §3, we use these tools to assess
identifiability using an SDE description of four models.
In §§4 and 5, we discuss our results and provide an outlook
on the future of identifiability for stochastic models in
biology. Specifically, we discuss alternative approaches,
including those based upon approximations, to perform
practical identifiability analysis in light of the computational
challenges of working with SDE models. To aid in the
accessibility of the techniques we review, we provide
our MCMC code in the form of a module (https://github.
com/ap-browning/SDE-Identifiability) for the open-source,
high-performance Julia programming language [124].
2. Mathematical techniques
In this section, we outline the mathematical and statistical
techniques we use to perform identifiability analysis.
Full details of all algorithms used are provided as electronic
supplementary material.
2.1. Stochastic models in biology
We consider Itô SDE state space models of the form

dXt ¼ a(Xt, t; u) dtþ s(Xt, t; u) dWt (2:1)

and

Yt � g(YtjXt, t; u): (2:2)

Here, the state is described by Xt ¼ (X1,t, X2,t, . . . , XN,t) [ RN,
Wt [ RQ is a Q-dimensional Wiener process with indepen-
dent components; α( · ) maps to an N-dimensional vector;
and σ( · ) maps to an N ×Q matrix. The observables,
Yt ¼ (Y1,t, Y2,t, . . . , YM,t) [ RM, are connected to the state
variables according to an observation process with prob-
ability density function g(Yt|Xt, t; θ). We consider several
forms of observation function, including partial observations
of the state with both additive and multiplicative Gaussian
noise with unknown variance s2

err. In equations (2.1) and
(2.2), θ is a vector of unknown parameters to be determined
through inference. In this review, all variables and parameters
are dimensionless.

The focus of this review is on Itô SDE models that are
formulated through the CLE description of a system of
bio-chemical reactions [60,125,126]. Therefore, additional infor-
mation about rate parameters is encoded in the noise of the
process. The first three models we consider (figure 2a–c)
can be expressed directly as a network of reactions. As the
β-insulin-glucose circuit model (figure 2d) involves state vari-
ables modelled as concentrations, not individual counts, we
derive a stochastic description from the CLE but scale the
noise term in proportion to the concentration of each species.

In summary, a bio-chemical reaction network comprises
N species, X1, X2,…, XN, that interact through Q reactions
[69,127,128]. The population of each species is given by
Xt ¼ (X1,t, X2,t, . . . , XN,t) [ RN . By the law of mass action
[60,129], each reaction occurs with a rate described by a
propensity function, ak(Xt, t; θ), which is equal to the product
of the reactants and the rate constant. The net effect of the
kth reaction is described by the stoichiometry νk such that,
should reaction k occur in [t, t + dt),

Xtþdt ¼ Xt þ nk: (2:3)

For bio-chemical reaction networks without an explicit
time-dependent input, the propensity functions will be
independent of t and the system can be simulated exactly
using an event-driven stochastic simulation algorithm (SSA)
[5,129–131]. The principle behind an exact SSA is that
reactions can be modelled by an inhomogeneous Poisson pro-
cess. The time interval between reactions, Δt, is exponentially
distributed such that

Dt � Exp
XQ
k¼1

ak(Xt; u)

 !
: (2:4)

A single reaction occurs at each time-step; the kth reaction
occurs with probability proportional to ak(Xt; θ). A typical
implementation of the SSA first samples a time-step using
equation (2.4); then samples the next event to occur; and finally
updates the state. Full details of our implementation of an SSA
are given as supporting material, and the reader is directed to
[127] for a comprehensive review of simulation algorithms for
bio-chemical reaction networks.We generate synthetic data for
the first three models, for which the propensity functions are
independent of t, using the SSA. In figure 3a–c, we show 100
realizations of the SSA for the birth–death process, two-pool
model and epidemic model, respectively.

When the population of each species is large and
reactions sufficiently frequent, the dynamics of a bio-chemi-
cal reaction network can be approximated using the CLE
[28,125,127]. Such an approximation is widely applied in sys-
tems biology [132,133], and it is often necessary as the SSA
quickly becomes computationally expensive as the popu-
lations become large and reactions are frequent enough
[134]. The CLE is an Itô SDE of the form

dXt ¼
XQ
k¼1

nkak(Xt, t; u)|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
a(Xt ,t;u)

dtþ
XQ
k¼1

nk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ak(Xt, t; u)

p
dWk,t:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

s(Xt ,t;u)dWt

(2:5)

Here,Wt = (W1,t,W2,t,…,WQ,t) is aQ-dimensional Wiener pro-
cess with independent components. In this study, we derive an
SDE description for each model using the CLE, and we cali-
brate this SDE to the synthetic data to approximate the
parameters in each model. For the first three models, where
data are generated using the SSA, not the SDE, this means
that identifiability analysis is conducted in such a way that
model misspecification could potentially arise. This pragmati-
cally mirrors experimental data, where any model (including
an ODE and SDE description) is an approximation. The for-
ward simulation for each SDE is approximated using the
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Euler–Maruyama algorithm [135], where we apply reflected
SDEs to ensure positivity [73]. Full details of the numerical
algorithm are given as electronic supplementary material.

2.2. Moment dynamics
To enable the application of established methods for struc-
tural identifiability analysis to SDE models, we formulate a
system of ODEs that describe the statistical moments of the
random variable Xt [ RN . We denote mi1i2 ...in (t) as a raw
moment of Xt, such that [118–120,126]

mi1i2 ...iN (t) ¼
YN
j¼1

Xij
j,t

* +
, (2:6)

where 〈 · 〉 indicates the expectation taken with respect to
the probability measure of the random variable Xt. Here,
J ¼PN

j¼1 i j is the order of the moment. For example, the
first-order moments correspond to the mean of each dimen-
sion of Xt, the second-order moments relate to the variances
and covariances, and so forth.

We apply the software packages DAISY [41] and
GenSSI2 [123] to establish structural identifiability of the
resultant system of moment equations. The software package
takes a system of ODEs describing the state equations—in
our case, the moment equations—in addition to an explicit
algebraic relationship between the observables and the
state. We, therefore, provide the moments of the observables,
Yt, in the noise-free limit, which we denote

ni1 i2...iM (t) ¼ lim
s2
err!0

YM
j¼1

Yij
j,t

* +
: (2:7)

In many cases, the observation distribution, g(Yt|Xt, t; θ), will
depend upon the unknown parameters, θ, if, for example, an
unknown proportion of the state is observed. This is captured
in the structural identifiability analysis as the equations
derived for the observed moments, n, may depend on θ.
We provide well-commented input and output obtained
using DAISY on Github as supporting material.
An expression for the time derivative of each moment can
be found using Itôs lemma (electronic supplementary
material). When each component of σTσ is an analytic func-
tion, which occurs when all the propensity functions in the
bio-chemical reaction network are also analytic functions,
we obtain [136]

dmi1i2 ...iN (t)
dt

¼
*
a(Xt, t; u) � r

YN
j¼1

Xij
j,t

0@ 1A
þ 1
2
Tr sT(Xt, t; u)H

YN
j¼1

Xij
j

0@ 1As(Xt, t; u)

0@ 1A+,
(2:8)

whereH( · ) denotes the N ×NHessian matrix of its argument
and r ¼ (@=@X1, @=@X2, . . . , @=@XN). In the case that N = 1,
equation (2.8) reduces to

dmi(t)
dt

¼ iXi�1
t a(Xt, t; u)þ i(i� 1)Xi�2

t
s2(Xt, t; u)

2

� �
,

where α and σ are now scalar functions.
When each component of α and σTσ are polynomials in

Xt, the expectation in equation (2.8) can be carried through
to replace powers of Xt with appropriate moments. This, in
general, provides an infinite system of ODEs that exactly
describe the time evolution of the moments. In practice, we
consider a finite system of moments, up to and including
moments of order J. We express this now finite system of
ODEs as

dm�J(t)
dt

¼ f�J(m�J(t), m.J(t)), (2:9)

where m≤J(t) is a vector containing all the moments up to,
and including, order J; and m>J(t) is a vector containing all
moments of order J + 1 and above. In the case that f≤J( · )
depends only on moments up to order J, the system is said
to be closed at order J. That is, the infinite system of equations
can be truncated at order J and solved directly to obtain an
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exact solution for the moments. This is the case if α and σTσ
are linear in Xt, which occurs in SDEs derived from the CLE if
each propensity is linear in Xt, as is the case for the first two
models we consider (figure 2a,b).

For more complicated models, including the epidemic
model (figure 2c), the system will not, in general, be closed.
We must, therefore, apply a moment closure approximation
to express moments of order higher than J in terms of
lower-order moments [48]. Moment closures typically make
an a priori assumption about the distribution of the random
variable Xt. For example, assuming components of Xt are
independent or normally distributed is a common approach.
In this review, we consider three common moment closures:
(i) a mean-field closure [119]; (ii) a pairwise closure [119];
and (iii) a Gaussian closure [118].

Themean-field closure, we consider makes the approximation

mi1i2 ...iN �
YN
j¼1

hXij
j,ti: (2:10)

This closure is derived from the assumption that components
of Xt are weakly correlated [119] and is also referred to as the
covariance closure [137]. In the case, a closure is drawn at J = 1,
the mean-field closure often corresponds to an ODE descrip-
tion of the process. For our analysis of the epidemic model,
we find that the mean-field closure behaves poorly, suggesting
that an assumption that the components of Xt are independent
may not be appropriate (electronic supplementary material,
figure S1).

While the mean-field closure is commonly drawn at order
J = 1, it is more common for the pair-approximation closure
to be applied for second and higher-order closures [119].
The pair-approximation closure assumes that a third-order
moment can be expressed as

hXa,tXb,tXc,ti � hXa,tXb,tihXb,tXc,ti
hXb,ti , hXb,ti = 0: (2:11)

The Gaussian closure approximates higher-order moments
to match those of the normal distribution, and gives a closure
in terms of the mean and covariances. Higher-order moments
can be approximated with [118,138]

m̂i1 i2 ...iN (t) �
0, if J ¼ PN

j¼1 i j is odd,P
s
Q

(j,k)[Is Cov(Xj,tXk,t), otherwise:

(
(2:12)

Here, m̂i1i2 ...iN (t) ¼ hQN
j¼1 (Xj,t � hXj,ti)i ji denotes a central

moment; Cov(Xj,tXk,t) denotes the covariance between Xj,t

and Xk,t; and Is are the sets formed by partitioning the set
{ 1, 1, . . . , 1|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

i1

, . . . , N, N, . . . , N|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
iN

} into unordered pairs,
where s is the number of sets. The raw moments, mi1 i2...iN (t)
can then be solved from the expressions for the central
moments obtained from equation (2.12). For a practical
example of the Gaussian closure, see [118].

Other choices of moment closure are routinely used
in systems biology, such as those based upon amultivariate log-
normal distribution [118] or a derivative matching scheme
[139]. However, more complex closures add further complexity
to the moment equations, which is a significant computational
disadvantage for automated assessment of structural identifia-
bility in software packages such as DAISY and GenSSI2.
Furthermore, an approximate system of moment equations
(whichmust then also be closed) could be obtained byapplying
a series expansion approximation, or an approximation similar
to the mean-field closure, to systems containing non-
polynomial analytic functions; this is the case for the fourth
model we consider (figure 2d). We do not consider the
moment dynamics approach for such non-polynomial models
in this review as there are difficulties in determining how
approximations of different types of nonlinearities impinge on
identifiability. This is beyond the scope of this review.
2.3. Inference with Markov chain Monte Carlo
We take a Bayesian approach to parameter estimation to
update our knowledge about the parameters, θ, from a set
of observations, D, using the likelihood function, L, such
that [140]

p(ujD)/ L(Dju)p(u): (2:13)

Here, p(θ) is the prior distribution, and represents our knowl-
edge of θ before consideration of the observations D. The
prior distribution may encode information from, for example,
previous experiments, established knowledge, or physical
restrictions on the parameters. In the context of practical
identifiability, our goal is to significantly increase our under-
standing of θ from our prior knowledge. We specify p(θ) to be
a truncated uniform distribution: all parameters within a
specified region of realistic parameter values (the support)
are considered equally likely [32]. An advantage of a uniform
prior in the context of identifiability is that the posterior
corresponds to the truncated likelihood function, and, there-
fore, high density regions of the posterior correspond to
regions of high likelihood. Furthermore, should an improper,
unbounded uniform prior be considered, the posterior will be
directly proportional to the likelihood. Thus, our method-
ology can also be applied to assess parameter identifiability
using a purely likelihood-based approach.

We use an MCMC technique, based on the Metropolis–
Hastings algorithm, to sample from the posterior distribution
[140–143]. The principle behind MCMC in Bayesian inference
is to construct a Markov chain, {θm}m≥0, with a stationary dis-
tribution equal to p(ujD). We make a standard choice to
initiate the chain from a prior sample, θ0∼ p(θ). At each iter-
ation of the algorithm, a new state is proposed, θ*∼ q(θ*|
θm), where q is termed the proposal kernel. The proposal is
accepted, θm+1← θ*, with probability

aMH(u�, um) ¼ min 1,
q(umju�)p(u�)L(Dju�)
q(u�jum)p(um)L(Djum)

� �
, (2:14)

else the proposal is rejected, θm+1← θm. Full details of our
implementation are provided as electronic supplementary
material. In this review,we use amultivariate normal proposal
so that q(θm|θ*) = q(θ*|θm). An interpretation of theMetropolis
choice of acceptance probability, equation (2.14), where the
proposal is normal and, therefore, symmetric, is that proposals
which increase the posterior density are always accepted,
whereas proposals that decrease the posterior density are
accepted with some reduced probability [32].

We refer to the first set of MCMC chains for each problem
as pilot chains [144]. The proposal distribution for each pilot
chain is set to be a multivariate normal distribution with
independent components and variances equal to one-tenth
the corresponding prior variance for each parameter, a typical
choice. We always produce four pilot chains, each of 10 000



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200652

7
iterations, which we find to be sufficient to indicate identifia-
bility for our models. These pilot chains are then used to tune
the MCMC proposal kernel [145]. We then produce four
tuned chains, which can be reliably used to estimate credible
intervals and other features of the posterior distribution.
The proposal distribution for each tuned chain is chosen to
be multivariate normal, with covariance given by [144]

Sopt ¼ 2:382

dim (u)
Ŝ: (2:15)

Here, dim (u) is the number of unknown parameters, and Ŝ is
the covariance matrix for the pooled samples from the four
pilot chains (a total of 28 000 samples after 3000 samples are
discarded as burn-in from each pilot chain). To assess conver-
gence, we calculate the commonly used R̂ [146] and neff
(effective sample size) [140] diagnostics. In summary, R̂
measures the ratio of between-chain and within-chain var-
iance; and neff measures the effective number of independent
samples drawn from the posterior. To draw reliable inferences,
Gelman et al. [140] suggest ensuring that R̂ , 1:1. Full details of
these convergence statistics are available in [140].

