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Abstract

O-Acetylated sialic acid has been found in the Neisseria meningitidis serogroup W (NmW) 

capsular polysaccharide (CPS) and is a required structural component of clinically used NmW 

CPS-based polysaccharide and polysaccharide-conjugate vaccines. The role of sialic acid O-

acetylation in NmW CPS, however, is not clearly understood. This is partially due to the lack of a 

precise control of the percentage and the location of O-acetylation which is labile and susceptible 

to migration. We explore chemoenzymatic synthetic strategies of preparing N-acetylated analogs 

of O-acetylated NmW CPS oligosaccharides which can serve as structurally stable probe mimics. 

Substrate specificity studies of NmW CPS polymerase (NmSiaDW) identified 4-azido-4-deoxy-N-

acetylmannosamine (ManNAc4N3) and 6-azido-6-deoxy-N-acetylmannosamine (ManNAc6N3) as 

suitable chemoenzymatic synthons for synthesizing N-acetyl analogs of NmW CPS 

oligosaccharides containing 7-O-acetyl-N-acetylneuraminic acid (Neu5,7Ac2) and/or 9-O-acetyl-

N-acetylneuraminic acid (Neu5,9Ac2). The synthesis was achieved by NmSiaDW-dependent 

sequential one-pot multienzyme (OPME) strategy with in situ generation of the corresponding 

sugar nucleotides from simple monosaccharides or derivatives to form N3-oligosaccharides which 

were converted to the desired NAc-oligosaccharides by an efficient one-step chemical 

transformation.
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INTRODUCTION

O-Acetylation is a common modification of carbohydrates1–2 including sialic acids which 

are a family of monosaccharides belonging to nine-carbon α-keto acids (so called 

nonulosonic acids).3–5 In addition to be an important structural component of animal 

glycomes, sialic acids have been found in numerous bacteria. Among more than 50 different 

sialic acid forms found in nature, N-acetylneuraminic acid (Neu5Ac) is the most common 

form. Neu5Ac in the capsular polysaccharides (CPSs) or the lipopolysaccharides (LPSs) of 

bacteria is often O-acetylated.2 For example, among six Neisseria meningitidis (Nm) 

serogroups (A, B, C, W, X, and Y) that cause life threatening invasive meningococcal 

diseases (IMDs) including meningitis and septicemia,6–8 four (except for serogroups A and 

X) have Neu5Ac in their CPSs and Neu5Ac O-acetylation has been observed for CPSs from 

three Nm serogroups (C, W, and Y).9 NmW strains have various levels of CPS O-

acetylation.9–11 It was shown that O-acetylation of Neu5Ac in NmW CPS (a heteropolymer 

with a repeating unit of −6Galα1–4Neu5Acα2-) (Figure 1)12–14 may not be 

immunologically essential15–16 but can influence the efficacy of CPS periodate-treatment for 

conjugation with protein carriers in the development of conjugate vaccines.15 The World 

Health Organization (WHO) also specified the requirement of having minimal 0.3 mmol O-

acetyl content per gram of polysaccharide in the NmW CPS polysaccharide vaccine.17

Nevertheless, the role of O-acetylation in NmW CPS remains unclear and the percentage of 

O-acetylation is suggested to be a parameter for vaccine quality control.2 The lack of the 

understanding is partially due to the low abundance of O-acetylation in the CPSs of some 

NmW strains,2 variation of O-acetylation levels due to manufacturing, instability of O-

acetylation under basic conditions,10 and O-acetyl migration leading to the variation of site 

distribution of O-acetyl group.9
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The detailed biosynthetic process for the formation of O-acetylated NmW CPS is also not 

clear despite the identification of the corresponding O-acetyltransferase encoded by 

oatWY18 and the report of its crystal structures in the presence or the absence of coenzyme 

A (CoA), acetyl-CoA and its non-hydrolyzable analog.19 For example, O-acetylation was 

observed at either C7 or C9 of Neu5Ac in NmW CPS while only one O-acetyltransferase 

gene oatWY was identified from NmW and NmY strains.18 The absence of a suitable 

acceptor in the crystal structures of NmOatWY19 and O-acetyl migration from C7 to C9 in 

