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Bacterial communities are governed by a wide variety of social interactions,
some of which are antagonistic with potential significance for bacterial war-
fare. Several antagonistic mechanisms, such as killing via the type VI
secretion system (T6SS), require killer cells to directly contact target cells.
The T6SS is hypothesized to be a highly potent weapon, capable of facilitat-
ing the invasion and defence of bacterial populations. However, we find that
the efficacy of contact killing is severely limited by the material conse-
quences of cell death. Through experiments with Vibrio cholerae strains that
kill via the T6SS, we show that dead cell debris quickly accumulates at the
interface that forms between competing strains, preventing physical contact
and thus preventing killing. While previous experiments have shown that
T6SS killing can reduce a population of target cells by as much as
106-fold, we find that, as a result of the formation of dead cell debris barriers,
the impact of contact killing depends sensitively on the initial concentration
of killer cells. Killer cells are incapable of invading or eliminating competi-
tors on a community level. Instead, bacterial warfare itself can facilitate
coexistence between nominally antagonistic strains. While a variety of defen-
sive strategies against microbial warfare exist, the material consequences of
cell death provide target cells with their first line of defence.
1. Introduction
Bacteria commonly inhabit biofilms in the form of crowded, surface-attached
microbial consortia embedded within a viscous matrix of polymers. Interactions
between different bacterial strains and species govern the spatial organization
and composition of biofilms [1–3], and ultimately affect the proliferation and
survival of individual strains. These interactions can turn deadly. Bacteria have
evolved many mechanisms to kill each other within biofilms [4,5], many of them
requiring direct contact between cells [4,6–9]. One such contact killing mechanism
is the broadly prevalent type VI secretion system (T6SS) in Gram-negative bacteria
[10]. A significant amount of work has produced a detailed picture of the T6SS.
Details are emerging of the T6SS structure, toxins and regulation [10–20].However,
the importance of this lethal activity in natural communities remains unclear
[21,22]. Experiments have primarily focused on the outcome of competitions
between T6SS-proficient ‘killers’ and target strains that lack T6SS activity, but the
dynamics of T6SS killing are much less studied [23] (though dynamic simulations
havemade a number of successful predictions [24–28]). Understanding the impact
of the T6SS requires experimental observation of contact killing in microbial com-
munities as a function of time and isolated from other factors. This is a crucial step
in assessing the ecological role of contact killing over short and long time scales.

T6SS-mediated killing is widely considered a potent weapon. In biofilms
grown from a mixture of T6SS-proficient bacteria and target strains on planar
agar pads, killer cells decreased the abundance of target cells by as much as
106-fold within 3 h [15,23,29–31]. Based on these competition assays, the T6SS
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Figure 1. Contact killing slows substantially over time. (a) Cartoon depiction
of biofilm samples for imaging. Confinement between an agar pad and a
glass coverslip leads to a maximum biofilm thickness of approximately
6 μm. (b) Fluorescence images of a unidirectional competition between
killer cells (blue) and target cells (yellow) at 0 h, 3 h and 15 h (left to
right, respectively). The initial relative abundances were 0.09 killer cells
and 0.91 target cells. T6SS-mediated contact killing leads to the formation
of clonal domains, which increase in size over time. Scale bar: 50 μm.
(c) Relative abundance of the killer cells over time for four different initial con-
ditions (killer cell relative abundance during inoculation: 0.5 (dashed line),
0.33 (triangles), 0.17 (dotted line) and 0.09 (solid line)) measured from
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is hypothesized to play important roles in inter- and intra-
strain competition; for example, facilitating invasion of colo-
nized space, elimination of competitors and defence against
invaders and cheaters in biofilms [21,28,32–34]. However, in
these competition assays T6SS-mediated killing is rarely able
to completely eliminate all susceptible target cells, even when
killer cells start at a numerical advantage (a 10 : 1 number
ratio of killer : target cells is often used) [23,24,30,31,35].
Further, while the killing rate is typically very high shortly
after inoculating competing strains on agar pads, killing
nearly halts a few hours later, despite the presence of target
cells [23]. This dramatic decrease in killing occurs even when
the killer strain expresses a constitutively active T6SS [23].
While some studies report defence mechanisms that mitigate
or counteract T6SS attacks [36–41], it is difficult to isolate altera-
tions in T6SS activity over time as developing biofilms become
increasingly heterogeneous [42,43] and constantly change
[44–48]: biomass increases, nutrient and oxygen concentrations
drop, excreted waste products accumulate and cellular behav-
iour changes owing to signalling from secreted public goods.
As a result, a detailed picture of how T6SS killing proceeds
within biofilms and how T6SS-mediated killing rates change
over time remains elusive.