The primary challenge with performing inference for
SDE models, with time-series data, is computing the likeli-
hood function. In this review, we consider synthetic data
from E independent experiments, each with NE time-series
observations. The data are denoted

D ¼ �{tn,i, Yn,i
obs}

NE
n¼1

	E
i¼1, (2:16)

and correspond to the likelihood function

L(Dju) ¼
YE
i¼1

YNE

n¼1

p(Yn,i
obsjY1,i

obs, . . . , Y
n�1,i
obs ): (2:17)

In most cases, the likelihood for noisy time-series data
modelled by an SDE will be intractable [108]. This contrasts
with data modelled by a deterministic model, which are typi-
cally assumed to be independent and normally distributed
about the model output [32]. Likelihood free methods, such
as ABC [23,102] and pseudo-marginal approaches [105], are
routinely used in systems biology to calibrate complex sto-
chastic models to experimental data by approximating
equation (2.17). In this study, we apply a pseudo-marginal
approach based on a bootstrap particle filter to approximate
the likelihood and calibrate each SDE model to synthetic
experimental data [108]. In summary, the bootstrap particle
filter approximates equation (2.17) by

L̂(Dju) ¼
YE
i¼1

YNE

n¼1

1
R

XR
r¼1

g(Yn,i
obsjXi,r

tn , t; u): (2:18)

Here, the observation probability density, g (equation (2.2)), is
averaged overR samples from the SDE,Xi,r

tn jXi,r
tn�1

to approximate
the likelihood. The bootstrap particle filter then resamples from
the set ofweighted samples, {(g(Yn,i

obsjXi,r
tn ), X

i,r
tn )}

R
r¼1, at each time-

step to form the starting locations foreachSDEsample to sample
forward to tn+1. This process is repeated for each independent
experiment, and the result is an unbiasedMonte Carlo estimate
of the likelihood function, L̂(Dju), that replaces L in the Metro-
polis acceptance probability (equation (2.14)). Full details of the
particle MCMC algorithm, including an implementation for an
ODE model used in one case study, are provided as electronic
supplementary material, and for further information the
reader is directed to [108,109].
3. Case studies
Using the moment equations and MCMC, we provide a prac-
tical guide for assessing parameter identifiability in SDE CLE
models through four case studies. We generate synthetic data
for each model using the SSA when the propensity functions
are time-independent (the birth–death process, two-pool
model and epidemic model), and the corresponding CLE
when the propensity functions are time-dependent (the
β-insulin-glucose circuit). In practice, we would first assess
practical identifiability using the experimental data available.
However, working with synthetic data provides the means to
evaluate the effect of different experiment designs, and obser-
vation protocols, on practical identifiability. Our focus is on
data comprising partial observations of the process that
realistically captures potential experimental data.

3.1. Birth–death process
The first model we consider is a birth–death process
(figure 2a). The birth–death processes can describe, for
example, the growth of a well-mixed cell population where
individuals proliferate and die according to rates θ1 and θ2,
respectively. We consider practical identifiability for synthetic
data comprising noisy measurements of the cell count at 10
equally spaced times in 10 identically prepared experiments.
Such data are typical for in vitro cell proliferation experiments
[27,147], an example of which is shown in figure 1a–d.

3.1.1. Model formulation and moment equations
The birth–death process can be expressed as the bio-chemical
reaction network

X !u1 2X|fflfflfflfflffl{zfflfflfflfflffl}
birth

, X !u2 ;|fflfflffl{zfflfflffl}
death

,

with stoichiometries ν1 = 1 and ν2 =−1; and propensities
a1(Xt) = θ1Xt and a2(Xt) = θ2Xt. Here, we denote Xt as the
number of individuals in the population. The observed
number of individuals, Yt, is described by the noise model

Yt ¼ jtXt, jt � N (1, s2
err): (3:1)

Here, we consider a noise process that scales with the total
population, that is, multiplicative Gaussian noise. We show
100 realizations of the SSA for the birth–death process in
figure 3a, and the synthetic data used for practical identifia-
bility analysis in figure 3e. The data are generated using the
initial condition X0 = 50 and target parameter values θ1 =
0.2, θ2 = 0.1 and σerr = 0.05. Here, σerr≪ 1, which ensures
that Yt remains positive.

The CLE for the birth–death process is

dXt ¼ (u1 � u2)Xt dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(u1 þ u2)Xt

p
dWt, (3:2)

and the first- and second-order moment equations are

dm1

dt
¼ (u1 � u2)m1

and
dm2

dt
¼ 2(u1 � u2)m2 þ (u1 þ u2)m1:

9>>=>>; (3:3)

The moment equations for the SDE description of the birth–
death model above are identical to the moment equations
for the discrete Markov model that we simulate using the
SSA [148]. The moments of the observable (in the noise-free
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limit) are given to second order by n1 =m1 and n2 =m2. As
α( · ) and σ2( · ) are linear in Xt, the moment equations of
the birth–death process are closed at every order and so
equations (3.3) are exact. Furthermore, we note that the
common mean-field model for the birth–death process,

deX
dt

¼ (u1 � u2)eX, (3:4)

corresponds to the first moment, and describes the average
behaviour of Xt. The solution to equation (3.4) is

eX(t) ¼ eX(0) exp�(u1 � u2)t
	
: (3:5)

Here, the population, eX(t), undergoes exponential growth
with a net-growth rate of θ1− θ2. Therefore, intuitively, it is
not possible to identify θ1 and θ2 if only average growth
behaviour is observed [28].
3.1.2. Structural identifiability
We first assess structural identifiability of the moment
equations in DAISY [41]. If only the first moment, n1, is
observed, the system is structurally non-identifiable, meaning
the model parameters cannot be uniquely estimated with any
amount of data. However, the system becomes structurally
identifiable if n2 is also observed. As the moment, equations
are closed at every order, and therefore exact, this analysis
indicates that the ODE model (equation (3.4), corresponding
to the first moment equation) is structurally non-identifiable,
while the SDE model is structurally identifiable.

These structural identifiability results can be intuitively
understood through re-parameterization [43]. The first
moment equation (or the ODEmodel) can be re-parameterized
with ~u1 ¼ u1 � u2, where ~u1 is the sole parameter in the model.
Therefore, for a fixed ~u1, all values on the line u1 ¼ ~u1 þ u2 pro-
duce indistinguishable behaviour in the first moment, m1,
and hence in the observation, n1. On the other hand, when
re-parameterized the second moment equation contains a
second, linearly independent, parameter ~u2 ¼ u1 þ u2. For
the birth–death process, the second moment provides
enough additional information to uniquely identify both
parameters θ1 and θ2, provided enough data is available.
Thus, the birth–death process is structurally identifiable from
the first two moments.

3.1.3. Practical identifiability
We assess practical identifiability of the parameter vector
θ = (θ1, θ2, σerr) for the ODE and SDE models using MCMC.
We place independent uniform priors on each parameter so
that p(u1) ¼ p(u2) ¼ U(0, 0:6) and p(serr) ¼ U(0, 0:3). If prior
knowledge about the population (i.e. the cell line) is available,
perhaps based upon previously conducted experiments, this
can be incorporated into the analysis through an informative
prior. For example, upper bounds that define reasonable
values for biological parameters are routinely applied in this
context [94].

In figure 4a–i, we show MCMC results for the birth–death
process using the ODE model. Based on the structural
identifiability results, we expect the likelihood (and for a
uniform prior, the posterior density) to be constant along
the identifiable parameter combination ~u1 ¼ u1 � u2, and we
see this in figure 4d. These results also suggest that, should
one of θ1 or θ2 be known (for example, if the cells are treated
with an anti-proliferative drug that enforces θ1 = 0 [149]) the
other be identifiable. However, lower and upper bounds for
θ1 and θ2, respectively, are able to be established as a direct
consequence of the prior assumption that all parameters are
strictly positive. Examination of univariate credible intervals,
shown in table 1, reveals that each parameter cannot indivi-
dually be identified within 3–4 orders of magnitude, a
hallmark of non-identifiability [32]. We note that σerr is prac-
tically identifiable (figure 4i, 95% credible interval: (0.1448,
0.1907)) from the ODE model, however it will always be over-
estimated as the observation model for the ODE model must
also account for the intrinsic noise of the process.

We repeat the analysis for the SDEmodel, results of which
are shown in figure 4j–r. For the prior support chosen, both θ1
and θ2 are practically identifiable, as seen in figure 4k,n. Fur-
thermore, 95% credible intervals identify each parameter
within a single order of magnitude (table 1). While structural
identifiability analysis revealed that the SDE model is



Table 1. This shows 95% credible intervals (CrI), and diagnostics, for the parameter estimates for the birth–death process. (Credible intervals are approximated
using the MCMC quantiles after burn-in.)

ODE SDE

true 95% CrI R̂ Seff 95% CrI R̂ Seff

θ1 0.2 (0.1276,0.5891) 1.00056 2292 (0.1609,0.4059) 1.01068 104

θ2 0.1 (0.0130,0.4744) 1.00056 2300 (0.0477,0.3016) 1.01107 107

σerr 0.05 (0.1448,0.1907) 1.00242 2254 (0.0270,0.0667) 1.00079 364
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identifiable in the limit of infinite, noise-free data, it is not
necessarily so for data with a realistic signal-to-noise ratio,
characterized by the noise model parameter σerr. In our case,
if prior knowledge provided an upper bound for θ1 and θ2
at, for example, 0.3, conclusions of practical identifiability
may be analogous to those of the ODE model. We see this in
table 1, where the upper bounds of the credible intervals for
θ1 and θ2 extend beyond 0.3. This is also evident from both
the bivariate scatter plot (figure 4m) and MCMC trace plots
(figure 4j,l ), where posterior samples above 0.3 are regularly
drawn for both θ1 and θ2. As the SDE explicitly accounts for
intrinsic noise, σerr is identifiable with estimates close to the
true value, in contrast to results from the ODE model.

3.2. Two-pool model
Next,we consider partial observations of a process governedby
a two-pool model, describing the decay of a substance that is
able to transfer between two pools (figure 2b). Identifiability
of a two-pool model was first examined in the fundamental
study of Bellman&Åström [37] as they introduced the concept
of structural identifiability. The model can represent, for
example, human cholesterol distribution dispersed through
two pools (for example, two organs), where measurements
are taken from a tracer in the first pool [110]. Bellman [37] and
laterCobelli [38] show that, for anODEmodel, the pool transfer
and decay rates are not structurally identifiable. We consider
practical identifiability for synthetic data comprising noisy
measurements of the first pool at 10 equally spaced time
points in five identically prepared experiments. Although
measurements of the second pool are not taken, we assume,
for demonstration purposes, that the initial concentration in
each pool is zero before a known amount is introduced to the
first pool, thus the full initial condition is known. In practice,
the initial conditionmay also depend on a set of unknown par-
ameters, and we focus on this with the epidemic model.

3.2.1. Model formulation and moment equations
The two-pool model can be expressed as the bio-chemical
reaction network

X1!u1 ;, X2!u2 ;, X1O
u3

u4
X2,

with stoichiometries ν1 = (− 1,0)T, ν2 = (0,−1)T, ν3 = (− 1,1)T

and ν4 = (1,−1)T; and propensities a1(Xt) = θ1X1, a2(Xt) = θ2X2,
a3(Xt) = θ3X1 and a4(Xt) = θ4X2. Here, we denote Xt = (X1,t,X2,t)

T

as the concentration of cholesterol in the first and second
pools, respectively. The observed concentration, Yt, is
described by the noise model

Yt ¼ X1,t þ jt, jt � N (0, s2
err), (3:6)
in which we consider that the data are subject to measurement
error in the form of additive Gaussian noise [9,106,150]. We
show 100 realizations of the SSA for the two-pool model in
figure 3b, and the synthetic data used for practical identifiabil-
ity analysis in figure 3f. The data are generated using the initial
condition X0 = (100, 0)T and target parameter values θ1 = 0.1,
θ2 = 0.2, θ3 = 0.2, θ4 = 0.5 and σerr = 2. Here, we note that
σerr≪Xt (figure 3c), which ensures Yt > 0.

The CLE for the two-pool model is

dXt ¼ u4X2,t� (u1þu3)X1,t
u3X1,t� (u2þu4)X2,t

� �
dt

þ � ffiffiffiffiffiffiffiffiffiffiffiffi
u1X1,t

p
0 � ffiffiffiffiffiffiffiffiffiffiffiffi

u3X1,t
p ffiffiffiffiffiffiffiffiffiffiffiffi

u4X2,t
p

0 � ffiffiffiffiffiffiffiffiffiffiffiffi
u2X2,t

p ffiffiffiffiffiffiffiffiffiffiffiffi
u3X1,t

p � ffiffiffiffiffiffiffiffiffiffiffiffi
u4X2,t

p !
dWt,

(3:7)

and the moment equations are given to second order by

dm10

dt
¼ u4m01 � (u1 þ u3)m10,

dm01

dt
¼ u3m10 � (u2 þ u4)m01,

dm20

dt
¼ u4(m01 þ 2m11)þ (u1 þ u3)(m10 � 2m20),

dm02

dt
¼ u3(m10 þ 2m11)þ (u2 þ u4)(m01 � 2m02)

and
dm11

dt
¼ �(u1 þ u2)m11 � u4(m01 �m02 þm11)

� u3(m10 þm11 �m20):

9>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>;
(3:8)

The moments of the observed cholesterol concentration are
given in the noise-free limit by n1 =m10 and n2 =m20. As
with the birth–death process, all elements of α and
σ( · )Tσ( · ) are linear in Xt, so the moment equations are
closed at every order and, therefore, exact.

3.2.2. Structural identifiability
The two-pool model provides an archetypical example of struc-
tural non-identifiability in an ODE model [37,38]. Unless a
restriction is placed on one of the parameters (for example, if
decay of the substance can only occur from the first pool so
θ2 = 0), the model parameters are structurally non-identifiable:
many parameter combinations give identical behaviour in the
ODE model. Therefore, the model parameters cannot be
uniquely determined from any amount of noise-free exper-
imental data if observations are made from only the first pool.

We assess structural identifiability of an SDE description of
the two-pool SDE model using DAISY with the system of
moment equations up to second order (equation (3.8)). While
the ODE model is structurally non-identifiable, the SDE model
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is structurally locally identifiable: the parameters identifiable,
but non-uniquely. For the parameter values considered, which
are rates and, by definition, positive, DAISY indicates that
the parameters are uniquely identifiable. Therefore, in the
limit of infinite, noise-free data, the model parameters can be
determined from an SDE description of the two-pool model.

3.2.3. Practical identifiability
To assess practical identifiability of the two-pool model,
we apply MCMC to infer θ = (θ1, θ2, θ3, θ4, σerr). Initially, inde-
pendent uniform priors are chosen such that p(u1) ¼ U(0, 0:5),
p(u2) ¼ U(0, 2), p(u3) ¼ U(0, 1), p(u4) ¼ U(0, 0:5), and
p(serr) ¼ U(0, 10). The support of each prior is chosen to cover
a range ofmagnitudes over the target parameter values. Results
from four independent pilot chains, each initiated at a random
sample from the prior, are shown in figure 5a–f . In figure 5a,
we see that the log-likelihood estimate rapidly stabilizes,
indicating that the chain has moved to a high-likelihood
region of the parameter space. Results for σerr and θ3 also
rapidly stabilize, indicating that these parameters are practically
identifiable [32]. Results for the remaining three kinetic rate
parameters in figure 5c,d,f indicate that θ1, θ2 and θ4 are practi-
cally non-identifiable. In particular, chains for θ1 and θ2 spend
a non-negligible time near zero, indicating that the model
may be indistinguishable (using the available data) from a
model where removal only occurs from a single pool.

We next repeat the analysis using MCMC to infer
u� ¼ ( log u1, log u2, log u3, log u4, serr). Inferring the logar-
ithm of rate parameters will provide more detailed
information about themagnitude of rate parameters potentially
close to zero [108]. This transformation provides an excellent
example of why even a uniform prior is informative, as a
uniform prior placed on the linear-scale is not uniform on the
log-scale. A uniform prior on the linear-scale makes parameters
of a smaller magnitude less likely than a larger magnitude.
The priors are again chosen to be independent and uniform
(on the log-scale), such that p( log ui) ¼ U(�7, 2) for all i and
p(serr) ¼ U(0, 10) as before. The support of each prior is
chosen, again, to cover a range of magnitudes above and
below that of the target parameter values. Results in figure 5k
confirm that θ3 is practically identifiable, while θ2 and θ4 are
practically non-identifiable. From results in figure 5l, we term
θ4 one-sided identifiable: the parameter has an identifiable lower
bound, and is distinguishable from zero.