Neu5Ac of NmW CPS observed by nuclear magnetic resonance (NMR) spectroscopy 

studies9 did not allow the confirmation of the specific O-acetylation site of the O-

acetyltransferase NmOatWY. It was shown that NmOatWY was able to catalyze the transfer 

of acetyl from acetyl-CoA to NmY CPS polysaccharides and disaccharide (at a lower 

efficiency) but was unable to acetylate monosaccharide Neu5Ac or cytidine 5’-

monophosphate-Neu5Ac (CMP-Neu5Ac).19 However, the detailed relationship of its 

reaction efficiency and the structures of its carbohydrate acceptor substrates is not clear. 

Therefore, it is impractical to obtain structurally defined NmW CPS with O-acetyl groups at 

designated locations by biosynthesis. Furthermore, the high-cost of acetyl-CoA, the required 

activated acetyl donor for acetyltransferases, prohibits large-scale enzymatic synthesis of O-

acetylated NmW CPS or oligosaccharides by NmOatWY. On the other hand, chemical 

synthesis of O-acetylated NmW CPS oligosaccharides is possible but will be challenging. 

The O-acetyl migration, the sensitivity of O-acetyl group to pH variation and esterase-

catalyzed cleavage20 will cause obstacles in accurately interpreting results even if pure 

products are used in biological studies including immunological evaluations of the vaccine 

candidates.

We showed previously that replacing the labile O-acetyl group in 9-O-acetylated sialosides 

by the more stable N-acetyl group21–22 was a promising strategy to overcome the challenges 

of O-acetyl cleavage and/or migration in investigating their functional roles. For example, 9-

acetamido-9-deoxy-Neu5Ac (Neu5Ac9NAc) was designed as a stable mimic of 9-O-acetyl-

Neu5Ac (Neu5,9Ac2).21 As determined by systematic NMR spectroscopic and molecular 

dynamics simulation studies, Neu5,9Ac2-containing GM3 ganglioside glycan and its 

Neu5Ac9NAc analog are similar on their overall secondary structures and conformations 

without substantial differences on the dihedral angles of their glycosidic bonds.22 

Neu5Ac9NAc-containing sialosides were applied in protein-binding, cell feeding, and 

sialidase substrate specificity studies as good mimics of the corresponding Neu5,9Ac2-

counterparts but with a higher stability.21, 23–24 Neu5Ac9NAc and 4-acetamido-4-deoxy-

Neu5Ac (Neu5Ac4NAc), a stable mimic of 4-O-acetyl-Neu5Ac (Neu4,5Ac2), were also 

used in a protein crystallography study of viral hemagglutinin-esterases.25

Herein, we explore chemoenzymatic strategies for synthesizing structurally defined N-acetyl 

analogs of O-acetylated NmW CPS oligosaccharides using two one-pot multienzyme 

(OPME) glycosylation systems containing NmW CPS polysaccharide synthase NmSiaDW 

with in situ generation of uridine 5’-diphosphate-galactose (UDP-Gal) and CMP-Sia from 

the corresponding monosaccharides Gal and sialic acid or sialic acid precursor, respectively.
26
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RESULTS AND DISCUSSION

Donor substrate specificity studies of the α2–6-sialyltransferase activity of NmSiaDW.

NmSiaDW is a bifunctional polysaccharide synthase that has both α1–4-

galactosyltransferase and α2–6-sialyltransferase activities for the formation of NmW CPS 

containing a disaccharide repeating unit of −6Galα1–4Neu5Acα2-. It was used successfully 

in a sequential OPME system for the synthesis of structurally defined NmW CPS 

oligosaccharides ranging from disaccharide to decasaccharide from a benzyloxycarbonyl 