Here, we present the spatio-temporal dynamics of T6SS-
mediated killing. We used the T6SS-proficient killer strain
Vibrio cholerae C6706 and mutants of it, which secrete lethal
effectors that cause cell death [30,35,37,49–51]. Through
microscopy experiments, we show that while T6SS-mediated
killing is effective on first contact between competing strains,
surprisingly, killing nearly ceases after a few hours because of
the accumulation of dead cell debris. Contact killing exper-
iments typically focus on living cells as they measure the
number of surviving target cells after a certain time of inocu-
lation [15,29–31,39,52–55]. This approach was fundamental in
discovering the deadly effect of T6SS [7], the characteristic
spatial structure that emerges from contact killing [2,24,26,28],
and microbial defence strategies against T6SS attacks [36–39].
Here, we focus on the role of dead cells and dead cell debris.
We confirm that dead cell debris accumulates at the interface
between competing strains and eventually prevents contact,
thus halting killing. Paradoxically, contact killing may thus
play a protective role in biofilms, facilitating the formation
and coexistence of separate clonal domains [56,57].
time-lapse images as depicted in (b). In all cases, the relative abundance
of killer cells initially increased quickly, followed by a substantially slower
increase after 3 h. (See also electronic supplementary material, video 1.)
2. Results

To study how T6SS killing proceeds within biofilms, we opti-
cally recorded the spatio-temporal dynamics of biofilms
comprising two engineered strains ofV. cholerae, amodel organ-
ism for studying the T6SS [7]. These strains are isogenic, and
only differ in their T6SS toxins and immunity modules, their
ability to express T6SSand their fluorescent proteins [24]. To iso-
late the effects of killing from other effects related to changes in
biofilm height (which can impact cellular behaviour [43]), we
grew biofilms in confinement between a lysogeny broth (LB)
agar pad and a glass coverslip (figure 1a), which limited vertical
growth to less than 6 μm. (See electronic supplementary
material for details on strains and sample preparation.)

2.1. Spatio-temporal dynamics
As a first step, using confocal time-lapse microscopy we inves-
tigated the temporal dynamics of unidirectional killing: the
killer was a T6SS-proficient (T6SS+) V. cholerae strain, while
the target was a susceptible, T6SS-defective (T6SS−) V. cholerae
strain. We observed the formation of clonal domains
(figure 1b) upon reproduction and killing. This phenomenon
is reminiscent of domain formation observed in populations
of mutual killer strains (i.e. both strains are T6SS+) [24], even
though in our experiments one strain—the target strain—was
engineered to be defective at T6SS killing. While we observed
that domains of the killer strain expanded quickly at early
times, domain growth later slowed substantially (figure 1b).
We quantified the temporal dynamics of mixed populations
of killer and target strains (figure 1c) by measuring the relative
abundance of the fluorescent killer strain in the microscopy
images over 15 h, for four different initial ratios of killer and
target cells (see electronic supplementary material for further



(a)

(f) (g) (h)

(b) (c) (d) (e)

0

0.2

0.4

0.6

0.8

1.0

2 4 6

no
rm

. m
ea

n 
br

ig
ht

ne
ss

distance r (µm)

200

100

50

0

br
ig

ht
ne

ss

10 20 30 40
distance r (µm)

before after 15 min

30 min 45 min 60 min

0

20

40

60

80

100

120

2 4 6 8 10

de
ad

 c
el

l c
ou

nt

time (h)