To visualize correlations between inferred parameters,
we tune the proposal kernel (equation (2.15)) and run the
MCMC algorithm for 30 000 iterations, results are shown in
figure 6 and table 2. If only the univariate marginal distri-
butions are considered, all parameters except for θ4 may be
classified as practically identifiable. However, our analysis
shows that θ1 and θ2 are distinguishable only within a large
range of magnitudes. A strong correlation is seen between
θ1 and θ2, indicating that the total substance exit rate, θ1 +
θ2, may be practically identifiable. If one of θ1 or θ2 were
known in advance, perhaps based on past experimental
knowledge, the other may become practically identifiable.
Furthermore, results from the tuned chains verify that θ3
is practically identifiable (95% credible interval (0.1356,
0.4857)) and θ4 is distinguishable from zero.

3.3. Epidemic model
Here, we consider a four-compartment epidemic model—
the SEIR model [111–113,151] (figure 2c). In this model,
susceptible individuals, S, are infected due to interactions with
infectious individuals, I, and undergo an unknown period of
time duringwhich they have been exposed, E, but are not them-
selves infectious. Infectious individuals either recover or are
removed from the total population, R. A noisy unknown pro-
portion, ξ, with mean μobs, of the number of infectious and
recovered individuals is monitored. This captures a testing
regime where not all infectious or recovered individuals are
tested. We supplement these results by considering a scenario
where the sameunknownproportionof theexposed individuals
is also monitored during the early part of the epidemic.

The kind of data available for the epidemic model differs
significantly from that for the experiment-based models we
have considered thus far: we are interested in a practical iden-
tifiability problem where data from only a single time-series
is available, which mirrors data available from an actual epi-
demic [152]. We first consider practical identifiability using
data from the early part of the epidemic, before the number
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Table 2. This shows 95% credible intervals, and diagnostics, for the
parameter estimates (on the linear-scale) for the two-pool model. (Credible
intervals are approximated using the MCMC quantiles after burn-in.)

true 95% CrI R̂ Seff

θ1 0.1 (0.0042,0.1503) 1.0024 510

θ2 0.2 (0.0307,1.0699) 1.0014 456

θ3 0.2 (0.1356,0.4857) 1.0023 515

θ4 0.5 (0.4372,1.9585) 1.0004 741

σerr 2.0 (0.5715,2.8773) 1.0089 409

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200652

11
of cases is observed to decrease. Next, these results are
compared to a case where data further through the course
of the epidemic is considered (figure 3g). Initially, 10 infected
individuals and 10 recovered individuals are detected. For
simplicity, we assume there is no noise in these initial obser-
vations, so the number of infected and recovered individuals
is given by 10/μobs. An unknown number of individuals, E0,
are initially exposed. In our analysis, we assume that E0 is not
of direct interest, and we class it a nuisance parameter.
3.3.1. Model formulation and moment equations
The SEIR model can be represented by the following bio-
chemical reactions:

S!u1I E, E!u2 I, I!u3 R,

with stoichiometries ν1 = (−1, 1, 0, 0)T, ν2 = (0,−1, 1, 0)T and
ν3 = (0, 0,−1, 1)T; and propensities a1(Xt) = θ1 St It, a2(Xt) = θ2
Et and a3(Xt) = θ3 It. Here, we denote Xt = (St, Et, It, Rt)

T

as the number of individuals in each compartment. Two
observations are made:

Y1,t ¼ j1,tIt, j1,t � N (mobs, s
2
err) (3:9)

and

Y2,t ¼ j2,tRt, j2,t � N (mobs, s
2
err): (3:10)

Here, Y1,t and Y2,t describe the observed number of infected
individuals and recovered individuals, respectively. We
further assume that μobs, the average observed proportion;
and σerr, the observation error, are unknown and must be esti-
mated. We show 100 realizations of the SSA for the epidemic
model in figure 3c, and synthetic data used for practical



Table 3. Structural identifiability of the partially observed SEIR model
assessed in DAISY and GenSSI2. (Structural identifiability of the SDE
is assessed using each closure method for third and higher-order moments.
Note that the ODE model is equivalent to the SDE model with a mean-field
closure for second- and higher-order moments. Runtimes correspond to a
3.7GHz quad-core i7 desktop machine running Windows 10.)

model
structural
identifiability

runtime
(DAISY)

runtime
(GenSSI2)

ODE non-identifiable 5 s 5 s

SDE (mean-field

closure)

identifiable 5 min 2 s

SDE (pairwise

closure)

identifiable 16 h 2 s

SDE (Gaussian

closure)

identifiable 7 h 2 s
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identifiability analysis in figure 3g. The data are generated
using the initial condition X0 = (500− E0, E0, 10/μobs, 10/
μobs)

T and target parameter values θ1 = 0.01, θ2 = 0.2, θ3 =
0.1, E0 = 20, μobs = 0.5 and σerr = 0.05. Here, we note that
σerr≪ μobs, ensuring that Y1,t and Y2,t remain positive.

The moment equations differ from the previous two
models considered, in that they are not closed. Therefore,
the first-order moment equations are not equivalent to
those for the corresponding ODE model [33], unless a
mean-field closure is drawn at first order. To make progress,
we close the moment equations after second order to form an
approximate system of moment equations for the first two
moments. We give the system of 14 moment equations,
under all three moment closures considered, as supporting
material. The moments of the observation variables are
given in the noise-free limit by

nij(t) ¼ m
iþj
obsm00ij(t), iþ j � 2: (3:11)

In the electronic supplementary material, we produce numeri-
cal solutions to the moment equations for the epidemic model
for each closure considered (electronic supplementary
material, figure S1). All closures predict visually identical
behaviour at first order, and the pair-approximation and
Gaussian closures are in agreement at second order. For the
target parameters, we consider the mean-field closure does
not agree at second order with the more advanced closures.
Whereas a numerical solution to the moment equations for
the pair-approximation and Gaussian closures is readily
obtainable from a standard solver in Julia [153], the mean-
field closure required a positivity-preserving Patankar-type
method [154] to avoid blow up.

3.3.2. Structural identifiability
We assess structural identifiability of the approximate system
of moment equations in DAISY and GenSSI2, results are
shown in table 3. The ODE model, equivalent to a mean-
field closure (equation (2.10)) drawn after the first moment,
is structurally non-identifiable. The second-order systems,
for all closures, are structurally identifiable (table 3). As the
second-order systems are approximate, this analysis is not
conclusive for the SDE. However, we can conclude that if
the mean and variance of the epidemic model (the first two
moments) are modelled using the system of moment
equations, and data are available accordingly, the parameters
are identifiable in the limit of infinite, noise-free data. We
highlight the computational cost in DAISY of introducing
complexity into the moment equations through the closure
methods. The pairwise closure, equation (2.11), which intro-
duces a quotient, and the Gaussian closure, equation (2.12),
which introduces a cubic, take significantly longer using
DAISY to assess than the mean-field closure, equation
(2.10), yet give the same result. However, unlike MCMC,
we note that structural identifiability results are deterministic,
and independent of user choices such as prior, number of
particles, and generated or real synthetic data.
3.3.3. Practical identifiability
We assess practical identifiability of the epidemic model using
MCMCto infer θ = (θ1, θ2, θ3,E0, μobs, σerr). Independent uniform
priors are placed on each parameter so that p(u1) ¼ U(0, 0:1),
p(u2) ¼ U(0, 1), p(u3) ¼ U(0, 0:5), p(E0) ¼ U(0, 20), p(mobs) ¼
U(0:2, 1) and p(serr) ¼ U(0, 0:2). Results are shown in figure 7,
where we initiate each chain at the same location for all forms
of data we consider.

First, we assess identifiability when only early-time data
is available. The log-likelihood estimate rapidly stabilizes
(figure 7a), indicating that the chains have moved to a high-
likelihood region of the parameter space [32]. Results for θ3,
the recovery rate, also stabilize, indicating that θ3 is structurally
identifiable. Eventually, we see the estimate for θ2 stabilizes in
all chains, however, they underestimate the target value,
although proposals equal to and greater than the target value
θ2 = 0.2 are occasionally accepted. To compensate, the estimate
of θ1 stabilizes, and covers a region an order of magnitude
greater than the target (θ1 = 0.01). Therefore, although θ1 is prac-
tically identifiable to a large, but finite, range of values, we
classify θ1 as non-identifiable from the short-time data. Esti-
mates for E0 and μobs in figure 7m,p do not stabilize, and are
practically non-identifiable.

Next, we consider a scenariowhere long-time data are avail-
able, such that the number of infected individuals is observed to
eventually decrease. The log-likelihood estimate (figure 7b) and
chains for all parameters, except E0, are observed to stabilize,
indicating that all parameters of interest are now practically
identifiable. We supplement these results by considering a
third scenario, where only early-time data are available, but
the same unknown proportion of the number of exposed indi-
viduals is also monitored. As with the long-time data, all
parameters of interest are now practically identifiable.

We perform a posterior predictive check [140] of the epi-
demic model to compare the model prediction—which
accounts for parameter uncertainty, intrinsic noise and obser-
vation error—to the synthetic data used for inference. We
discard the first 3000 samples from each pilot chain as burn-
in, and resample 10 000 parameter combinations for each
data type considered. Results in figure 8 show that, in all
cases, the model predictions are in agreement with the full
time-course (although, we note, the long-time data are
only used to calibrate parameters in figure 8b). Results in
figure 8a, for the short-time data, highlight how practical
non-identifiability affects model predictions. These results pre-
dict an epidemic size at t = 30 is noticeably wider and higher
than those for the data typeswhere θ1 is practically identifiable.
Furthermore, the lower 95% credible interval for the observed
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number of infected individuals reduces much faster than that
predicted by the other data types.

3.4. β-insulin-glucose circuit
Finally, we consider a nonlinear model of glucose homeosta-
sis, the β-insulin-glucose circuit [114,115] (figure 2d ).
Parameterizing mathematical models of glucose homeostasis
is important for the development of patient-specific insulin
delivery for type 1 diabetics [52]. Time-series data of blood
glucose concentration is available from continuous glucose
monitoring sensors, a critical component of type 1 diabetes
management [21,53], an example of which is shown in
figure 1f. The model describes the regulation of blood
plasma glucose by insulin secreted by pancreatic β cells.
Glucose is introduced into the system through a base pro-
duction plus a meal intake, u(t), and decays linearly
according to the insulin concentration. Insulin is secreted
by β cells at a rate given by a nonlinear Hill function [115].
β cells are produced and decay in a non-response to the glu-
cose concentration. We consider identifiability for synthetic
data comprising noisy measurements of the β cell and glucose
concentrations, but not the insulin concentration. The data
consist of five independent experiments, each comprising 15
time-series observations following a meal intake. We only
consider inference for two biophysical parameters: θ1, the
insulin secretion rate; and θ2, the insulin sensitivity. The non-
linearities in the model mean that the moment equation
approach is not available, and inference using MCMC is com-
putationally expensive. We demonstrate how structural
identifiability analysis of the corresponding ODE system
[155] can guide analysis of the SDE system and alleviate
some of the computational challenges.

3.4.1. Model formulation
We consider a stochastic analogue of the model presented
byKarin et al. [115].DenotingXt = (βt, It,Gt)

Tas theconcentrations
of β cells, insulin and glucose, respectively, the propensity
functions and corresponding stoichiometries are given by

a1(Xt, t) ¼ b(t)lþ(Gt), n1 ¼ (1, 0, 0)T ,

a2(Xt, t) ¼ Itl�(Gt), n2 ¼ (�1, 0, 0)T ,

a3(Xt, t) ¼ u1btr(Gt), n3 ¼ (0, 1, 0)T ,

a4(Xt, t) ¼ gIt, n4 ¼ (0, �1, 0)T ,

a5(Xt, t) ¼ u0, n5 ¼ (0, 0, 1)T ,

a6(Xt, t) ¼ u(t), n6 ¼ (0, 0, 1)T ,

a7(Xt, t) ¼ cGt, n7 ¼ (0, 0, �1)T ,

a8(Xt, t) ¼ u2ItGt, n8 ¼ (0, 0, �1)T ,

where

lþ(Gt) ¼ mþ
1þ (8:6=Gt)

1:7 , l�(Gt) ¼ m�
1þ (Gt=4:8)

8:5 ,

and

r(Gt) ¼ G2
t

h2 þ G2
t
, u(t) ¼ 0:2, t , 50,

0, t � 50:



Because βt, It and Gt denote the concentrations of each
substance, and not the population counts, we scale the
diffusion term in the CLE to represent the relative concen-
trations of each substance [73]. Denoting Nb, NI and NG

the relative concentration of β cells, insulin and glucose,
respectively, we write

dXt ¼
X8
k¼1

nkak(Xt, t; u)dt

þ diag
1ffiffiffiffiffiffiffi
Nb

p ,
1ffiffiffiffiffiffi
NI

p ,
1ffiffiffiffiffiffiffi
NG

p
 !

�
X8
k¼1

nk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ak(Xt, t; u)

p
dWk,t: (3:12)

Two observations are made:

Y1,t ¼ bt þ j1,t, j1,t � N (0, s2
err)
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and

Y2,t ¼ Gt þ j2,t, j2,t � N (0, s2
err),

such that Y1,t and Y2,t are the observed β cell and glucose con-
centrations, respectively. We show 100 realizations of the SSA
for the β-insulin-glucose circuit in figure 3d, and the synthetic
data used for practical identifiability analysis in figure 3h.
The data are generated using the initial condition X0 = (322,
10, 5)T with fixed parameters, μ+ = 0.021/(24 × 60), μ− =
0.025/(24 × 60), η = 7.85, γ = 0.3, u0 = 1/30, c = 10−3, Nb ¼ 1,
NI =NG = 20, and target parameters θ1 = 0.03, θ2 = 0.0005 and
σerr = 1 [115]. Here, we note σerr≪ βt, Gt (figure 3d), which
ensures that Y1,t and Y2,t remain positive.
0
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Figure 10. Pilot MCMC trace plots, and log-likelihood estimate, of four chains
for the β-insulin-glucose circuit in the transformed parameter space. The
likelihood quickly stabilizes, but estimates for ~u2 do not, indicating practical
non-identifiability. Priors for each parameter are uniform with support corre-
sponding to the respective axis limits. The target parameter set, used to
generate synthetic data, are indicated (black dashed line).
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3.4.2. Parameter transform
Villaverde et al. [156] study structural identifiability of the
corresponding ODE model using differential geometry. In
the ODE model, θ1 and θ2 are structurally non-identifiable,
unless the insulin concentration is also observed or one of
these two parameters is known. We demonstrate this using
MCMC in figure 9a, where the marginal posterior for (θ1,θ2)
covers a hyperbolic region of the parameter space of equal
posterior density. In the ODE model, the product θ1θ2 is
structurally identifiable. To demonstrate this, we perform
MCMC on the ODE model with transformed variables
~u1¼u1u2 and ~u2¼u1=u2, results shown in figure 9b. These
results also show how inefficient a naive MCMC proposal
can be when correlations between posterior parameters are
nonlinear. Structural identifiability analysis [156] indicates
that the hyperbolic region defined by ~u1¼u1u2 (for a fixed
~u1) produces indistinguishable behaviour, corresponding to
a flat posterior when a uniform prior is applied. Despite
this, the tail regions in figure 9a are rarely sampled, which
could give the impression that the parameters are practically
identifiable.