(Cbz)-tagged sialylmonosaccharide 2-O-(N-benzyloxycarbonyl) aminopropyl α-N-

acetylneuraminide (Neu5AcαProNHCbz).26 The hydrophobic UV-detectable Cbz-tag was 

shown to facilitate reaction progress monitoring, enzyme biochemical characterization, and 

product purification processes.26

Using previously synthesized galactosyldisaccharide Galα1–4Neu5AcαProNHCbz (G2)26 

as the acceptor substrate, the donor substrate specificity study for the α2–6-sialyltransferase 

activity of NmSiaDW was investigated using a one-pot two-step reaction (Scheme 1) similar 

to that described previously.27 In step 1, CMP-sialic acid or its analog was generated in situ 
from a sialic acid, its analog, or its precursor in the presence of Neisseria meningitidis CMP-

sialic acid synthetase (NmCSS)28–29 with or without Pasteurella multocida sialic acid 

aldolase (PmAldolase)30 and sodium pyruvate. The yields were determined by ultra-high 

performance liquid chromatography (UHPLC) and mass spectrometry (MS) analyses. In 

step 2, G2 and NmSiaDW were added and the reactions were carried out in a short time (10 

min) with a lower concentration (10 μg/mL) of NmSiaDW (to compare the efficiency of 

different substrates) or a longer time (10 h) with a higher concentration (3.3 mg/mL) of 

NmSiaDW (to test the suitability of the compounds as potential substrates for synthesis).

As shown in Table 1, all donor precursors tested (entries 1–11, Table 1) (see Figure S1 for 

structures) could be catalyzed by NmCSS without (entries 1–6, Table 1) or with (entries 7–
11, Table 1) PmAldolase and sodium pyruvate to produce CMP-sialic acid analogs. The α2–

6-sialyltransferase activity of NmSiaDW was shown to be promiscuous towards donor 

substrate and derivatives. In addition to the N-acetyl group (e.g. in CMP-Neu5Ac, entry 1), 

N-glycolyl (e.g. in CMP-Neu5Gc, entry 2), N-azidoacetyl (e.g. in CMP-Neu5Az, entry 7), 

and OH (e.g. in CMP-Kdn, entry 6) at the C5 of sialic acids in CMP-sialic acids were all 

tolerated by NmSiaDW. A C5-N3 group substitution (e.g. in CMP-Neu5N3, entry 11) was 

also tolerated but to a lower extend. In addition, while an 4-O-acetyl (e.g. in CMP-

Neu4,5Ac2, entry 4) or 9-O-acetyl (e.g. in CMP-Neu5,9Ac2, entry 5) was not tolerated by 

NmSiaDW, a 7-N3 (e.g. in CMP-Neu5Ac7N3, entry 8), 8-OMe (e.g. in CMP-Neu5Ac8OMe, 

entry 3), or 9-N3 (e.g. in CMP-Neu5Ac9N3, entry 9) substitution of Neu5Ac in CMP-

Neu5Ac was tolerated. In comparison, 9-N-acetyl (e.g. in CMP-Neu5Ac9NAc, entry 10) 

was only weakly tolerated.

The tolerance of CMP-Neu5Gc (entry 2), CMP-Neu5Ac8OMe (entry 3), CMP-Kdn (entry 

6), CMP-Neu5Az (entry 7), CMP-Neu5Ac7N3 (entry 8), and CMP-Neu5Ac9N3 (entry 9) as 

donor substrates for the α2–6-sialyltransferase activity of NmSiaDW provides an 

opportunity for chemoenzymatic synthesis of derivatives of NmW CPS oligosaccharides. 

The corresponding azido-containing donor precursor analogs (ManNAz, entry 7), 
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ManNAc4N3 (entry 8), and ManNAc6N3 (entry 9) can be further explored as potential 

probes for metabolic engineering of NmW CPS. The latter two (ManNAc4N3
31 and 

ManNAc6N3
32) can be used as chemoenzymatic synthons for synthesizing structurally 

defined N-acetyl analogs of 7-O- and/or 9-O-acetylated NmW CPS oligosaccharides by 

OPME reactions followed by conversion of the N3-groups in the oligosaccharide products to 

N-Ac groups. A strategy using a monosaccharide diazido derivative as a chemoenzymatic 

synthon has been successfully developed and applied previously by us for synthesizing 

glycans containing a terminal 5,7-di-N-acetyllegionaminic acid (Leg5,7diNAc, a bacterial 

nonulosonic acid).33 It has not, however, been tested in chemoenzymatic synthesis of 

bacterial polysaccharides containing internal sialic acid residues.