Figure 2. Characterization of dead cell debris. (a) Representative bright-field image alone (top) and overlaid with fluorescence channel (bottom) of biofilms exhibiting
unidirectional killing, recorded after 7 h of growth. Killer cells express superfolder green fluorescent protein (sfGFP) (cyan) while target cells are unlabelled. The entire
field of view is densely packed with bacteria. (b) Same as (a) but the killer strain is engineered to be T6SS-deficient; no T6SS killing occurs and dark outlines are absent.
(c,d ) Merged bright-field and fluorescence images of unidirectional killing at start (0 h) (c) and after 7 h (d ). Again, the killer expresses sfGFP (visible as cyan) while
the target is unlabelled (grey). The DNA of compromised cells, i.e. dead cell debris, is labelled red via PI. Scale bar (a–d ): 30 μm. (e) Intensity profile of different
microscope images across a clonal patch (integrated vertically over the orange box in (d )) in the fluorescence images and bright-field image (inverted grey scale).
( f ) Normalized mean intensity of PI signal (red curve) and inverted bright-field signal (black curve) within a distance r from the interface between competing strains in
(d ). (g) Killing event, where a fluorescent killer cell kills a non-fluorescent target cell, which subsequently turns red. The dead cell debris is relocated by neighbouring
cells that exert forces upon growth. Scale bar: 4 μm. (h) Counting the number of discrete PI-labelled cells over time demonstrates that PI-labelled dead cell debris
persists long after cell death. Data were recorded from individual target cells densely surrounded by killer cells (initial target to killer number ratio of 1 : 50).
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details on image analysis). Note that the mixing ratios do
not reflect the relative abundance of killer cells at 0 h. Biofilms
were grown from relatively low cell concentrations (OD600 = 1).
However, we began measuring the relative abundance of the
fluorescent strain only after a dense cell layer has formed,
which we define to be when time = 0 h, after which the vast
majority of killing takes place. Killer populations increased
their relative abundance from 12% to 42%. In contrast, we per-
formed control experiments with two non-killer strains. When
killing was absent, the population of the fluorescent strain
changed by less than 3% over 15 h for various mixing ratios
(electronic supplementary material, figure S2). Therefore,
demographic changes in biofilms with T6SS-active strains
can mainly be attributed to killing. In all cases of unidirectional
killing, the killer strain initially increased its population
rapidly and reached approximately 90% of its final size after
approximately 3 h. Killing dramatically slowed afterwards.
We observed similar temporal dynamics in experiments with
mutually killing V. cholerae strains (electronic supplementary
material, figure S4a,b and video 1). Again, a transition from
rapid killing to almost no killing occurred after approximately
3 h. These observations are consistent with previously
reported observations of small but long-lived target popu-
lations [23]. Why does T6SS-mediated killing stop after just a
few hours?
2.2. Cell debris barrier
Surprisingly, we found that the boundary between competing
strains was visible in images recorded with bright-field
microscopy (figure 2a). Dark outlines become visible in
bright-field images (figure 2a, top image); these dark outlines
align with the interface between domains of killer and target
cells in fluorescence images (figure 2a, bottom image). Time-
lapse images showed that these dark outlines form at early
times in biofilms with killing, but they are absent at all
times in non-killer biofilms, i.e. those with two isogenic
T6SS− strains (electronic supplementary material, figure
S3). Small clonal domains still emerged in non-killer biofilms
as non-motile, divided cells typically remain close after repro-
duction (figure 2b, bottom image), but the interface between
these clonal domains did not appear dark in bright-field
images (figure 2b, top image). The ability to visualize the
interface between competing strains using bright-field
microscopy is not expected since the two isogenic strains
do not differ in their material properties—including index
of refraction—so they appear identical when imaged with
bright-field microscopy. The presence of dark lines in bio-
films with T6SS killing suggests that there occurred a
change in material properties (e.g. index of refraction) at the
border between strains. Based on this observation, and the
data presented above, we hypothesized that dead cell
debris accumulates as cells are killed. Such cell debris may
eventually prevent competing cells from contacting. Similar
observations have been made previously when studying
T6SS-mediated interactions with non-lethal effectors [58–60].

To test our hypothesis, we visualized dead cell debris in
growing biofilms with propidium iodide (PI). PI binds to the
DNA of cells with a compromised membrane and exhibits
high red fluorescence. While stained dead cells appeared
throughout the biofilm during the earliest stages of growth
when clonal domains are small (figure 2c; see also electronic
supplementary material, video 2), at later times the dead cell
stain was clearly localized at the interface between large
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clonal domains (figure 2d). The PI signal is well aligned with
both the interface between strains and the dark outlines seen
with bright-field microscopy (figure 2e). The PI signal exhibits
a peak at the same position (distance of 6.2 and 31.3 μm)where
the cell fluorescence declines to about 30% of its maximum
value. From a Gaussian fit we found that both peaks in PI
signal and bright-field signal differ in position by less than
0.3 μm and differ in width (i.e. standard deviation of the
peak) by less than 0.1 μm. This sub-micron alignment of sig-
nals suggests that dark outlines observed via bright-field
microscopy correspond to a substantial amount of cell debris
at the interfaces between patches.