As the propensity functions for the β-insulin-glucose cir-
cuit model contain non-polynomial functions, we cannot
produce an exact expression for the moment equations.
Therefore, we only study practical identifiability using
MCMC, and do not consider structural identifiability of the
SDE for the β-insulin-glucose circuit using the moment
equations. Motivated by the structural identifiability analysis
of the ODE model, we use MCMC to infer u ¼ (~u1,~u2,serr),
where we only consider the transformed variables ~u1¼u1u2
and ~u2¼u1=u2.
3.4.3. Practical identifiability
We show MCMC results from four pilot chains in figure 10.
The log-likelihood estimate rapidly stabilizes (figure 10a), as
do results for ~u1 and σerr (figure 10b,d ). As with the ODE
model, ~u1 is practically identifiable, but ~u2 is not. To visualize
possible correlations between inferred parameters, we tune
the proposal kernel (equation (2.15)) and run the MCMC
algorithm for 10 000 iterations, results shown in figure 11.
The univariate marginal distributions, and MCMC trace
plots, show that ~u1 (95% credible interval: (1.34, 1.67) × 10−5)
and σerr (95% credible interval: (0.812, 1.049)) are practically
identifiable, whereas ~u2 is not (95% credible interval: (8.21,
97.79)). No large correlations are seen between the parameters
(r(~u1, ~u2) ¼ 0:10), and θ2 is clearly practically non-identifiable
as samples cover the entire range of the prior.
4. Discussion
Mathematical models are routinely calibrated to experimental
data, with goals ranging from building a predictive model to
quantifying biophysical parameters that cannot be directly
measured. Much of the usefulness of calibrated models
hinges on an assumption that model parameters are identifi-
able. Heavily over-parameterized models, with large
numbers of practically non-identifiable parameters, are
often referred to as sloppy in the systems biology literature
[76,157–160]. Worryingly, these issues of parameter identifia-
bility can often go undetected: models with non-identifiable
parameters can still match experimental data (figure 8), but
may have poor predictive power and provide little or no
mechanistic insight [31]. Identifiability analysis is well-
developed for deterministic ODE models, but there is little
guidance in the literature to conducting such analysis for
the stochastic models that are often vital for interpreting com-
plex experimental data. In this review, we demonstrate how
existing techniques can be applied to assess both structural
and practical identifiability of SDE models in biology.

4.1. Moment dynamics approach
We demonstrate how existing ODE identifiability techniques
can be applied directly to stochastic problems by formulating
a system of moment equations. In the birth–death process
and the two-pool model, the derived moment equations are
closed and, therefore, exactly describe the time-evolution of
the moments of the SDE. In these two case studies, we find
that the moment equations are structurally identifiable. This
implies structural identifiability of the corresponding SDE
model, and parameters can be uniquely estimated in the
limit of infinite, noise-free data. For an SDE model, this
implies an infinite number of observation-noise free trajectories
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of the SDE, since the variability, which relates to higher-order
moments, contains information. While we find that the
two-pool model of cholesterol distribution is not practically
identifiable, establishing structural identifiability is useful as
it suggests to the practitioner that the observation process
(i.e. observe cholesterol in the first pool) is sufficient, in prin-
ciple, to fully parameterize the model.

For the epidemic model, the moment equations are not
closed, so we study structural identifiability through an
approximate system of second-order moment equations.
The idea of studying identifiability through an approximate
system was first suggested by Pohjanpalo [79], who studies
identifiability of ODE systems through a power series expan-
sion. The closed system of moment equations suggest the
epidemic SDE model could be structurally identifiable, and
these results agree, in our case, with practical identifiability
detected using MCMC. More research is needed to establish
how identifiability is affected when closing, or truncating, a
system of moment equations. For example, if information
required to identify model parameters is contained in third
or higher-order moments, results suggesting that a model is
practically non-identifiable from a second order closure will
not be indicative of non-identifiability in the SDE model. Fur-
thermore, if structural identifiability differs between moment
closures, such a preliminary screening tool needs to be inter-
preted with caution. If this were the case, a conclusion of
structural identifiability is indicative of the model under a
particular closure. Recent work suggests that a finite
number of moments often contain the information required
to identify parameters [161], even for a bimodal distribution
and if a closure is applied [162].

Owing to the computational constraints placed on analys-
ing structural identifiability of non-polynomial ODE models,
we do not attempt to apply the moment dynamics approach
to the stochastic β-insulin-glucose circuit model. However, for
many models, a mean-field closure corresponds to an ODE
description of the system, and studying identifiability of this
ODE model can aid practical identifiability analysis of the cor-
responding SDE. In our case, the corresponding ODEmodel is
structurally non-identifiable owing to a hyperbolic relationship
between the two parameters of interest: for a fixed θ1θ2, model
outputs are indistinguishable [156]. The question ofwhether an
SDE description can provide enough information to practically
identify θ1 and θ2 can be answered through MCMC, however
simple variants of MCMC can struggle when correlations
between parameters are strong and nonlinear. Therefore, we
work in a transformed parameter space where, for the ODE
model, ~u1 ¼ u1u2 is identifiable but ~u2 is not (figure 9). This
analysis provides a better sense of whether the SDEmodel cap-
tures enough information to identify the parameters, and
provides more robust results that are less dependent upon
choices made in the MCMC algorithm.
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4.2. Particle Markov chain Monte Carlo
We demonstrate practical identifiability by calibrating each
model to synthetic data using particle MCMC. We observe
theMCMC chains to stabilize in a region of high posterior den-
sity, after which time transitions produce samples from the
posterior distribution [32]. By visualizing MCMC trace plots,
we see that estimates of practically identifiable parameters
also stabilize, but those of practically non-identifiable par-
ameters do not. These results also demonstrate that, although
estimates made of practically identifiable parameters are pre-
cise (that is, within a reasonable level of confidence), they are
not necessarily accurate. For example, in figure 7g, the rate at
which exposed individuals become infectious is practically
identifiable, but it is underestimated compared to the target
value, which could hint at model misspecification.

Given that particle MCMC is computationally expensive,
our implementation of a standard technique to detect identifia-
bility from pilot chains carries several advantages. First, pilot
chains are regularly generated in the early stages ofmany infer-
ence procedures to establish efficient proposal kernels. Practical
identifiability can, therefore, be established as part of an exist-
ingworkflow. Second,more sophisticatedmethods are by their
very nature more difficult to implement and dependent on
practitioner choices, which could obscure results and require
more algorithmic experimentation. In comparison, we take
an automated approach: aside from the model and choice of
prior, the procedure to performMCMC for eachmodel we con-
sider is identical. Once identifiability is established, the
computational cost of MCMC can be alleviated to some
extent by adopting a more efficient inference technique. For
example, adaptive MCMC [163], sequential Monte Carlo
[164], multi-level methods [165–167], sub-sampling techniques
[168] andmodel-based proposalmethods [169] provide signifi-
cant performance improvements over the standard technique
we employ. Furthermore, we expect applying higher-order
SDE simulation algorithms, such as a Runge–Kutta method
[170], or considering graphical processing unit approaches to
particle MCMC [171], to improve performance.

As we calibrate to synthetic data for the purpose of a
didactic demonstration, we take a pragmatic approach by
treating the true values as unknown. Hence, we initiate
each chain as a random sample from the prior distribution.
This involves a burn-in phase before the MCMC chain settles
in an area of high posterior density. For computationally
expensive models, such as those found in the cardiac model-
ling literature [172], synthetic data can be used with pilot
chains initiated at the target values. If models have already
been calibrated to experimental data using, for example,
maximum-likelihood estimation, the chain can be initiated
at the calibrated values. MCMC then, relatively cheaply, pro-
vides information about the posterior distribution about this
point, akin to the Fisher information for models where it can
be calculated [44].

MCMC can be applied to detect identifiability for any sto-
chastic model provided an approximation to the likelihood is
available. Recent developments to particle MCMC have seen
its adoption for more complicated SDE models, such as SDE
mixed effects models [173]. For systems with relatively small
populations, it may be more appropriate to work directly
with an SSA with, for example, a tau-leap method [57,125].
Alternative approximations to the likelihood, such as those
employed by ABC, may be necessary if model complexity
requires; for example, should the model include spatial
effects [18]. A major drawback of ABC in the context of
identifiability is that one must typically decide a priori
which features of the model and data to match. Common
applications of ABC for SDE models match the mean and
variance of system [109] or the mean square error between
simulations and data [174]. Estimating the likelihood directly,
as particle MCMC does, is advantageous when assessing
identifiability as it is not clear a priori which features of the
data and model are significant. For example, some systems
might contain the information required for identifiability in
higher-order moments or auto-correlations between time-
series observations. If ABC is used, a variant that preserves
features of the model distribution might be desirable [175].

4.3. Modelling noise
In contrast to many studies of identifiability analysis for ODEs,
we do not pre-specify parameters in the observation distri-
bution. In a deterministic modelling framework, it is
common to assume that all the variability in the data is uncor-
related and sourced from the observation process [44,94,176].
Therefore, for an ODE model, the observation parameters can
be reliably estimated using the pooled sample variance. For
inference on the birth–death ODE model (figure 4), we see
that, because the observation variance must now also account
for intrinsic noise, the identified value of σerr is significantly
larger than the target value. For an ODE model with additive
homoscedastic Gaussian noise, the posterior mode (in the
case of an improper uniform prior), maximum-likelihood
estimate and least-squares estimate are identical and are inde-
pendent of the choice of the observed variance. For an SDE
model, this is not the case as the intrinsic component of the
noise is also modelled implicitly. Therefore, pre-specifying
the observation variance could lead to biased estimates
and obscure parameter identifiability. We account for this by
treating the observation distribution variance as a nuisance
parameter that we infer using MCMC, finding it to be
identifiable in every case-study considered.

We have focussed our analysis on SDEs derived through
the CLE, where the intrinsic noise can provide more infor-
mation about the process. However, for large populations,
the information contained in higher-order moments dissi-
pates: to leading order, 〈X2〉→ 〈X〉2 as X→∞. We see this in
the epidemic model (figure 3c), where the variance is small
compared to the scale of the mean. This loss of information
in higher-order moments will not be detected by structural
identifiability analysis of themoment equations, which is inde-
pendent of the relative sizes of each moment. As populations
become large, the information tends towards that obtained
from the equivalent ODE system: this is the assumption
behind many mean-field models. There are, however, many
other models that contain sources of variability in their own
right. For example, Mummert & Otunuga [62] study identifia-
bility of an epidemic model where the infection rate varies
according to a white noise process. Other external effects,
such as seasonal effects, are often incorporated into epidemic
models [177,178]. In other systems, extrinsic noise describing,
for example, the environment, forms a core part of the process
and is described by an SDE independent of the population size
[51]. Grey-box models use a diffusion term to characterize
uncertain physiological effects [64] that could obscure infer-
ence, rather than contain information. Making high-level
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assumptions about which noise process contains information
can help with some of the computational challenges by formu-
lating hybrid models containing a mixture of ODEs and SDEs.
ParticleMCMC carries across, trivially, to any Itô SDE, and the
moment equation approach can be applied provided a system
of moments be constructed. We have not considered identifia-
bility of SDE models containing non-diffusion noise, such as
coloured noise or jump noise. These models lend themselves
to different inference techniques, such as forms of rejection
sampling [179].
rnal/rsif
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4.4. Approaches to computational challenges
The primary computational cost of working with SDE models
stems from the need to simulate a suite of trajectories at each
iteration of the particle MCMC algorithm. This cost increases
not only with the dimensionality of the problem (as for deter-
ministic models) but also with the amount of data, because the
number of particles required for an unbiased likelihood esti-
mate increases with the sample size [28,105]. We see this, in
particular, when conducting practical identifiability analysis
of the two-pool and β-insulin-glucose models. These issues
have important ramifications for identifiability, as it may not
always be feasible to increase the amount of experimental
data to rectify practical non-identifiability. Working with a sur-
rogate model, such as a system of moment equations, can help
alleviate some of these challenges. For example, establishing
structural identifiability—which is requisite for parameter
estimation [31]—indicates that the computational investment
is worthwhile. Furthermore, such surrogate models can also
form a computationally efficient alternative for assessing prac-
tical identifiability and performing inference [97,162,180],
while still capturing more information than a purely determi-
nistic description. The linear noise approximation (LNA)
[181] captures information about the mean and variance of a
process through a linear SDE. Although the LNA neglects
higher-order behaviour, a tractable likelihood function allows
practical identifiability analysis directly through the Fisher
information matrix (in the frequentist context) or through like-
lihood-based MCMC techniques (in the Bayesian context). As
there is an extensive body of work analysing inference and
identifiability using the LNA [28,97,182], we do not consider
this approach here. However, conclusions of practical identifia-
bility analysis drawn through MCMC are independent of
whether the likelihood is calculated analytically (as through
the LNA) or estimated through the particle filter approach.

A large class of high-dimensional stochastic models lend
themselves to structural identifiability analysis through
moment equations. For example, CLE descriptions of multi-
state ion-channel systems [73] and cascades with many
bimolecular reactions [183], can be analysed in terms of a sur-
rogate model using moment equations. This approach can be
used because the propensity functions are often polynomial.
However, the systems of moment equations are often infinite
and require a moment closure approximation to facilitate this
analysis. When a moment closure assumption is required, we
find that newer software, such as GenSSI2 in Matlab, is
computationally advantageous over DAISY (table 3). Further-
more, for larger systems, it may not be necessary to consider a
full system of second-order moments: a closed system that
neglects covariances is also a potentially useful surrogate
model.
Manystochastic problemsare both computationally expens-
ive to assess using particle MCMC andmay not directly permit
moment dynamics analysis. The β-insulin-glucose model com-
prises eight reactions and takes approximately 30 h to perform
10 000 iterations of a pilot chain. (Runtimes for all results are
available on Github: https://github.com/ap-browning/SDE-
Identifiability.) These issues are magnified by the quantity of
data we consider in this example: five time series of 15 obser-
vations each. Non-polynomial propensity functions mean that
an exact expression for the moment equations cannot be
derived, so it may not be possible to pre-detect structural non-
identifiability through the moment dynamics approach. Fortu-
nately, other approaches, such as those that use polynomial
chaos [184], Gaussian processes [185], or the LNA [97] can pro-
vide alternative means of deriving surrogate models. This kind
of approximation is already routine in the field of uncertainty
quantification, which has deep connections to identifiability
[186,187]. In the future, many of these ideas could allow tract-
able structural and practical identifiability analysis of large
systems of SDEs and, by extension, analysis of spatial problems
described by stochastic partial differential equations.

The computational cost of MCMC, in particular for
stochastic models with many parameters, has spurred the
development of alternatives to explore and exploit the-
geometry of the likelihood near parameter estimates.
The concept of information geometry [159,188] generalizes
Fisher information and can be applied to detect identifiability
through local information [189], and improve the performance
of MCMC algorithms [190]. For SDE models, in particular,
variational Bayesian techniques provide an efficient alterna-
tive to MCMC for parameter estimation [191]. In many
cases, mathematical models are calibrated to experimental
data to establish the value of a biophysical parameter, not to
fully parameterise a model. Profile likelihood [96,192] is
widely applied to assess identifiability in ODE models by
maximizing out parameters that are not of direct interest to
reduce the dimensionality of the analysis. Because the boot-
strap particle filter that we employ estimates the likelihood
function, profile likelihood could be applied to SDE problems.
5. Conclusion
It is essential to consider identifiability when performing
inference. Yet, there is a scarcity of methods available for asses-
sing identifiability of the stochastic models that are becoming
increasingly important. We have provided, through this
review, an introduction to identifiability and a guide for per-
forming identifiability analysis of SDE models in systems
biology. By formulating a system of moment equations, we
show how existing techniques for structural identifiability
analysis of ODE models can be applied directly to SDE
models [31,37,38,155]. Through synthetic data and particle
MCMC, we have demonstrated how to establish practical
identifiability for SDE models from data [32,54].