It is interesting to notice the lower degree of donor substrate promiscuity of the α2–6-

sialyltransferase activity of NmSiaDW compared to the α2–3-sialyltransferase activity of 

Pasteurella multocida sialyltransferase 1 (PmST1)34 and α2–6-sialyltransferase activity of 

Photobacterium damselae α2–6-sialyltransferase (Pd2,6ST).35 Both PmST1 and Pd2,6ST 

were able to tolerate all24, 34–36 except one (CMP-Neu4,5Ac2, entry 4)37 in situ-generated 

CMP-Sia and analogs shown in Table 1. For example, in situ-generated CMP-Neu5,9Ac2 

(entry 5)35–36 not tolerated by NmSiaDW and CMP-Neu5Ac9NAc (entry 10)24 that was only 

weakly accepted by NmSiaDW were both suitable donor substrates for PmST1 and Pd2,6ST.

Preparative-scale synthesis of sialyltrisaccharides containing different sialic acid forms.

With a good understanding of the donor substrate specificity of the α2–6-sialyltransferase 

activity of NmSiaDW, preparative-scale chemoenzymatic synthesis of structurally defined 

N-acetyl analogs of O-acetyl NmW CPS oligosaccharides was carried out using previously 

synthesized Cbz-tagged NmW CPS galactosyldisaccharide Galα1–4Neu5AcαProNHCbz 

(G2)26 as the acceptor substrate and chemoenzymatic synthons ManNAc4N3 and 

ManNAc6N3 as donor precursors. As shown in Scheme 2, NmSiaDW was used together 

with PmAldolase30 and NmCSS28 in an OPME α2–6-sialylation system (OPME1) to 

sialylate G2 for the formation of sialyl trisaccharides containing Neu5Ac, Neu5Ac7N3, or 

Neu5Ac9N3. In this system, sodium pyruvate (excess amount, 5–10 equiv.) and ManNAc, 

ManNAc4N3, or ManNAc6N3 were used by PmAldolase to produce Neu5Ac or its 

monoazido-analog Neu5Ac7N3 or Neu5Ac9N3. NmCSS then used CTP to activate Neu5Ac 

or its derivative to form CMP-Neu5Ac or its analog which was used by the sialyltransferase 

activity of NmSiaDW to form α2–6-linked sialosides (Scheme 2). From 150 mg G2, 

trisaccharide S3 (220 mg, 97%), 7N3-S3 Neu5Ac7N3α2–6Galα1–4Neu5AcαProNHCbz 

(120 mg, 55%), or 9N3-S3 Neu5Ac9N3α2–6Galα1–4Neu5AcαProNHCbz (98 mg, 45%) 

was obtained in an excellent to a moderate yield.

The structure and the purity of the products were confirmed by nuclear magnetic resonance 

(NMR), high-resolution mass spectrometry (HRMS), and ultra-high performance liquid 

chromatography (UHPLC). For example, replacing the OH at C7 of the terminal Neu5Ac in 

S3 by an N3 in 7N3-S3 led to an upfield shift of the C7 13C signal from 68.24 ppm to 61.19 

ppm. The influence on the C7 1H chemical shift was weaker, with 0.01 ppm difference from 

3.57 ppm in S3 to 3.56 ppm in 7N3-S3 (Figure S2). For 9N3-S3, the 13C chemical shift of 

substituted Neu5Ac C9 moved upfield from 62.60 ppm in S3 to 52.97 ppm. Two 
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diastereotopic protons on substituted C9 in 9N3-S3 appeared at 3.68 ppm and 3.50 ppm, 

respectively, both being upfield of the corresponding protons (3.86 ppm and 3.63 ppm) in S3 
(Figure S3).

The azido group in trisaccharides 7N3-S3 and 9N3-S3 was readily converted to an N-acetyl 

group using a simple one-step reduction and simultaneous acetylation process by adding 

thioacetic acid in a saturated sodium bicarbonate solution33, 38 to obtain 7NAc-S3 
Neu5Ac7NAcα2–6Galα1–4Neu5AcαProNHCbz (13 mg, 76%) and 9NAc-S3 
Neu5Ac9NAcα2–6Galα1–4Neu5AcαProNHCbz (12 mg, 85%) in good yields.