To quantify the localization of dead cell debris at interfaces
throughout the biofilm, we measured the mean intensity of PI
signal as a function of distance from the interface between
strains (figure 2f; see electronic supplementary material for
more details on the image analysis). The intensity of the PI
signal decays with distance from the strain interface, and
reaches half its maximum value at a distance of 1.4 μm. We
applied the same image analysis to bright-field images and
characterized the dark outlines at the strain interfaces. The
dark outlines lead to a similar decaying curve, reaching half
its maximum value at a distance of about 1.8 μm (figure 2f)
or higher, depending on the chosen threshold value during
image analysis (electronic supplementary material, figure
S1c). Both curves confirm that dead cell debris is highly loca-
lized at the interface between strains. Crucially, the estimated
dead cell debris layer thickness is larger than the length of a
V. cholerae cell.

To account for the observed slow rate of killing after 3 h,
the dead cell debris that separates competing strains must
also be stable over long periods of time. We observed that
debris from one individual dead cell remained clearly visible
for at least 60min, even as it was relocated via forces exerted
by neighbouring cells as those reproduce and die (figure 2g).
However, the emergence of more dead cells in close proximity
inhibits tracking for longer times.

To quantify the persistence of dead cell material over long
times, we mixed 98% T6SS+ killer cells and 2% T6SS− target
cells and inoculated at high density (OD600 = 10), so exper-
iments began with close-packed cellular monolayers. Target
cells were very far from each other, allowing us to isolate
and track individual stained dead cells over long times
(approx. 10 h). All 117 individual target cells died within
1.2 h of inoculation (figure 2h), and were tracked by PI labell-
ing afterwards. The number of dead cells with detectable
PI signal slowly decreased over time. The decrease in the
number of PI-labelled dead cells may be due to a local loss
in the presence of dead cell debris, e.g. the material may
degrade and diffuse away. Note that the PI-labelled area per
dead cell also decreased over time (electronic supplementary
material, figure S5), which may be caused by degradation or
compaction of dead cell debris. However, despite the observed
decrease of dead cell debris, over 80% of dead cells displayed a
clear PI signal after 4 h, and the majority of dead cells (over
50%) still displayed a clear PI signal after 10 h. Thus, a substan-
tial amount of dead cell debris persisted over several hours.

We can derive a simple estimate for the time that it takes a
dead cell debris barrier to form in our experiments. A single
layer of dead cells is sufficient to halt killing. The time it takes
a single layer of dead cells to form depends on the kill rate,
which we estimate from experiments in which individual
target cells are surrounded by killer cells (figure 2h). Target
cells died after τ = 0.43 ± 0.02 h on average (N = 117 individual
target cells). In a random, close-packing of non-spherical
cells, each cell is expected to contact, on average, between
z = 6 (cell monolayer [61]) and z = 10 (three-dimensional
[62]) other cells. Assuming that killer cells fire the T6SS
apparatus in random directions [11], a contact between
killer and target cells leads to a killing event between z · τ =
2.58 ± 0.12 h and 4.30 ± 0.20 h on average. This time scale
agrees with our experimental finding in figure 1c.

Accumulation of dead cell debris is also present in compe-
titions between non-isogenic strains. To test the accumulation
of debris between non-isogenic strains, we competed the pre-
viously used V. cholerae killer (T6SS+) against other killer
strains (four other environmental isolates of V. cholerae [29])
and a non-killer strain (Vibrio harveyi) (electronic supple-
mentary material, figure S6). Moreover, we competed a
killing-deficient (T6SS−) variant of the V. cholerae strain against
other T6SS+ killer strains (four other environmental isolates of
V. cholerae and Enterobacter cloacae [63,64]) to test whether
debris accumulation can be independent of the toxins used
by different strains (electronic supplementary material, figure
S7). In every strain combination, we observed the signatures
of killing inhibition due to dead cell debris, i.e. localized
dead cell stain (PI) that aligns with both the interface between
strains as well as dark outlines in bright-field microscopy.