The analysis we demonstrate is critical for tailoring model
complexity to the available data [31]. When a structurally
identifiable model is found to be practically non-identifiable,
identifiability analysis can guide experiment design to discern
the quality and quantity of data required to estimate model
parameters [193]. On the other hand, models found to be struc-
turally non-identifiable should be re-parameterized, reduced
in complexity, or changed [91,194]. Moving from an ODE to
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an SDEmodel can often provide enough information to render
an otherwise structurally non-identifiable parameter identifi-
able: we demonstrate this with the birth–death process. As
increasing computing power facilitates inference of complex
stochastic models, we expect identifiability to become ever
more relevant.

Data accessibility. This study contains no experimental data. Code
used to produce the numerical results is available as a Julia
module on GitHub at github.com/ap-browning/SDE-
Identifiability.

Authors’ contributions. All authorsdesigned the research;A.P.B. performed
the research andwrote themanuscript; A.P.B. andD.J.W. implemented
the computational algorithms. All authors provided direction,
feedback and gave approval for final publication.

Competing interests. We declare we have no competing interests.
Funding. This work was supported by the Australian Research Council
(DP200100177) and the Air Force Office of Scientific Research(BAA-
AFRL-AFOSR-20160007). A.P.B. acknowledges funding from the
Australian Centre for Excellence in Mathematical and Statistic Fron-
tiers International Mobility Program. R.E.B. acknowledges funding
from the Leverhulme Trust for a Leverhulme Research Fellowship,
the BBSRCvia BB/R00816/1 and the Royal Society for a Wolfson
Research Merit Award.

Acknowledgements. The authors thank Oliver Maclaren for helpful
discussions, and the three anonymous referees for their comments.
sif
J.R.So
References
c.Interface
17:20200652
1. Abkowitz JL, Catlin SN, Guttorp P. 1996 Evidence that
hematopoiesis may be a stochastic process in vivo.
Nat. Med. 2, 190–197. (doi:10.1038/nm0296-190)

2. Elowitz MB, Leibler S. 2000 A synthetic oscillatory
network of transcriptional regulators. Nature 403,
335–338. (doi:10.1038/35002125)

3. Wilkinson DJ. 2009 Stochastic modelling for
quantitative description of heterogeneous biological
systems. Nat. Rev. Genet. 10, 122–133. (doi:10.
1038/nrg2509)

4. Neuert G, Munsky B, Tan RZ, Teytelman L,
Khammash M, Oudenaarden Av. 2013 Systematic
identification of signal-activated stochastic gene
regulation. Science 339, 584–587. (doi:10.1126/
science.1231456)

5. Székely T, Burrage K. 2014 Stochastic simulation in
systems biology. Comput. Struct. Biotechnol. J. 12,
14–25. (doi:10.1016/j.csbj.2014.10.003)

6. Kang HW, KhudaBukhsh WR, Koeppl H, Rempała
GA. 2019 Quasi-steady-state approximations derived
from the stochastic model of enzyme kinetics. Bull.
Math. Biol. 81, 1303–1336. (doi:10.1007/s11538-
019-00574-4)

7. Xu B, Kang HW, Jilkine A. 2019 Comparison of
deterministic and stochastic regime in a model for
Cdc42 oscillations in fission yeast. Bull. Math. Biol.
81, 1268–1302. (doi:10.1007/s11538-019-00573-5)

8. Swameye I, Muller TG, Timmer J, Sandra O,
Klingmuller U. 2003 Identification of
nucleocytoplasmic cycling as a remote sensor in
cellular signaling by databased modeling. Proc. Natl
Acad. Sci. USA 100, 1028–1033. (doi:10.1073/pnas.
0237333100)

9. Heron EA, Finkenstädt B, Rand DA. 2007 Bayesian
inference for dynamic transcriptional regulation; the
Hes1 system as a case study. Bioinformatics 23,
2596–2603. (doi:10.1093/bioinformatics/btm367)

10. Locke JCW, Elowitz MB. 2009 Using movies to
analyse gene circuit dynamics in single cells. Nat.
Rev. Microbiol. 7, 383–392. (doi:10.1038/
nrmicro2056)

11. Young JW, Locke JCW, Altinok A, Rosenfeld N,
Bacarian T, Swain PS, Mjolsness E, Elowitz MB. 2011
Measuring single-cell gene expression dynamics in
bacteria using fluorescence time-lapse microscopy.
Nat. Protoc. 7, 80–88. (doi:10.1038/nprot.2011.432)
12. Cho H, Rockne RC. 2019 Mathematical modeling
with single-cell sequencing data. bioRxiv 710640.
(doi:10.1101/710640)

13. Ritchie K, Shan XY, Kondo J, Iwasawa K, Fujiwara T,
Kusumi A. 2005 Detection of non-Brownian
diffusion in the cell membrane in single molecule
tracking. Biophys. J. 88, 2266–2277. (doi:10.1529/
biophysj.104.054106)

14. Isaacson SA. 2008 Relationship between the
reaction–diffusion master equation and
particle tracking models. J. Phys. A: Math. Theor. 41,
065003. (doi:10.1088/1751-8113/41/6/065003)

15. Rienzo CD, Piazza V, Gratton E, Beltram F, Cardarelli
F. 2014 Probing short-range protein Brownian
motion in the cytoplasm of living cells. Nat.
Commun. 5, 5891. (doi:10.1038/ncomms6891)

16. Schnoerr D, Grima R, Sanguinetti G. 2016 Cox
process representation and inference for stochastic
reaction–diffusion processes. Nat. Commun. 7,
11729. (doi:10.1038/ncomms11729)

17. Brückner DB, Ronceray P, Broedersz CP. 2020
Inferring the dynamics of underdamped stochastic
systems. Phys. Rev. Lett. 125, 058103. (doi:10.1103/
physrevlett.125.058103)

18. Browning AP, Jin W, Plank MJ, Simpson MJ. 2020
Identifying density-dependent interactions in
collective cell behaviour. J. R. Soc. Interface 17,
20200143. (doi:10.1098/rsif.2020.0143)

19. Browning AP, McCue SW, Binny RN, Plank MJ, Shah
ET, Simpson MJ. 2018 Inferring parameters for a
lattice-free model of cell migration and proliferation
using experimental data. J. Theor. Biol. 437,
251–260. (doi:10.1016/j.jtbi.2017.10.032)

20. University Center for Systems Science and
Engineering (CSSE) at Johns Hopkins. 2020 COVID-
19 data repository. See https://github.com/
CSSEGISandData/COVID-19. (accessed 7 July 2020).

21. Vigers T, Chan CL, Snell-Bergeon J, Bjornstad P,
Zeitler PS, Forlenza G, Pyle L. 2019 cgmanalysis: an
R package for descriptive analysis of continuous
glucose monitor data. PLoS ONE 14, e0216851.
(doi:10.1371/journal.pone.0216851)

22. Golightly A, Wilkinson DJ. 2006 Bayesian sequential
inference for stochastic kinetic biochemical network
models. J. Comput. Biol. 13, 838–851. (doi:10.1089/
cmb.2006.13.838)
23. Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH.
2009 Approximate Bayesian computation scheme
for parameter inference and model selection in
dynamical systems. J. R. Soc. Interface 6, 187–202.
(doi:10.1098/rsif.2008.0172)

24. Liepe J, Kirk P, Filippi S, Toni T, Barnes CP, Stumpf
MPH. 2014 A framework for parameter estimation
and model selection from experimental data in
systems biology using approximate Bayesian
computation. Nat. Protoc. 9, 439–456. (doi:10.1038/
nprot.2014.025)

25. Schnoerr D, Sanguinetti G, Grima R. 2017
Approximation and inference methods for stochastic
biochemical kinetics—a tutorial review. J. Phys. A:
Math. Theor. 50, 093001. (doi:10.1088/1751-8121/
aa54d9)

26. Bressloff PC. 2017 Stochastic switching in biology:
from genotype to phenotype. J. Phys. A: Math. Theor.
50, 133001. (doi:10.1088/1751-8121/aa5db4)

27. Bosco DB, Kenworthy R, Zorio DAR, Sang QXA. 2015
Human mesenchymal stem cells are resistant to
paclitaxel by adopting a non-proliferative
fibroblastic state. PLoS ONE 10, e0128511. (doi:10.
1371/journal.pone.0128511)

28. Wilkinson DJ. 2012 Stochastic modelling for systems
biology, 2nd edn. Boca Raton, FL: CRC Press.

29. Liao S, Vejchodský T, Erban R. 2015 Tensor methods
for parameter estimation and bifurcation analysis of
stochastic reaction networks. J. R. Soc. Interface 12,
20150233. (doi:10.1098/rsif.2015.0233)

30. Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS,
Myers CR, Sethna JP. 2007 Universally sloppy
parameter sensitivities in systems biology models.
PLoS Comput. Biol. 3, e189. (doi:10.1371/journal.
pcbi.0030189)

31. Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling
M, Klingmüller U, Timmer J. 2009 Structural and
practical identifiability analysis of partially observed
dynamical models by exploiting the profile
likelihood. Bioinformatics 25, 1923–1929. (doi:10.
1093/bioinformatics/btp358)

32. Hines KE, Middendorf TR, Aldrich RW. 2014
Determination of parameter identifiability in
nonlinear biophysical models: a Bayesian approach.
J. Gen. Physiol. 143, 401–416. (doi:10.1085/jgp.
201311116)

https://github.com/ap-browning/SDE-Identifiability
https://github.com/ap-browning/SDE-Identifiability
http://dx.doi.org/10.1038/nm0296-190
http://dx.doi.org/10.1038/35002125
http://dx.doi.org/10.1038/nrg2509
http://dx.doi.org/10.1038/nrg2509
http://dx.doi.org/10.1126/science.1231456
http://dx.doi.org/10.1126/science.1231456
http://dx.doi.org/10.1016/j.csbj.2014.10.003
http://dx.doi.org/10.1007/s11538-019-00574-4
http://dx.doi.org/10.1007/s11538-019-00574-4
http://dx.doi.org/10.1007/s11538-019-00573-5
http://dx.doi.org/10.1073/pnas.0237333100
http://dx.doi.org/10.1073/pnas.0237333100
http://dx.doi.org/10.1093/bioinformatics/btm367
http://dx.doi.org/10.1038/nrmicro2056
http://dx.doi.org/10.1038/nrmicro2056
http://dx.doi.org/10.1038/nprot.2011.432
http://dx.doi.org/10.1101/710640
http://dx.doi.org/10.1529/biophysj.104.054106
http://dx.doi.org/10.1529/biophysj.104.054106
http://dx.doi.org/10.1088/1751-8113/41/6/065003
http://dx.doi.org/10.1038/ncomms6891
http://dx.doi.org/10.1038/ncomms11729
http://dx.doi.org/10.1103/physrevlett.125.058103
http://dx.doi.org/10.1103/physrevlett.125.058103
http://dx.doi.org/10.1098/rsif.2020.0143
http://dx.doi.org/10.1016/j.jtbi.2017.10.032
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
https://github.com/CSSEGISandData/COVID-19
http://dx.doi.org/10.1371/journal.pone.0216851
http://dx.doi.org/10.1089/cmb.2006.13.838
http://dx.doi.org/10.1089/cmb.2006.13.838
http://dx.doi.org/10.1098/rsif.2008.0172
http://dx.doi.org/10.1038/nprot.2014.025
http://dx.doi.org/10.1038/nprot.2014.025
http://dx.doi.org/10.1088/1751-8121/aa54d9
http://dx.doi.org/10.1088/1751-8121/aa54d9
http://dx.doi.org/10.1088/1751-8121/aa5db4
http://dx.doi.org/10.1371/journal.pone.0128511
http://dx.doi.org/10.1371/journal.pone.0128511
http://dx.doi.org/10.1098/rsif.2015.0233
http://dx.doi.org/10.1371/journal.pcbi.0030189
http://dx.doi.org/10.1371/journal.pcbi.0030189
http://dx.doi.org/10.1093/bioinformatics/btp358
http://dx.doi.org/10.1093/bioinformatics/btp358
http://dx.doi.org/10.1085/jgp.201311116
http://dx.doi.org/10.1085/jgp.201311116


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200652

20
33. Roosa K, Chowell G. 2019 Assessing parameter
identifiability in compartmental dynamic
models using a computational approach:
application to infectious disease transmission models.
Theor. Biol. Med. Modell. 16, 1. (doi:10.1186/s12976-
018-0097-6)

34. Kreutz C, Raue A, Timmer J. 2012 Likelihood based
observability analysis and confidence intervals for
predictions of dynamic models. BMC Syst. Biol. 6,
120. (doi:10.1186/1752-0509-6-120)

35. Cedersund G. 2016 Prediction uncertainty estimation
despite unidentifiability: an overview of recent
developments. In Uncertainty in Biology (eds L
Geris, D Gomez-Cabrero), pp. 449–466. Cham,
Switzerland: Springer International Publishing.
(doi:10.1007/978-3-319-21296-8_17).

36. Villaverde AF, Raimúndez E, Hasenauer J, Banga JR.
2019 A comparison of methods for quantifying
prediction uncertainty in systems biology. IFAC-
PapersOnLine 52, 45–51. (doi:10.1016/j.ifacol.2019.
12.234)

37. Bellman R, Åström K. 1970 On structural
identifiability. Math. Biosci. 7, 329–339. (doi:10.
1016/0025-5564(70)90132-X)

38. Cobelli C, DiStefano JJ. 1980 Parameter and
structural identifiability concepts and ambiguities: a
critical review and analysis. Am. J. Physiol. Regul.
Integr. Comp. Physiol. 239, 7–24. (doi:10.1152/
ajpregu.1980.239.1.r7)

39. Walter E. 1987 Identifiability of parametric models.
London, UK: Elsevier Science & Technology. (doi:10.
1016/C2013-0-03836-4)

40. Jaqaman K, Danuser G. 2006 Linking data to
models: data regression. Nat. Rev. Mol. Cell Biol. 7,
813–819. (doi:10.1038/nrm2030)

41. Bellu G, Saccomani MP, Audoly S, D’Angiò L. 2007
DAISY: A new software tool to test global
identifiability of biological and physiological
systems. Comput. Methods Programs Biomed. 88,
52–61. (doi:10.1016/j.cmpb.2007.07.002)

42. Miao H, Xia X, Perelson AS, Wu H. 2011 On
identifiability of nonlinear ODE models and
applications in viral dynamics. SIAM Rev. 53, 3–39.
(doi:10.1137/090757009)

43. Eisenberg MC, Hayashi MA. 2014 Determining
identifiable parameter combinations using subset
profiling. Math. Biosci. 256, 116–126. (doi:10.1016/
j.mbs.2014.08.008)

44. Daly AC, Gavaghan D, Cooper J, Tavener S. 2018
Inference-based assessment of parameter
identifiability in nonlinear biological models.
J. R. Soc. Interface 15, 20180318. (doi:10.1098/rsif.
2018.0318)

45. Raj A, Oudenaarden Av. 2008 Nature, nurture, or
chance: stochastic gene expression and its
consequences. Cell 135, 216–226. (doi:10.1016/j.
cell.2008.09.050)

46. Balázsi G, van Oudenaarden A, Collins J. 2011
Cellular decision making and biological noise: from
microbes to mammals. Cell 144, 910–925. (doi:10.
1016/j.cell.2011.01.030)

47. Bar-Joseph Z, Gitter A, Simon I. 2012 Studying and
modelling dynamic biological processes using time-
series gene expression data. Nat. Rev. Genet. 13,
552–564. (doi:10.1038/nrg3244)

48. Ruess J, Lygeros J. 2015 Moment-based methods
for parameter inference and experiment design for
stochastic biochemical reaction networks. ACM
Trans. Model. Comput. Simul. 25, 8. (doi:10.1145/
2688906)

49. Soltani M, Vargas-Garcia CA, Antunes D, Singh A.
2016 Intercellular variability in protein levels from
stochastic expression and noisy cell cycle processes.
PLoS Comput. Biol. 12, e1004972. (doi:10.1371/
journal.pcbi.1004972)