Acceptor substrate specificity of the α1–4-galactosyltransferase activity of NmSiaDW.

Successful synthesis of longer N-acetyl analogs of O-acetylated NmW CPS oligosaccharides 

also depends on the acceptor substrate promiscuity of the α1–4-galactosyltransferase 

activity of NmSiaDW. Therefore, sialyltrisaccharides S3, 7N3-S3, 9N3-S3, 7NAc-S3, and 

9NAc-S3 obtained above were tested as acceptor substrates for the α1–4-

galactosyltransferase activity of NmSiaDW and uridine-5’-diphosphate galactose (UDP-Gal) 

was used as the donor substrate. As shown in Table 2, all sialyltrisaccharides except for 

7NAc-S3 were suitable acceptors although the efficiency with 9NAc-S3 (68±3%) was lower 

than others (quantitative yields). These results suggest that 7N3-S3 and 9N3-S3, instead of 

7NAc-S3 or 9NAc-S3, will be the preferred substrates for NmSiaDW-catalyzed enzymatic 

extension for the synthesis of longer N-acetyl NmW CPS oligosaccharide derivatives.

Preparative-scale synthesis of galactosyltetrasaccharides containing different sialic acid 
forms.

With the confirmation that both 7N3-S3 and 9N3-S3, in addition to S3, were suitable 

acceptor substrates for the α1–4-galactosyltransferase activity of NmSiaDW, preparative-

scale synthesis of galactosyltetrasaccharides were carried out using an OPME α1–4-

galactosylation system (OPME2) (Scheme 2) containing Streptococcus pneumoniae TIGR4 

galactokinase (SpGalK),39 Bifidobacterium longum UDP-sugar pyrophosphorylase 

(BLUSP),40 Pasteurella multocida inorganic pyrophosphatase (PmPpA),41 and NmSiaDW. 

In this system, SpGalK was responsible for the formation of galactose-1-phosphate (Gal-1-

P). It was then used by BLUSP for in situ formation of activated sugar nucleotide UDP-Gal, 

which was used by NmSiaDW to produce α1–4-linked galactosides. PmPpA was included to 

hydrolyze the inorganic pyrophosphate (PPi) formed in the BLUSP-catalyzed reaction to 

drive the reaction towards the formation of UDP-Gal.40 From 50 mg of S3 or its derivative 

7N3-S3 or 9N3-S3, tetrasaccharide G4 (56 mg, 97%), 7N3-G4 Galα1–4Neu5Ac7N3α2–

6Galα1–4Neu5AcαProNHCbz (54 mg, 93%), and 9N3-G4 Galα1–4Neu5Ac9N3α2–

6Galα1–4Neu5AcαProNHCbz (55 mg, 95%) were formed in excellent yields.

Similar to that described above, the azido group in 7N3-G4 and 9N3-G4 was converted to N-

acetyl group using thioacetic acid in a saturated sodium bicarbonate solution33, 38 to obtain 

7NAc-G4 Galα1–4Neu5Ac7NAcα2–6Galα1–4Neu5AcαProNHCbz (20 mg, 75%) and 

9NAc-G4 Galα1–4Neu5Ac9NAcα2–6Galα1–4Neu5AcαProNHCbz (21 mg, 80%), 

respectively, in good yields.
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Donor and acceptor substrate specificity studies of the α2–6-sialyltransferase activity of 
NmSiaDW with galactosyltetrassacharide acceptors.

The obtained galactosyltetrasaccharides G4, 7N3-G4, 9N3-G4, 7NAc-G4, and 9NAc-G4 as 

well as donor precursors ManNAc4N3 and ManNAc6N3 allowed the exploration of the 

potential of NmSiaDW in synthesizing longer oligosaccharides with desired N-acetylation 

patterns. A one-pot two-step reaction process similar to that shown in Scheme 1 above for 

the donor substrate specificity studies of the sialyltransferase activity of NmSiaDW with G2 
as the acceptor was used. As shown in Table 3, CMP-Neu5Ac, CMP-Neu5Ac7N3, and 