The evidence presented in figures 1 and 2 suggests that
accumulated dead cell debris prevents contact between cells
and thus prevents contact killing. However, these data
cannot rule out counter-hypotheses such as a change in T6SS
gene expression, nutrient density or oxygen concentration.
To directly test if the presence of dead cell debris hinders kill-
ing, we mechanically disturbed the structural organization of
the biofilms and thus broke down dead cell debris barriers,
without otherwise altering biofilm conditions (see sketch in
figure 3a). First, we studied a co-culture of killer and target
V. cholerae strains. We inoculated the strains at a low initial con-
centration (OD600 = 1) between an agar plate and a glass
coverslip, and began the measurement after a dense layer of
cells formed. Killer cells initially expanded their population;
by 3 h, the expansion of killer cells halted (figure 3b). After
4.5 h we sheared the biofilm by rotating the coverslip with
respect to the agar pad in small circular motions (diameter ∼
2 mm), until both strains and the dead cell debris were well
mixed. After the perturbation, we observed an immediate
increase in the fraction of killer cells, indicating that killing
resumed (figure 3b). However, the killer strain took over
space almost completely and the remaining target cell domains
were too small for us to observe if dead cell debris barriers
formed again to separate killer and target cells.

Thus, we performed a new perturbation experiment with
two ‘mutual’ killer V. cholerae strains, i.e. each strain was
T6SS+ and able to kill the other strain. At 5 h, well after popu-
lation changes had dramatically slowed (figure 3d ), we
sheared the biofilm (figure 3e), thoroughly mixing the two
strains and the dead cell debris. After mixing, we observed
that large clonal domains again formed over time, indicating
that killing had resumed. Further, we observed that these
domains became separated by dead cell debris and even-
tually killing again ceased (figure 3f ). After shearing and
mixing the biofilm a second time (at 19.5 h; figure 3g), we
again observed the growth of clonal domains that eventually
became separated by dead cell debris (figure 3h). These find-
ings demonstrate that T6SS killing was prevented by dead
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cell debris barrier formation, and not by other factors such as
nutrient depletion or changes in cell behaviour or cell density.

We quantified the growth, and mechanical destruction, of
clonal domains by measuring the characteristic length of
domains, L, of the fluorescent killer strain (figure 3i, filled cir-
cles) (see electronic supplementary material for details). L
grows rapidly during the first ∼3 h, and much more slowly
after that time. Upon the first mixing event, L immediately
drops to the size of about three cells (figure 3e,g). After
that, L increases again, demonstrating that killing had
resumed. We obtained a qualitatively similar trend when
mixing the biofilm a second time, as indicated by a sudden
decrease in L, followed by an increase. As a control, we
measured L for a biofilm that was not mechanically per-
turbed. The characteristic domain length that emerges after
approximately 3 h in the undisturbed biofilm increases by
less than 8% over the next 37 h (empty circles in figure 3h);
in other words, the characteristic length of domains remains
nearly constant after initial domain formation has occurred.
2.3. Limited invasion via contact killing
The above results show that the accumulation of dead cell
debris can limit the utility of T6SS-mediated killing within
biofilms. Contact killing initially eliminates opponent cells,
structuring the biofilm population—but only until dead cell
debris accumulates and killing nearly ceases. These obser-
vations suggest that the T6SS may have limited ability to
facilitate biofilm invasion and that completely taking over a
biofilm from a small number of T6SS+ cells would be unlikely.
To test the ability of T6SS-facilitated invasion, we examined
the behaviour of single killer cells in dense environments.
We mixed 1% fluorescent killer cells with 99% non-fluor-
escent, susceptible target cells, which were otherwise isogenic
to the killers. We inoculated and confined an initially dense
monolayer of cells (OD600 = 10) on LB agar pads such that
single killer cells were completely surrounded by target
cells. We also performed control experiments in which the
1% fluorescent cells were defective killer cells (T6SS−). We
found that after 24 h of growth the final killer population
was only approximately 1.5× larger than the final fluorescent
defective killer control population (figure 4b,c). In particular,
clonal domains of killer cells had a mean size of 18.9 μm2

(standard deviation of 26.7 μm2); defective killer control
cells formed clonal domains with a mean size of 10.6 μm2

(standard deviation of 14.9 μm2). Thus, while killer cells
expanded their population more than killing-deficient cells,
they were incapable of invading the existing biofilm and
eliminating their competitors.