50. Smith S, Grima R. 2018 Single-cell variability in
multicellular organisms. Nat. Commun. 9, 345.
(doi:10.1038/s41467-017-02710-x)

51. Browning AP, Sharp JA, Mapder T, Baker CM,
Burrage K, Simpson MJ. In press. Persistence as an
optimal hedging strategy. Biophys. J. (doi:10.1016/j.
bpj.2020.11.2260)

52. Hovorka R, Canonico V, Chassin LJ, Haueter U,
Massi-Benedetti M, Federici MO, Pieber TR, Schaller
HC, Schaupp L, Vering T, Wilinska ME. 2004
Nonlinear model predictive control of glucose
concentration in subjects with type 1 diabetes.
Physiol. Meas. 25, 905-–920. (doi:10.1088/0967-
3334/25/4/010)

53. Facchinetti A. 2016 Continuous glucose monitoring
sensors: past, present and future algorithmic
challenges. Sensors 16, 1–12. (doi:10.3390/
s16122093)

54. Siekmann I, Sneyd J, Crampin E. 2012 MCMC can
detect nonidentifiable models. Biophys. J. 103,
2275–2286. (doi:10.1016/j.bpj.2012.10.024)

55. Choi B, Rempala GA, Kim JK. 2017 Beyond the
Michaelis-Menten equation: accurate and efficient
estimation of enzyme kinetic parameters. Sci. Rep.
7, 17018. (doi:10.1038/s41598-017-17072-z)

56. Turelli M. 1977 Random environments and
stochastic calculus. Theor. Popul. Biol. 12, 140–178.
(doi:10.1016/0040-5809(77)90040-5)

57. Turner TE, Schnell S, Burrage K. 2004 Stochastic
approaches for modelling in vivo reactions. Comput.
Biol. Chem. 28, 165–178. (doi:10.1016/j.
compbiolchem.2004.05.001)

58. Ruess J, Milias-Argeitis A, Lygeros J. 2013 Designing
experiments to understand the variability in
biochemical reaction networks. J. R. Soc. Interface
10, 20130588. (doi:10.1098/rsif.2013.0588)

59. Parsons TL, Lambert A, Day T, Gandon S. 2018
Pathogen evolution in finite populations: slow and
steady spreads the best. J. R. Soc. Interface 15,
20180135. (doi:10.1098/rsif.2018.0135)

60. Gillespie DT. 2000 The chemical Langevin equation.
J. Chem. Phys. 113, 297–306. (doi:10.1063/1.
481811)

61. Hidalgo J, Pigolotti S, Muñoz MA. 2015 Stochasticity
enhances the gaining of bet-hedging strategies in
contact-process-like dynamics. Phys. Rev. E 91,
032114. (doi:10.1103/physreve.91.032114)

62. Mummert A, Otunuga OM. 2019 Parameter
identification for a stochastic SEIRS epidemic model:
case study influenza. J. Math. Biol. 79, 705–729.
(doi:10.1007/s00285-019-01374-z)
63. Kristensen NR, Madsen H, Jørgensen SB. 2004
Parameter estimation in stochastic grey-box models.
Automatica 40, 225–237. (doi:10.1016/j.automatica.
2003.10.001)

64. Duun-Henriksen AK, Schmidt S, Røge RM, Møller JB,
Nørgaard K, Jørgensen JB, Madsen H. 2013 Model
identification using stochastic differential equation
grey-box models in diabetes. J. Diabetes Sci.
Technol. 7, 431–440. (doi:10.1177/
193229681300700220)

65. Munsky B, Trinh B, Khammash M. 2009 Listening to
the noise: random fluctuations reveal gene network
parameters. Mol. Syst. Biol. 5, 318. (doi:10.1038/
msb.2009.75)

66. Leander J, Lundh T, Jirstrand M. 2014 Stochastic
differential equations as a tool to regularize the
parameter estimation problem for continuous time
dynamical systems given discrete time
measurements. Math. Biosci. 251, 54–62. (doi:10.
1016/j.mbs.2014.03.001)

67. Enciso G, Kim J. 2019 Embracing noise in chemical
reaction networks. Bull. Math. Biol. 81, 1261–1267.
(doi:10.1007/s11538-019-00575-3)

68. Enciso G, Erban R, Kim J. 2020 Identifiability of
stochastically modelled reaction networks. arXiv
2006.02272. (http://arxiv.org/abs/2006.02272)

69. Warne DJ, Baker RE, Simpson MJ. 2019 Simulation
and inference algorithms for stochastic biochemical
reaction networks: from basic concepts to state-of-
the-art. J. R. Soc. Interface 16, 20180943. (doi:10.
1098/rsif.2018.0943)

70. Boys RJ, Wilkinson DJ, Kirkwood TBL. 2008 Bayesian
inference for a discretely observed stochastic kinetic
model. Stat. Comput. 18, 125–135. (doi:10.1007/
s11222-007-9043-x)

71. Ruttor A, Opper M. 2009 Efficient statistical
inference for stochastic reaction processes. Phys. Rev.
Lett. 103, 230601. (doi:10.1103/physrevlett.103.
230601)

72. Simpson MJ, Browning AP, Drovandi C, Carr EJ,
Maclaren OJ, Baker RE. 2020 Profile likelihood
analysis for a stochastic model of diffusion in
heterogeneous media. arXiv 2011.03638. (http://
arxiv.org/abs/2011.03638)

73. Dangerfield CE, Kay D, Burrage K. 2012 Modeling
ion channel dynamics through reflected stochastic
differential equations. Phys. Rev. E 85, 051907.
(doi:10.1103/physreve.85.051907)

74. Dangerfield CE, Kay D, Burrage K. 2011 Comparison
of continuous and discrete stochastic ion channel
models. 2011 Annual Int. Conf. of the IEEE
Engineering in Medicine and Biology Society 2011,
704–707. (doi:10.1109/iembs.2011.6090159).

75. Hengl S, Kreutz C, Timmer J, Maiwald T. 2007 Data-
based identifiability analysis of non-linear
dynamical models. Bioinformatics 23, 2612–2618.
(doi:10.1093/bioinformatics/btm382)

76. Chis OT, Banga JR, Balsa-Canto E. 2011 Structural
identifiability of systems biology models: a critical
comparison of methods. PLoS ONE 6, e27755.
(doi:10.1371/journal.pone.0027755)

77. Janzén DLI, Bergenholm L, Jirstrand M, Parkinson J,
Yates J, Evans ND, Chappell MJ. 2016 Parameter

http://dx.doi.org/10.1186/s12976-018-0097-6
http://dx.doi.org/10.1186/s12976-018-0097-6
http://dx.doi.org/10.1186/1752-0509-6-120
http://dx.doi.org/10.1007/978-3-319-21296-8_17
http://dx.doi.org/10.1016/j.ifacol.2019.12.234
http://dx.doi.org/10.1016/j.ifacol.2019.12.234
http://dx.doi.org/10.1016/0025-5564(70)90132-X
http://dx.doi.org/10.1016/0025-5564(70)90132-X
http://dx.doi.org/10.1152/ajpregu.1980.239.1.r7
http://dx.doi.org/10.1152/ajpregu.1980.239.1.r7
http://dx.doi.org/10.1016/C2013-0-03836-4
http://dx.doi.org/10.1016/C2013-0-03836-4
http://dx.doi.org/10.1038/nrm2030
http://dx.doi.org/10.1016/j.cmpb.2007.07.002
http://dx.doi.org/10.1137/090757009
http://dx.doi.org/10.1016/j.mbs.2014.08.008
http://dx.doi.org/10.1016/j.mbs.2014.08.008
http://dx.doi.org/10.1098/rsif.2018.0318
http://dx.doi.org/10.1098/rsif.2018.0318
http://dx.doi.org/10.1016/j.cell.2008.09.050
http://dx.doi.org/10.1016/j.cell.2008.09.050
http://dx.doi.org/10.1016/j.cell.2011.01.030
http://dx.doi.org/10.1016/j.cell.2011.01.030
http://dx.doi.org/10.1038/nrg3244
http://dx.doi.org/10.1145/2688906
http://dx.doi.org/10.1145/2688906
http://dx.doi.org/10.1371/journal.pcbi.1004972
http://dx.doi.org/10.1371/journal.pcbi.1004972
http://dx.doi.org/10.1038/s41467-017-02710-x
http://dx.doi.org/10.1016/j.bpj.2020.11.2260
http://dx.doi.org/10.1016/j.bpj.2020.11.2260
http://dx.doi.org/10.1088/0967-3334/25/4/010
http://dx.doi.org/10.1088/0967-3334/25/4/010
http://dx.doi.org/10.3390/s16122093
http://dx.doi.org/10.3390/s16122093
http://dx.doi.org/10.1016/j.bpj.2012.10.024
http://dx.doi.org/10.1038/s41598-017-17072-z
http://dx.doi.org/10.1016/0040-5809(77)90040-5
http://dx.doi.org/10.1016/j.compbiolchem.2004.05.001
http://dx.doi.org/10.1016/j.compbiolchem.2004.05.001
http://dx.doi.org/10.1098/rsif.2013.0588
http://dx.doi.org/10.1098/rsif.2018.0135
http://dx.doi.org/10.1063/1.481811
http://dx.doi.org/10.1063/1.481811
http://dx.doi.org/10.1103/physreve.91.032114
http://dx.doi.org/10.1007/s00285-019-01374-z
http://dx.doi.org/10.1016/j.automatica.2003.10.001
http://dx.doi.org/10.1016/j.automatica.2003.10.001
http://dx.doi.org/10.1177/193229681300700220
http://dx.doi.org/10.1177/193229681300700220
http://dx.doi.org/10.1038/msb.2009.75
http://dx.doi.org/10.1038/msb.2009.75
http://dx.doi.org/10.1016/j.mbs.2014.03.001
http://dx.doi.org/10.1016/j.mbs.2014.03.001
http://dx.doi.org/10.1007/s11538-019-00575-3
http://arxiv.org/abs/2006.02272
http://arxiv.org/abs/2006.02272
http://dx.doi.org/10.1098/rsif.2018.0943
http://dx.doi.org/10.1098/rsif.2018.0943
http://dx.doi.org/10.1007/s11222-007-9043-x
http://dx.doi.org/10.1007/s11222-007-9043-x
http://dx.doi.org/10.1103/physrevlett.103.230601
http://dx.doi.org/10.1103/physrevlett.103.230601
http://arxiv.org/abs/2011.03638
http://arxiv.org/abs/2011.03638
http://arxiv.org/abs/2011.03638
http://dx.doi.org/10.1103/physreve.85.051907
http://dx.doi.org/10.1109&sol;iembs.2011.6090159
http://dx.doi.org/10.1093/bioinformatics/btm382
http://dx.doi.org/10.1371/journal.pone.0027755


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200652

21
identifiability of fundamental pharmacodynamic
models. Front. Physiol. 7, 590. (doi:10.3389/fphys.
2016.00590)

78. Reiersøl O. 1950 Identifiability of a linear relation
between variables which are subject to error.
Econometrica 18, 375. (doi:10.2307/1907835)

79. Pohjanpalo H. 1978 System identifiability based on
the power series expansion of the solution. Math.
Biosci. 41, 21–33. (doi:10.1016/0025-5564(78)
90063-9)

80. White LJ, Evans ND, Lam TJGM, Schukken YH,
Medley GF, Godfrey KR, Chappell MJ. 2001 The
structural identifiability and parameter estimation of
a multispecies model for the transmission of
mastitis in dairy cows. Math. Biosci. 174, 77–90.
(doi:10.1016/s0025-5564(01)00080-3)

81. Maclaren OJ, Nicholson R. 2019 What can be
estimated? Identifiability, estimability, causal
inference and ill-posed inverse problems. arXiv
1904.02826. (http://arxiv.org/abs/1904.02826)

82. Margaria G, Riccomagno E, Chappell MJ, Wynn HP.
2001 Differential algebra methods for the study of
the structural identifiability of rational function
state-space models in the biosciences. Math. Biosci.
174, 1–26. (doi:10.1016/s0025-5564(01)00079-7)

83. Saccomani MP, Audoly S, D’Angiò L. 2003
Parameter identifiability of nonlinear systems: the
role of initial conditions. Automatica 39, 619–632.
(doi:10.1016/S0005-1098(02)00302-3)

84. Brouwer AF, Eisenberg MC. 2018 The underlying
connections between identifiability, active
subspaces, and parameter space dimension
reduction. arXiv 1802.05641. (http://arxiv.org/abs/
1802.05641)

85. Jacquez JA, Greif P. 1985 Numerical parameter
identifiability and estimability: integrating
identifiability, estimability, and optimal sampling
design. Math. Biosci. 77, 201–227. (doi:10.1016/
0025-5564(85)90098-7)

86. Saccomani MP, Thomaseth K. 2018 The union
between structural and practical identifiability
makes strength in reducing oncological model
complexity: a case study. Complexity 2018, 1–10.
(doi:10.1155/2018/2380650)

87. Raue A, Karlsson J, Saccomani MP, Jirstrand M,
Timmer J. 2014 Comparison of approaches for
parameter identifiability analysis of biological
systems. Bioinformatics 30, 1440–1448. (doi:10.
1093/bioinformatics/btu006)

88. Meshkat N, Kuo CEz, DiStefano J. 2014 On finding
and using identifiable parameter combinations in
nonlinear dynamic systems biology models and
COMBOS: a novel web implementation. PLoS ONE 9,
e110261. (doi:10.1371/journal.pone.0110261)

89. Villaverde AF, Barreiro A, Papachristodoulou A. 2016
Structural identifiability of dynamic systems biology
models. PLoS Comput. Biol. 12, e1005153. (doi:10.
1371/journal.pcbi.1005153)

90. Hong H, Ovchinnikov A, Pogudin G, Yap C. 2019
SIAN: software for structural identifiability analysis
of ODE models. Bioinformatics 35, 2873–2874.
(doi:10.1093/bioinformatics/bty1069)
91. Brouwer AF, Meza R, Eisenberg MC. 2017 Parameter
estimation for multistage clonal expansion models
from cancer incidence data: a practical identifiability
analysis. PLoS Comput. Biol. 13, e1005431. (doi:10.
1371/journal.pcbi.1005431)

92. Johnston ST, Ross JV, Binder BJ, McElwain DLS,
Haridas P, Simpson MJ. 2016 Quantifying the effect
of experimental design choices for in vitro scratch
assays. J. Theor. Biol. 400, 19–31. (doi:10.1016/j.
jtbi.2016.04.012)

93. Warne DJ, Baker RE, Simpson MJ. 2017 Optimal
quantification of contact inhibition in cell
populations. Biophys. J. 113, 1920–1924. (doi:10.
1016/j.bpj.2017.09.016)

94. Simpson MJ, Baker RE, Vittadello ST, Maclaren OJ.
2020 Practical parameter identifiability for spatio-
temporal models of cell invasion. J. R. Soc. Interface
17, 20200055. (doi:10.1098/rsif.2020.0055)

95. Lehmann EL, Fienberg S, Casella G. 1998 Theory of
point estimation, 2nd edn. Secaucus, NJ: Springer.
(doi:10.1007/b98854).