CMP-Neu5Ac9N3 were obtained readily in situ from the corresponding precursors Neu5Ac, 

ManNAc4N3, and ManNAc6N3, respectively, in a reaction catalyzed by NmCSS with (for 

ManNAc4N3 and ManNAc6N3) or without (for Neu5Ac) PmAldolase in step 1. The 

analysis of the NmSiaDW-catalyzed α2–6-sialyltransfer process in step 2 showed that when 

Neu5Ac was used as the donor precursor, all galactosyltetrasaccharides tested were well 

tolerated by NmSiaDW to form sialylpentasaccharide products (see Scheme 2 for structures) 

in high yields (83–97%, entries 1–5 in Table 3). Nevertheless, differentiation of the 

efficiency of the acceptors was observed when the reactions were carried out with a lower 

concentration of NmSiaDW in a shorter period of time. The N3-substitution at the C7 or C9 

of the Neu5Ac in the acceptor was better tolerated than the corresponding N-acetyl-

substitution.

When ManNAc4N3 (entries 6–10 in Table 3) or ManNAc6N3 (entries 11–15 in Table 3) was 

used as the donor precursor for the α2–6-sialyltransferase activity of NmSiaDW, G4, 7N3-
G4, and 9N3-G4 were suitable acceptor substrates but 7NAc-G4 and 9NAc-G4 were not. 

Therefore, the data support the potential of chemoenzymatic synthesis of N-acetyl analogs 

of longer NmW CPS oligosaccharides with defined N-acetylation pattern although 

optimization is needed to further improve the yields of the reactions when 9N3-G4 was used 

as the acceptor substrate and ManNAc4N3 (entry 8 in Table 3) or ManNAc6N3 (entry 13 in 

Table 3) was used as the donor precursor.

The observation that 7NAc or 9NAc-analogs of NmW CPS oligosaccharides are poor or 

unsuitable substates for either the galactosyltransferase or the sialyltransferase activity of 

NmSiaDW indicates that NmW CPS polysaccharide is most likely formed before 

NmOatWY-catalyzed O-acetylation. This is consistent with the previous results from 

biochemical characterization of NmOatWY.19

CONCLUSIONS

In conclusion, the donor and acceptor substrate promiscuity of NmSiaDW was demonstrated. 

ManNAc4N3 and ManNAc6N3, the six-carbon precursors for Neu5Ac7N3 and Neu5Ac9N3, 

were confirmed to be suitable chemoenzymatic synthons in NmSiaDW-dependent sequential 

one-pot multienzyme (OPME) chemoenzymatic synthesis of structurally defined stable N-

acetyl analogs of O-acetylated NmW CPS oligosaccharides. The obtained oligosaccharide 

products are important probes for binding studies of antibodies against NmW CPS and for 

investigating the functions of its O-acetylation. They can also be used to investigate host-

microbe interactions. The tolerance of an azido group substitution at the C7 or C9 of 

Neu5Ac in the in situ-generated CMP-Neu5Ac donor derivatives by the α2–6-
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sialyltransferase activity of NmSiaDW and the tolerance of the resulting oligosaccharides as 

acceptors for the α1–4-galactosyltransferase activity of NmSiaDW showed the potential of 

using ManNAc4N3 and ManNAc6N3 or their per-acetylated analogs for metabolic 

engineering studies.42 The chemoenzymatic synthon strategy can be extended for the 

synthesis of the N-acetyl analogs of other oligosaccharides containing O-acetyl sialic acids.

EXPERIMENTAL SECTION

Materials and General Methods.

Chemicals were obtained from commercial suppliers and used without further purification. 
1H NMR, 13C NMR, HSQC, and HSQC-TOCSY (90 ms and 10 ms) spectra were recorded 

on an 800 MHz Bruker Avance III spectrometer in the NMR facility of the University of 

California, Davis. Structural assignments were made with additional information from 

HSQC and HSQC-TOCSY experiments. High-resolution electrospray ionization (ESI) mass 

spectra were obtained using a Thermo Electron LTQ-Orbitrap Hybrid mass spectrometer at 

the mass spectrometry facility in the University of California, Davis or an LTQ-Orbitrap 