Up to this point, all presented experiments were per-
formed in confinement, i.e. biofilms were grown confined
between an agar pad and a glass coverslip, to optimize the
set-up for microscopy and exclude height-dependent differ-
ences [43,65]. While bacteria often inhabit confined
geometries in natural settings [66], it is unclear if confinement
itself impacts population dynamics. Thus, we next explored
contact killing in unconfined environments, by growing bio-
films without a coverslip limiting their height. For both
mutual and unidirectional killing, we again observed that
the (stronger) killer population rapidly increases for the first
3 h, at which point killing slows substantially (electronic sup-
plementary material, figure S4c,d) and a layer of dead cell
debris separates competing strains.

We also repeated the experiments on expansion of active
and defective single killer cells in dense environments but
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without confinement. For both killer and defective killer exper-
iments, biofilms reach a height of 92 μm± 2 μm after 24 h of
growth. Similar to the results under confinement, the relative
abundances of killer and non-killer control populations differed
only slightly (figure 4i,j): killer strains outperformed non-killer
strains by a factor of only 1.64 throughout the whole biofilm.
However, we observed that killer and defective killer strains
exhibit markedly different behaviour near the agar surface. At
the top of the unconfined biofilm, the killer population was
only 1.16 times greater than the defective killer population
(figure 4e,f). The mean sizes of clonal domains were 8.0 μm2
(standard deviation 6.0 μm2) and 7.4 μm2 (standard deviation
4.9 μm2) for killer cells and defective killer cells, respectively.
At the bottom of the biofilm (next to the agar surface), some
killer cells expanded into large clonal domains (figure 4g);
the mean diameter of clonal domains of killer cells within
4 μm of the agar surface was 115.4 μm2 (standard deviation
146.7 μm2). In contrast, the defective killer cells were nearly
eliminated at the bottom (figure 4h). (Importantly, the remain-
ing space in figure 4e–h is occupied by a non-killer strain
lacking fluorescent proteins.) In the representative biofilm
stacks shown in figure 4i,j, within 4 μm of the agar surface,
the final population of killer cells was 270 times greater than
the population of defective killer cells. Thus, although killer
cells were only slightly better at invading unconfined biofilms
than defective killer cells, killer cells were able to capture
territory at the inoculation surface more efficiently.

It is likely that physical effects observed in studies of lateral
range expansions [67–70] also play a role in the upward growth
of unconfined biofilms. Previous studies found that proliferat-
ing cells in crowded environments interact mechanically
[71–73], pushing cells towards the expanding cell front. In ana-
logy, during vertical biofilm growth, the few labelled, non-killer
cells may be mechanically pushed off the agar surface by neigh-
bouring cells that proliferate. These pushing forces may be
diminished near dead cells, which do not reproduce, helping
killer cells surrounded by dead cells to remain near the agar
surface. In a related vein, it has been shown that rod-shaped
bacteria at a solid–liquid interface undergo a mechanically
driven transition from planar to vertical orientation during bio-
film growth [73–75]. Such a transition probably also occurs in
biofilms grown on agar pads. Such cellular reorientations
could impact the number and extent of cell–cell contacts, thus
altering the kill rate, and may also damage the debris interface.
In fact, our time-lapse analysis of unconfined biofilms (elec-
tronic supplementary material, figure S4d) shows that the
relative abundances of killer cells at the top and the bottom
of the biofilm were established during early stages of biofilm
growth—when the structural transition probably happens—
and remains unchanged afterwards. In a related vein, it was
recently reported that cells near the substrate and cells above
the substrate behave differently [76], which is consistent with
our observations of killer cells at and above the agar surface.
However, understanding the roles of mechanical pushing and
cellular reorganization in detail would require single-cell
resolution experiments, which is beyond the scope of this work.
2.4. Phase separation dynamics
Finally, we analysed the ‘coarsening’ behaviour of clonal
domains during the mechanical shearing experiments
(figure 3c–i). Previous works predicted that the observed
phase separation is part of the broadmodel A, or model A’, uni-
versality class [24,28]. As a result, the characteristic domain
length, L, is predicted to scale as L � ffiffi