96. Murphy SA, Vaart AWVD. 2000 On profile likelihood.
J. Am. Stat. Assoc. 95, 449–465. (doi:10.1080/
01621459.2000.10474219)

97. Komorowski M, Costa MJ, Rand DA, Stumpf MPH.
2011 Sensitivity, robustness, and identifiability in
stochastic chemical kinetics models. Proc. Natl Acad.
Sci. USA 108, 8645–8650. (doi:10.1073/pnas.
1015814108)

98. Gunawan R, Cao Y, Petzold L, Doyle FJ. 2005
Sensitivity analysis of discrete stochastic systems.
Biophys. J. 88, 2530–2540. (doi:10.1529/biophysj.
104.053405)

99. Tavaré S, Balding DJ, Griffiths RC, Donnelly P. 1997
Inferring coalescence times from DNA sequence
data. Genetics 145, 505–518. (doi:pmid:9071603)

100. Pritchard JK, Seielstad MT, Perez-Lezaun A, Feldman
MW. 1999 Population growth of human Y
chromosomes: a study of Y chromosome
microsatellites. Mol. Biol. Evol. 16, 1791–1798.
(doi:10.1093/oxfordjournals.molbev.a026091)

101. Beaumont MA, Zhang W, Balding DJ. 2002
Approximate Bayesian computation in population
genetics. Genetics 162, 2025–2035. (doi:
pmid:12524368)

102. Sunnåker M, Busetto AG, Numminen E, Corander J,
Foll M, Dessimoz C. 2013 Approximate Bayesian
computation. PLoS Comput. Biol. 9, e1002803.
(doi:10.1371/journal.pcbi.1002803)

103. Wilkinson RD. 2013 Approximate Bayesian
computation (ABC) gives exact results under the
assumption of model error. Stat. Appl. Genet. Mol.
Biol. 12, 129–141. (doi:10.1515/sagmb-2013-0010)

104. Beaumont MA. 2003 Estimation of population
growth or decline in genetically monitored
populations. Genetics 164, 1139–1160. (doi:
pmid:12871921)

105. Andrieu C, Roberts GO. 2009 The pseudo-marginal
approach for efficient Monte Carlo computations.
Ann. Stat. 37, 697–725. (doi:10.1214/07-aos574)

106. Golightly A, Wilkinson DJ. 2008 Bayesian inference
for nonlinear multivariate diffusion models observed
with error. Comput. Stat. Data Anal. 52, 1674–1693.
(doi:10.1016/j.csda.2007.05.019)

107. Andrieu C, Doucet A, Holenstein R. 2010 Particle
Markov chain Monte Carlo methods. J. R. Stat. Soc.:
Ser. B 72, 269–342. (doi:10.1111/j.1467-9868.2009.
00736.x)

108. Golightly A, Wilkinson DJ. 2011 Bayesian parameter
inference for stochastic biochemical network models
using particle Markov chain Monte Carlo. Interface
Focus 1, 807–820. (doi:10.1098/rsfs.2011.0047)

109. Warne DJ, Baker RE, Simpson MJ. 2020 A practical
guide to pseudo-marginal methods for
computational inference in systems biology. J.
Theor. Biol. 496, 110255. (doi:10.1016/j.jtbi.2020.
110255)

110. Nestel PJ, Whyte HM, Goodman DS. 1969
Distribution and turnover of cholesterol in humans.
J. Clin. Invest. 48, 982–991. (doi:10.1172/jci106079)

111. Kermack WO, McKendrick AG. 1927 A contribution
to the mathematical theory of epidemics.
Proc. R. Soc. Lond. A 115, 700–721. (doi:10.1098/
rspa.1927.0118)

112. Tuncer N, Le TT. 2018 Structural and practical
identifiability analysis of outbreak models. Math.
Biosci. 299, 1–18. (doi:10.1016/j.mbs.2018.02.004)

113. Alahmadi A et al. 2020 Influencing public health
policy with data-informed mathematical models of
infectious diseases: recent developments and new
challenges. Epidemics 32, 100393. (doi:10.1016/j.
epidem.2020.100393)

114. Topp B, Promislow K, Devries G, Miura RM,
Finegood DT. 2000 A model of β-cell mass, insulin,
and glucose kinetics: pathways to diabetes. J. Theor.
Biol. 206, 605–619. (doi:10.1006/jtbi.2000.2150)

115. Karin O, Swisa A, Glaser B, Dor Y, Alon U. 2016
Dynamical compensation in physiological circuits.
Mol. Syst. Biol. 12, 886. (doi:10.15252/msb.
20167216)

116. Villaverde AF, Tsiantis N, Banga JR. 2019 Full
observability and estimation of unknown inputs,
states and parameters of nonlinear biological
models. J. R. Soc. Interface 16, 20190043. (doi:10.
1098/rsif.2019.0043)

117. Engblom S. 2006 Computing the moments of high
dimensional solutions of the master equation. Appl.
Math. Comput. 180, 498–515. (doi:10.1016/j.amc.
2005.12.032)

118. Lakatos E, Ale A, Kirk PDW, Stumpf MPH. 2015
Multivariate moment closure techniques for
stochastic kinetic models. J. Chem. Phys. 143,
094107. (doi:10.1063/1.4929837)

119. Kuehn C. 2016 Moment closure - a brief review. In
Control of self-organizing nonlinear systems
(eds E Schöll, SHL Klapp, P Hövel), pp. 253–271.
Cham, Switzerland: Springer. (doi:10.1007/978-3-
319-28028-8).

120. Fan S, Geissmann Q, Lakatos E, Lukauskas S, Ale A,
Babtie AC, Kirk PDW, Stumpf MPH. 2016 MEANS:
python package for moment expansion
approximation, iNference and simulation.
Bioinformatics 32, 2863–2865. (doi:10.1093/
bioinformatics/btw229)

http://dx.doi.org/10.3389/fphys.2016.00590
http://dx.doi.org/10.3389/fphys.2016.00590
http://dx.doi.org/10.2307/1907835
http://dx.doi.org/10.1016/0025-5564(78)90063-9
http://dx.doi.org/10.1016/0025-5564(78)90063-9
http://dx.doi.org/10.1016/s0025-5564(01)00080-3
http://arxiv.org/abs/1904.02826
http://arxiv.org/abs/1904.02826
http://dx.doi.org/10.1016/s0025-5564(01)00079-7
http://dx.doi.org/10.1016/S0005-1098(02)00302-3
http://arxiv.org/abs/1802.05641
http://arxiv.org/abs/1802.05641
http://arxiv.org/abs/1802.05641
http://dx.doi.org/10.1016/0025-5564(85)90098-7
http://dx.doi.org/10.1016/0025-5564(85)90098-7
http://dx.doi.org/10.1155/2018/2380650
http://dx.doi.org/10.1093/bioinformatics/btu006
http://dx.doi.org/10.1093/bioinformatics/btu006
http://dx.doi.org/10.1371/journal.pone.0110261
http://dx.doi.org/10.1371/journal.pcbi.1005153
http://dx.doi.org/10.1371/journal.pcbi.1005153
http://dx.doi.org/10.1093/bioinformatics/bty1069
http://dx.doi.org/10.1371/journal.pcbi.1005431
http://dx.doi.org/10.1371/journal.pcbi.1005431
http://dx.doi.org/10.1016/j.jtbi.2016.04.012
http://dx.doi.org/10.1016/j.jtbi.2016.04.012
http://dx.doi.org/10.1016/j.bpj.2017.09.016
http://dx.doi.org/10.1016/j.bpj.2017.09.016
http://dx.doi.org/10.1098/rsif.2020.0055
http://dx.doi.org/10.1007/b98854
http://dx.doi.org/10.1080/01621459.2000.10474219
http://dx.doi.org/10.1080/01621459.2000.10474219
http://dx.doi.org/10.1073/pnas.1015814108
http://dx.doi.org/10.1073/pnas.1015814108
http://dx.doi.org/10.1529/biophysj.104.053405
http://dx.doi.org/10.1529/biophysj.104.053405
http://dx.doi.org/pmid:9071603
http://dx.doi.org/10.1093/oxfordjournals.molbev.a026091
http://dx.doi.org/pmid:12524368
http://dx.doi.org/pmid:12524368
http://dx.doi.org/10.1371/journal.pcbi.1002803
http://dx.doi.org/10.1515/sagmb-2013-0010
http://dx.doi.org/pmid:12871921
http://dx.doi.org/pmid:12871921
http://dx.doi.org/10.1214/07-aos574
http://dx.doi.org/10.1016/j.csda.2007.05.019
http://dx.doi.org/10.1111/j.1467-9868.2009.00736.x
http://dx.doi.org/10.1111/j.1467-9868.2009.00736.x
http://dx.doi.org/10.1098/rsfs.2011.0047
http://dx.doi.org/10.1016/j.jtbi.2020.110255
http://dx.doi.org/10.1016/j.jtbi.2020.110255
http://dx.doi.org/10.1172/jci106079
http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1016/j.mbs.2018.02.004
http://dx.doi.org/10.1016/j.epidem.2020.100393
http://dx.doi.org/10.1016/j.epidem.2020.100393
http://dx.doi.org/10.1006/jtbi.2000.2150
http://dx.doi.org/10.15252/msb.20167216
http://dx.doi.org/10.15252/msb.20167216
http://dx.doi.org/10.1098/rsif.2019.0043
http://dx.doi.org/10.1098/rsif.2019.0043
http://dx.doi.org/10.1016/j.amc.2005.12.032
http://dx.doi.org/10.1016/j.amc.2005.12.032
http://dx.doi.org/10.1063/1.4929837
http://dx.doi.org/10.1007/978-3-319-28028-8
http://dx.doi.org/10.1007/978-3-319-28028-8
http://dx.doi.org/10.1093/bioinformatics/btw229
http://dx.doi.org/10.1093/bioinformatics/btw229


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200652

22
121. Brouwer AF, Meza R, Eisenberg MC. 2017 A
systematic approach to determining the
identifiability of multistage carcinogenesis models.
Risk Anal. 37, 1375–1387. (doi:10.1111/risa.12684)

122. Chiş O, Banga JR, Balsa-Canto E. 2011 GenSSI: a
software toolbox for structural identifiability analysis
of biological models. Bioinformatics 27, 2610–2611.
(doi:10.1093/bioinformatics/btr431)

123. Ligon TS, Fröhlich F, Chiş OT, Banga JR, Balsa-Canto
E, Hasenauer J. 2017 GenSSI 2.0: multi-experiment
structural identifiability analysis of SBML models.
Bioinformatics 34, 1421–1423. (doi:10.1093/
bioinformatics/btx735)

124. Bezanson J, Edelman A, Karpinski S, Shah VB.
2017 Julia: a fresh approach to numerical
computing. SIAM Rev. 59, 65–98. (doi:10.
1137/141000671)

125. Gillespie DT. 2001 Approximate accelerated
stochastic simulation of chemically reacting systems.
J. Chem. Phys. 115, 1716–1733. (doi:10.1063/1.
1378322)

126. Schnoerr D, Sanguinetti G, Grima R. 2014 The
complex chemical Langevin equation. J. Chem. Phys.
141, 024103. (doi:10.1063/1.4885345)

127. Higham DJ. 2008 Modeling and simulating chemical
reactions. SIAM Rev. 50, 347–368. (doi:10.1137/
060666457)

128. Erban R, Chapman SJ. 2009 Stochastic modelling of
reaction–diffusion processes: algorithms for
bimolecular reactions. Phys. Biol. 6, 046001. (doi:10.
1088/1478-3975/6/4/046001)

129. Gillespie DT. 1977 Exact stochastic simulation of
coupled chemical reactions. J. Phys. Chem. 81,
2340–2361. (doi:10.1021/j100540a008)

130. Kurtz TG. 1972 The relationship between stochastic
and deterministic models for chemical reactions. J.
Chem. Phys. 57, 2976–2978. (doi:10.1063/1.
1678692)

131. Gibson MA, Bruck J. 2000 Efficient exact stochastic
simulation of chemical systems with many species
and many channels. J. Phys. Chem. A 104,
1876–1889. (doi:10.1021/jp993732q)

132. Rao CV, Wolf DM, Arkin AP. 2002 Control,
exploitation and tolerance of intracellular
noise. Nature 420, 231–237. (doi:10.1038/
nature01258)

133. Samad HE, Khammash M, Petzold L, Gillespie D.
2005 Stochastic modelling of gene regulatory
networks. Int. J. Robust Nonlinear Cont. 15,
691–711. (doi:10.1002/rnc.1018)

134. Golightly A, Wilkinson DJ. 2005 Bayesian inference
for stochastic kinetic models using a diffusion
approximation. Biometrics 61, 781–788. (doi:10.
1111/j.1541-0420.2005.00345.x)

135. Maruyama G. 1955 Continuous Markov processes
and stochastic equations. Rendiconti del Circolo
Matematico di Palermo 4, 48. (doi:10.1007/
bf02846028)

136. Socha L 2008 Linearization methods for stochastic
dynamic systems. Lecture Notes in Physics. Berlin,
Heidelberg, Germany: Springer.

137. Hausken K, Moxnes JF. 2010 A closure
approximation technique for epidemic models.
Math. Comput. Modell. Dyn. Syst. 16, 555–574.
(doi:10.1080/13873954.2010.496149)

138. Isserlis L. 1918 On a formula for the product-
moment coefficient of any order of a normal
frequency distribution in any number of variables.
Biometrika 12, 134. (doi:10.2307/2331932)

139. Singh A, Hespanha JP. 2007 A derivative matching
approach to moment closure for the stochastic
logistic model. Bull. Math. Biol. 69, 1909–1925.
(doi:10.1007/s11538-007-9198-9)

140. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari
A, Rubin DB. 2014 Bayesian data analysis, 3rd edn.
Boca Raton, FL: CRC Press.

141. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller
AH, Teller E. 1953 Equation of state calculations by
fast computing machines. J. Chem. Phys. 21,
1087–1092. (doi:10.1063/1.1699114)

142. Hastings WK. 1970 Monte Carlo sampling methods
using Markov chains and their applications. Biometrika
57, 97–109. (doi:10.1093/biomet/57.1.97)

143. Geyer CJ. 1992 Practical Markov chain Monte Carlo.
Stat. Sci. 7, 473–483. (doi:10.1214/ss/1177011137)

144. Roberts GO, Rosenthal JS. 2001 Optimal scaling for
various Metropolis-Hastings algorithms. Stat. Sci.
16, 351–367. (doi:10.1214/ss/1015346320)

145. Gelman A, Rubin DB. 1992 Inference from iterative
simulation using multiple sequences. Stat. Sci. 7,
457–472. (doi:10.1214/ss/1177011136)

146. Brooks SP, Gelman A. 1998 General methods for
monitoring convergence of iterative simulations. J.
Comput. Graph. Stat. 7, 434. (doi:10.2307/1390675)

147. Johnston ST, Shah ET, Chopin LK, McElwain DLS,
Simpson MJ. 2015 Estimating cell diffusivity and cell
proliferation rate by interpreting IncuCyte ZOOMTM

assay data using the Fisher-Kolmogorov model.
BMC Syst. Biol. 9, 38. (doi:10.1186/s12918-015-
0182-y)

148. Allen LJS. 2011 An introduction to stochastic
processes with applications to biology. Boca Raton,
FL: Chapman & Hall/CRC Press.