t
p

with time t. The mean
structure factor, SL, scales as SL∼ t [24]. Here, we confirm that
killing-mediated phase separation follows these dynamics,
despite the accumulation of a dead cell debris barrier
(figure 5). Following the analysis in [24], we calculated the
Fourier-transformed structure factor, S(q), which provides a
measure for the frequency of structure sizes with wavenumber
q. We determined the characteristic wavenumber, qm, as the
mean wavenumber q weighted by S(q). From this, we obtained
the characteristic domain length, L, which is inversely
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proportional to qm, and themean structure factor SL, which is the
height of S(q) at qm (see supplementarymethods in the electronic
supplementarymaterial for details). SL exhibits linear behaviour
each time phase separation occurs (figure 5a). However, all three
curves exhibit a kink, where the slope decreases bya factor of 31,
9 or 4, respectively. This indicates a change in the speed of
domain coarsening, which is probably caused by the establish-
ment of debris barriers. We further found that L approximately
follows a square root scaling with time (figure 5b) at early
times after both perturbation events. However, this scaling
analysis depends onwhenwe set time t = 0,which is experimen-
tally ambiguous and moreover changes as the speed of
coarsening decreases. This ambiguity with respect to time can
be avoided by plotting SL versus L. As predicted, it follows the
time-independent, universal scaling of SL∼ L2 for all data in
the mechanical shearing experiment (figure 5c).
3. Discussion
Microbial antagonism is common in biofilms [4], and many
mechanisms exist that kill on contact. Contact killing has pre-
viously been proposed to virtually eliminate susceptible
competitor cells of similar numbers within a few hours
[9,29,31,77,78] (unless target cells reproduce sufficiently quickly
[26]). Surprisingly, we found that killing-induced changes in
the target population dramatically slow after approximately
3 h, independent of the initial or final relative abundances of
killer cells, and independent of the final amount of contact
between competing strains (which varies by a factor of 25
across the different cases explored in figure 1c). In fact, even
when the T6SS-proficient strain had captured over 99% of
the population, small domains of target cells, only a few
microns in size, persisted for hours (dashed curve in figure 1c).

In this work, we focused on dead cells, finding that the
accumulation of dead cell debris is responsible for the
observed dramatic decrease in contact killing. By mechanically
shearing biofilms, we directly show that killing resumes once
dead cell debris barriers are destroyed. Shearing only modifies
the positions of cells and dead cell debris, excluding many
other hypotheses (such as changes in T6SS gene expression,
target cell susceptibility or metabolic activity). We further
demonstrate that despite the formation of dead cell barriers
the killing-mediated phase separation of competing strains
still exhibits dynamics of the model A universality class,
which has been predicted previously [24,28].

At first sight, findings presented here might appear to dis-
agree with conclusions drawn from T6SS competition assays,
in which T6SS killing decreases the abundance of target cells
by several orders of magnitude [7,13,15,29,31]. However, kill-
ing competition assays often start with a majority of killer
cells over target cells, and the final abundance of target cells
has a nonlinear relationship with the initial abundance of
killer cells. Decreasing the initial abundance of killer cells
leads to enhanced survival of the target cells [23]. This non-
linear phenomenon agrees with our microscopy results; we
found that, for the same pair of strains, target inhibition can
be as high as 99.97% (three orders of magnitude) or as low
as 79.47% (less than one order of magnitude) as the fraction
of killer cells during inoculation was varied from 0.50 to
0.09, respectively. In fact, despite the excess of killer cells in
competition assays, the target strain is rarely, if ever, completely
eliminated [7,13,15,29,31]. Previous time-lapse competition
assays found that the number of surviving target cells remains
remarkably constant after a quick decline in the first few hours
[23], consistent with the temporal dynamics we observed via
microscopy. Therefore, our observations are in agreement
with and explain results from previously reported competition
assays. Combined, these results demonstrate that the killing
efficiency must be studied and discussed in context, with the
initial abundances considered. For example, traditional compe-
tition assays show that, for some strains, a large number of
killer cells can kill a small number of target cells effectively,
but they do not show how a small number of killer cells
would perform against a large number of target cells.

Even though the efficacy of killing may be limited by the
accumulation of dead cell debris, the utility remains quite
high. First, it initially facilitates the formation of clonal domains.
Depending on the diffusion length of secreted goods [79], this
initial domain formation may be sufficient to favour intra-
strain cooperation [24,80,81] or reciprocal benefits between
different strains [2,82]. Second, killing can prevent social chea-
ters from emerging in a population. Such ’policing’ effects
have been observed in cases where social behaviour is linked
with T6SS regulation [83]. Finally, we found that contact-killing
strains are able to capture and maintain territory near the sur-
face on which they were inoculated; killing-deficient cells have
a much lower probability of remaining near the surface. Occu-
pying nutrient-rich territories may have long-term benefits,
beyond the scope of our experiments [84].

The physical inhibition of killing observed here is com-
parable to other phenomena as seen in contact-dependent
growth inhibition experiments [85]. Such a passive defence
is starkest in scenarios where the target strain cannot fight
back, but the accumulation of dead cell debris eventually pre-
vents killing and protects the target strain from elimination.
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Such physical protection stands in stark contrast to active,
species-dependent defence mechanisms that are controlled
genetically [36,38,40,41]. Physical barriers represent an emer-
gent first line of defence that do not require active sensing or
control and are species independent. Other defence mechan-
isms, e.g. immunity proteins acquired through horizontal
gene transfer [86], may help protect small numbers of
target cells and become relevant if cells touch directly,
before the debris barrier forms or after the debris barrier is
broken down.

In this vein, it is important to note that the efficacy of T6SS
killing, and thus potentially the role of debris accumulation,
can vary among different combinations of strains [87]. In
fact, previous measurements demonstrated that the killing
ability of V. cholerae strains in traditional competition assays
can vary by one to seven orders of magnitude [29]. These
observations suggest that T6SS killing may be highly effective
in some but not all scenarios. The results presented here
suggest that the efficacy of T6SS killing also depends on the
stability of the cell debris barrier and the rate at which cells
can overcome the barrier. The barrier may be broken down
through the predation and consumption of dead cells [88],
by secreted enzymes (such as lipases or DNases), by shear
flow [89] or by other mechanical perturbations, among other
potential mechanisms. The rate at which dead cell debris
breaks down may also be impacted by the chemical environ-
ment and the action of the delivered toxins [87,90], which
are known to exhibit a wide range of effects from growth inhi-
bition to lysis [20,21,35,91,92]. Further, while we observed
similar characteristics of cell debris accumulation across differ-
ent co-culture competitions containing V. cholerae, E. cloacae
and V. harveyi, the material and physical characteristics of
dead cell debris may vary across different combinations of
competing strains or species, impacting how long accumulated
cell debris prevents contact killing. For example, if competing
strains grow at different rates, reproduction may allow the
faster growing strain to push through the barrier. Further,
motility may enable cells to penetrate barriers as well.

Yet, while several mechanisms may make the debris
barrier less stable, dead cell debris is always an obstacle as
dead bacteria do not instantaneously disappear. The relative
ability or inability of dead cell debris to inhibit contact killing
is not a question of if this effect is present, but instead
depends on the time scale on which dead cell debris accumu-
lates and how long debris barriers persist. In other words,
while the steric hindrance by dead cell debris is likely to be
quite general, the impact of debris barriers is specific to the
experimental or ecological details [87].
The accumulation of dead cell debris and barrier formation
may hold wide-ranging consequences in a variety of contexts.
We observe that dead cell debris facilitates the coexistence of
antagonistic strains, including allowing killer cells to coexist
with non-killer strains that cannot fight back. This concept
mayapply to othermodes ofmicrobial killing [4], such as killing
mechanisms that act over longer distances via diffusible deadly
bio-molecules [93], phages [94] and bacteriocins [95]. These kill-
ing mechanisms will typically only be effective within some
diffusion length. Killing may thus be hindered if a dead cell
debris barrier longer than the diffusion length forms.Moreover,
dead cells locally alter the chemical and material composition,
promoting biofilm dispersal [96], providing a source of nutri-
ents [97] or protecting against antibiotics [98,99]. Finally, the
phenomena we observe are reminiscent of territorial resource
competition seen in a variety of ecosystems at various scales
[100]. Previous models have suggested that such effects play
important roles in maintaining diversity [101,102]. Specifically,
the barrier formation we observe is similar to gap formation
that occurs during competition between plants [103,104].

In conclusion, it is striking that contact killing indirectly
facilitates the coexistence of antagonistic strains [105]. These
results suggest that the T6SS, and perhaps other contact kill-
ing mechanisms, may not always prompt a microbial ‘arms
race’. Instead, T6SS-mediated killing may also stabilize
diverse communities and the increase in dead cell biomass
may facilitate bacterial interaction and survival against exter-
nal attacks. Further, these results align with recent works
which question the ecological purpose of bacterial production
of antibiotics [84,106]. Nevertheless, the fact that contact kill-
ing facilitates coexistence suggests that the impact of the T6SS
in bacterial consortia is complex, and the T6SS is more than
simply a potent weapon.
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