149. Matsiaka OM, Baker RE, Shah ET, Simpson MJ. 2019
Mechanistic and experimental models of cell
migration reveal the importance of cell-to-cell
pushing in cell invasion. Biomed. Phys. Eng. Express
5, 045009. (doi:10.1088/2057-1976/ab1b01)

150. Poovathingal SK, Gunawan R. 2010 Global
parameter estimation methods for stochastic
biochemical systems. BMC Bioinf. 11, 414–414.
(doi:10.1186/1471-2105-11-414)

151. Dargatz C. 2008 A diffusion approximation for an
epidemic model. Sonderforschungsbereich 386, 517.

152. Warne DJ, Ebert A, Drovandi C, Hu W, Mira A,
Mengersen K. In press. Hindsight is 2020 vision: a
characterisation of the global response to the
COVID-19 pandemic. BMC Pub. Health (doi:10.1186/
s12889-020-09972-Z)

153. Rackauckas C, Nie Q. 2016 DifferentialEquations.jl –
a performant and feature-rich ecosystem for solving
differential equations in Julia. J. Open Res. Softw. 5,
15. (doi:10.5334/jors.151)

154. Burchard H, Deleersnijder E, Meister A. 2003 A high-
order conservative Patankar-type discretisation for
stiff systems of production–destruction equations.
Appl. Numer. Math. 47, 1–30. (doi:10.1016/s0168-
9274(03)00101-6)

155. Villaverde AF, Banga JR. 2014 Reverse engineering
and identification in systems biology: strategies,
perspectives and challenges. J. R. Soc. Interface 11,
20130505. (doi:10.1098/rsif.2013.0505)

156. Villaverde AF. 2019 Observability and structural
identifiability of nonlinear biological systems.
Complexity 2019, 1–12. (doi:10.1155/2019/
8497093)

157. Brown KS, Sethna JP. 2003 Statistical mechanical
approaches to models with many poorly known
parameters. Phys. Rev. E 68, 021904. (doi:10.1103/
physreve.68.021904)

158. Erguler K, Stumpf MPH. 2011 Practical limits for
reverse engineering of dynamical systems: a
statistical analysis of sensitivity and parameter
inferability in systems biology models. Mol. Biosyst.
7, 1593–1602. (doi:10.1039/c0mb00107d)

159. Transtrum MK, Machta BB, Brown KS, Daniels BC,
Myers CR, Sethna JP. 2015 Perspective: sloppiness
and emergent theories in physics, biology, and
beyond. J. Chem. Phys. 143, 010901. (doi:10.1063/
1.4923066)

160. Dufresne E, Harrington HA, Raman DV. 2018 The
geometry of sloppiness. J. Algebr. Stat. 9, 30–68.
(doi:10.18409/jas.v9i1.64)

161. Smadbeck P, Kaznessis YN. 2013 A closure scheme
for chemical master equations. Proc. Natl Acad. Sci.
USA 110, 14261–14265. (doi:10.1073/pnas.
1306481110)

162. Zechner C, Ruess J, Krenn P, Pelet S, Peter M,
Lygeros J, Koeppl H. 2012 Moment-based inference
predicts bimodality in transient gene expression.
Proc. Natl Acad. Sci. USA 109, 8340–8345. (doi:10.
1073/pnas.1200161109)

163. Roberts GO, Rosenthal JS. 2009 Examples of
adaptive MCMC. J. Comput. Graph. Stat. 18,
349–367. (doi:10.1198/jcgs.2009.06134)

164. Moral PD, Doucet A, Jasra A. 2006 Sequential Monte
Carlo samplers. J. R. Stat. Soc.: Ser. B 68, 411–436.
(doi:10.1111/j.1467-9868.2006.00553.x)

165. Giles MB. 2008 Multilevel Monte Carlo path
simulation. Oper. Res. 56, 607–617. (doi:10.1287/
opre.1070.0496)

166. Jasra A, Kamatani K, Law KJH, Zhou Y. 2017
Multilevel particle filters. SIAM J. Numer. Anal. 55,
3068–3096. (doi:10.1137/17m1111553)

167. Warne DJ, Baker RE, Simpson MJ. 2018 Multilevel
rejection sampling for approximate Bayesian
computation. Comput. Stat. Data Anal. 124, 71–86.
(doi:10.1016/j.csda.2018.02.009)

168. Quiroz M, Kohn R, Villani M, Tran MN. 2019
Speeding up MCMC by efficient data subsampling.
J. Am. Stat. Assoc. 114, 831–843. (doi:10.1080/
01621459.2018.1448827)

169. Pooley CM, Bishop SC, Marion G. 2015 Using model-
based proposals for fast parameter inference on
discrete state space, continuous-time Markov
processes. J. R. Soc. Interface 12, 20150225. (doi:10.
1098/rsif.2015.0225)

170. Burrage K, Burrage P. 1996 High strong order
explicit Runge-Kutta methods for stochastic ordinary

http://dx.doi.org/10.1111/risa.12684
http://dx.doi.org/10.1093/bioinformatics/btr431
http://dx.doi.org/10.1093/bioinformatics/btx735
http://dx.doi.org/10.1093/bioinformatics/btx735
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1063/1.1378322
http://dx.doi.org/10.1063/1.1378322
http://dx.doi.org/10.1063/1.4885345
http://dx.doi.org/10.1137/060666457
http://dx.doi.org/10.1137/060666457
http://dx.doi.org/10.1088/1478-3975/6/4/046001
http://dx.doi.org/10.1088/1478-3975/6/4/046001
http://dx.doi.org/10.1021/j100540a008
http://dx.doi.org/10.1063/1.1678692
http://dx.doi.org/10.1063/1.1678692
http://dx.doi.org/10.1021/jp993732q
http://dx.doi.org/10.1038/nature01258
http://dx.doi.org/10.1038/nature01258
http://dx.doi.org/10.1002/rnc.1018
http://dx.doi.org/10.1111/j.1541-0420.2005.00345.x
http://dx.doi.org/10.1111/j.1541-0420.2005.00345.x
http://dx.doi.org/10.1007/bf02846028
http://dx.doi.org/10.1007/bf02846028
http://dx.doi.org/10.1080/13873954.2010.496149
http://dx.doi.org/10.2307/2331932
http://dx.doi.org/10.1007/s11538-007-9198-9
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1214/ss/1177011137
http://dx.doi.org/10.1214/ss/1015346320
http://dx.doi.org/10.1214/ss/1177011136
http://dx.doi.org/10.2307/1390675
http://dx.doi.org/10.1186/s12918-015-0182-y
http://dx.doi.org/10.1186/s12918-015-0182-y
http://dx.doi.org/10.1088/2057-1976/ab1b01
http://dx.doi.org/10.1186/1471-2105-11-414
http://dx.doi.org/10.1186/s12889-020-09972-Z
http://dx.doi.org/10.1186/s12889-020-09972-Z
http://dx.doi.org/10.5334/jors.151
http://dx.doi.org/10.1016/s0168-9274(03)00101-6
http://dx.doi.org/10.1016/s0168-9274(03)00101-6
http://dx.doi.org/10.1098/rsif.2013.0505
http://dx.doi.org/10.1155/2019/8497093
http://dx.doi.org/10.1155/2019/8497093
http://dx.doi.org/10.1103/physreve.68.021904
http://dx.doi.org/10.1103/physreve.68.021904
http://dx.doi.org/10.1039/c0mb00107d
http://dx.doi.org/10.1063/1.4923066
http://dx.doi.org/10.1063/1.4923066
http://dx.doi.org/10.18409/jas.v9i1.64
http://dx.doi.org/10.1073/pnas.1306481110
http://dx.doi.org/10.1073/pnas.1306481110
http://dx.doi.org/10.1073/pnas.1200161109
http://dx.doi.org/10.1073/pnas.1200161109
http://dx.doi.org/10.1198/jcgs.2009.06134
http://dx.doi.org/10.1111/j.1467-9868.2006.00553.x
http://dx.doi.org/10.1287/opre.1070.0496
http://dx.doi.org/10.1287/opre.1070.0496
http://dx.doi.org/10.1137/17m1111553
http://dx.doi.org/10.1016/j.csda.2018.02.009
http://dx.doi.org/10.1080/01621459.2018.1448827
http://dx.doi.org/10.1080/01621459.2018.1448827
http://dx.doi.org/10.1098/rsif.2015.0225
http://dx.doi.org/10.1098/rsif.2015.0225


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

17:20200652

23
differential equations. Appl. Numer. Math. 22,
81–101. (doi:10.1016/S0168-9274(96)00027-X)

171. Mingas G, Bottolo L, Bouganis CS. 2017 Particle
MCMC algorithms and architectures for accelerating
inference in state-space models. Int. J. Approx.
Reason. 83, 413–433. (doi:10.1016/j.ijar.2016.
10.011)

172. Lee YS, Liu OZ, Hwang HS, Knollmann BC, Sobie EA.
2013 Parameter sensitivity analysis of stochastic
models provides insights into cardiac calcium
sparks. Biophys. J. 104, 1142–1150. (doi:10.1016/j.
bpj.2012.12.055)

173. Botha I, Kohn R, Drovandi C. In press. Particle
methods for stochastic differential equation mixed
effects models. Bayesian Anal. (doi:10.1214/20-
ba1216)

174. Picchini U. 2012 Inference for SDE models via
approximate Bayesian computation. J. Comput.
Graph. Stat. 23, 1080–1100. (doi:10.1080/
10618600.2013.866048)

175. Buckwar E, Tamborrino M, Tubikanec I. 2020
Spectral density-based and measure-preserving ABC
for partially observed diffusion processes. An
illustration on Hamiltonian SDEs. Stat. Comput. 30,
627–648. (doi:10.1007/s11222-019-09909-6)

176. Liepe J, Filippi S, Komorowski M, Stumpf MPH.
2013 Maximizing the information content of
experiments in systems biology. PLoS Comput. Biol.
9, e1002888. (doi:10.1371/journal.pcbi.1002888)

177. Evans ND, White LJ, Chapman MJ, Godfrey KR,
Chappell MJ. 2005 The structural identifiability of
the susceptible infected recovered model with
seasonal forcing. Math. Biosci. 194, 175–197.
(doi:10.1016/j.mbs.2004.10.011)

178. Chapman JD, Evans ND. 2008 The structural
identifiability of SIR type epidemic models with
incomplete immunity and birth targeted
vaccination. IFAC Proc. Volumes 41, 9075–9080.
(doi:10.3182/20080706-5-kr-1001.01532)

179. Beskos A, Papaspiliopoulos O, Roberts GO. 2006
Retrospective exact simulation of diffusion sample
paths with applications. Bernoulli 12, 1077–1098.
(doi:10.3150/bj/1165269151)

180. Fröhlich F, Thomas P, Kazeroonian A, Theis FJ, Grima
R, Hasenauer J. 2016 Inference for stochastic
chemical kinetics using moment equations and
system size expansion. PLoS Comput. Biol. 12,
e1005030. (doi:10.1371/journal.pcbi.1005030)

181. Elf J, Ehrenberg M. 2003 Fast evaluation of
fluctuations in biochemical networks with the linear
noise approximation. Genome Res. 13, 2475–2484.
(doi:10.1101/gr.1196503)

182. Fearnhead P, Giagos V, Sherlock C. 2014 Inference
for reaction networks using the linear noise
approximation. Biometrics 70, 457–466. (doi:10.
1111/biom.12152)

183. Plotnikov A, Zehorai E, Procaccia S, Seger R. 2011 The
MAPK cascades: signaling components, nuclear roles
and mechanisms of nuclear translocation. Biochimica
et Biophysica Acta (BBA) - Mole. Cell Res. 1813,
1619–1633. (doi:10.1016/j.bbamcr.2010.12.012)

184. Xiu D, Karniadakis GE. 2002 The Wiener-Askey
polynomial chaos for stochastic differential
equations. SIAM J. Sci. Comput. 24, 619–644.
(doi:10.1137/s1064827501387826)

185. Archambeau C, Cornford D, Opper M, Shawe-Taylor
JS. 2007 Gaussian process approximations of
stochastic differential equations. Proc. Mach. Learn.
Res. 1, 1–16.

186. Mirams GR, Pathmanathan P, Gray RA, Challenor P,
Clayton RH. 2016 Uncertainty and variability in
computational and mathematical models of cardiac
physiology. J. Physiol. 594, 6833–6847. (doi:10.
1113/jp271671)

187. Kaintura A, Dhaene T, Spina D. 2018 Review of
polynomial chaos-based methods for uncertainty
quantification in modern integrated circuits.
Electronics 7, 30. (doi:10.3390/electronics7030030)

188. Ran ZY, Hu BG. 2017 Parameter identifiability in
statistical machine learning: a review. Neural
Comput. 29, 1151–1203. (doi:10.1162/neco_a_
00947)

189. Lill D, Timmer J, Kaschek D. 2019 Local Riemannian
geometry of model manifolds and its implications
for practical parameter identifiability. PLoS ONE 14,
e0217837. (doi:10.1371/journal.pone.0217837)

190. Livingstone S, Girolami M. 2014 Information-
geometric Markov chain Monte Carlo methods using
diffusions. Entropy 16, 3074–3102. (doi:10.3390/
e16063074)

191. Archambeau C, Opper M, Shen Y, Cornford D,
Shawe-Taylor JS. 2008 Variational inference for
diffusion processes. In Advances in neural
information processing systems (eds JC Platt, D
Koller, Y Singer, ST Roweis), vol. 20, pp. 17–24.
New York, NY: Curran Associates, Inc.

192. Raue A, Kreutz C, Theis FJ, Timmer J. 2013 Joining
forces of Bayesian and frequentist methodology: a
study for inference in the presence of non-
identifiability. Phil. Trans. R. Soc. A 371, 20110544.
(doi:10.1098/rsta.2011.0544)

193. Faller D, Klingmüller U, Timmer J. 2003 Simulation
methods for optimal experimental design in
systems biology. Simulation 79, 717–725. (doi:10.
1177/0037549703040937)

194. Walter E, Lecourtier Y. 1981 Unidentifiable
compartmental models: what to do? Math. Biosci.
56, 1–25. (doi:10.1016/0025-5564(81)90025-0)

http://dx.doi.org/10.1016/S0168-9274(96)00027-X
http://dx.doi.org/10.1016/j.ijar.2016.10.011
http://dx.doi.org/10.1016/j.ijar.2016.10.011
http://dx.doi.org/10.1016/j.bpj.2012.12.055
http://dx.doi.org/10.1016/j.bpj.2012.12.055
http://dx.doi.org/10.1214/20-ba1216
http://dx.doi.org/10.1214/20-ba1216
http://dx.doi.org/10.1080/10618600.2013.866048
http://dx.doi.org/10.1080/10618600.2013.866048
http://dx.doi.org/10.1007/s11222-019-09909-6
http://dx.doi.org/10.1371/journal.pcbi.1002888
http://dx.doi.org/10.1016/j.mbs.2004.10.011
http://dx.doi.org/10.3182/20080706-5-kr-1001.01532
http://dx.doi.org/10.3150/bj/1165269151
http://dx.doi.org/10.1371/journal.pcbi.1005030
http://dx.doi.org/10.1101/gr.1196503
http://dx.doi.org/10.1111/biom.12152
http://dx.doi.org/10.1111/biom.12152
http://dx.doi.org/10.1016/j.bbamcr.2010.12.012
http://dx.doi.org/10.1137/s1064827501387826
http://dx.doi.org/10.1113/jp271671
http://dx.doi.org/10.1113/jp271671
http://dx.doi.org/10.3390/electronics7030030
http://dx.doi.org/10.1162/neco_a_00947
http://dx.doi.org/10.1162/neco_a_00947
http://dx.doi.org/10.1371/journal.pone.0217837
http://dx.doi.org/10.3390/e16063074
http://dx.doi.org/10.3390/e16063074
http://dx.doi.org/10.1098/rsta.2011.0544
http://dx.doi.org/10.1177/0037549703040937
http://dx.doi.org/10.1177/0037549703040937
http://dx.doi.org/10.1016/0025-5564(81)90025-0

	Identifiability analysis for stochastic differential equation models in systems biology
	Introduction
	Mathematical techniques
	Stochastic models in biology
	Moment dynamics
	Inference with Markov chain Monte Carlo

	Case studies
	Birth–death process
	Model formulation and moment equations
	Structural identifiability
	Practical identifiability

	Two-pool model
	Model formulation and moment equations
	Structural identifiability
	Practical identifiability

	Epidemic model
	Model formulation and moment equations
	Structural identifiability
	Practical identifiability

	β-insulin-glucose circuit
	Model formulation
	Parameter transform
	Practical identifiability


	Discussion
	Moment dynamics approach
	Particle Markov chain Monte Carlo
	Modelling noise
	Approaches to computational challenges

	Conclusion
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	Acknowledgements
	References