Eilte mass spectrometer at the Georgia State University. Matrix-assisted laser desorption/

ionization (MALDI) mass spectra were obtained using Bruker UltraFlextreme MALDI-TOF 

at the mass spectrometry facility in the University of California, Davis. UHPLC assays were 

performed using Agilent 1290 Infinity LC with an EclipsePlus C18 (Rapid Resolution HD, 

1.8 μm, 2.1×50 mm, 959757–902), an AdvanceBio Glycan Map (1.8 μm, 2.1×150 mm, 

859700–913) column from Agilent Technologies or an Dionex CarboPac PA100 (8.5 μm, 

4×250 mm, 043055) column from Thermo Scientific. Reverse phase chromatography 

purification of products was performed with a C18 column (ODS-SM, 50 mm, 120 Å, 

3.0×20 cm) from Yamazen Corporation on a CombiFlash Rf 200i system. Galactose was 

from Fisher Scientific, Inc. N-Acetylneuraminic acid (Neu5Ac) was from Inalco (Italy). 

Adenosine 5’-triphosphate (ATP), cytosine 5’-triphosphate (CTP), and uridine 5’-

triphosphate (UTP) were purchased from Hangzhou Meiya Pharmaceutical Co. Ltd. 

Recombinant enzymes Pasteurella multocida sialic acid aldolase (PmAldolase),30 Neisseria 
meningitidis CMP-sialic acid synthetase (NmCSS),28 Streptococcus pneumoniae TIGR4 

galactokinase (SpGalK),39 Bifidobacterium longum UDP sugar pyrophosphorylase 

(BLUSP),40 Pasteurella multocida inorganic pyrophosphatase (PmPpA),41 Neisseria 
meningitidis serogroup W capsular polysaccharide polymerase (NmSiaDW)26 were 

expressed and purified as reported previously. ManNAc4N3,31 ManNAc6N3,32 and Galα1–

4Neu5AcαProNHCbz (G2)26 were synthesized as described previously.

Two-step donor substrate specificity study for the α2–6-sialyltransferase activity of 
NmSiaDW using disaccharide G2 as an acceptor.

In the first step of the assay, CMP-sialic acid or its analog was synthesized from sialic acid, 

sialic acid analog, or its precursor. If Neu5Ac or its analog was used as a starting material, 

the step 1 reactions were performed in duplicate at 30 °C for 4 h in a total volume of 20 μL 

in a buffer (Tris-HCl, 100 mM, pH 8.5; pH 7.5 for reactions with Neu4,5Ac2 or Neu5,9Ac2) 

containing MgCl2 (10 mM), sialic acid or its analog (6 mM), CTP (5 mM), and NmCSS (15 

μg). If a sialic acid precursor (6 mM) was used as a starting material, sodium pyruvate (25 

mM) and PmAldolase (40 μg) were included in the reaction mixture. Step 2 sialylation 
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reactions were performed in duplicate at 30 °C for 10 min (with 0.10 μg of NmSiaDW) or 10 

h (with 33 μg of NmSiaDW) in a total volume of 10 μL in a buffer (Tris-HCl, 100 mM, pH 

8.5; pH 7.5 for reactions with Neu4,5Ac2 or Neu5,9Ac2) containing MgCl2 (10 mM), a 

reaction mixture from step 1 (2.5 μL), acceptor G2 (1 mM), and NmSiaDW. Reactions were 

quenched by adding 10 μL of pre-chilled ethanol followed by incubation of the mixture at 

−20 °C for 30 min. Samples were analyzed using UHPLC with an EcilpsePlusC18 column 

or an AdvancBio Glycan Map column (Agilent), as well as by Bruker UltraFlextreme 

MALDI-TOF in a negative mode. Sialic acids and derivatives tested were Neu5Ac, Neu5Gc, 

Neu5Ac8OMe,43 Neu4,5Ac2,37 Neu5,9Ac2,44 and Kdn. Sialic acid precursors and 

derivatives tested were ManNAz,34 ManNAc4N3,31 ManNAc6N3,32 ManNAc6NAc,21 and 

Man2N3.35

Acceptor substrate specificity study for the α1–4-galactosyltransferase activity of 
NmSiaDW using sialyltrisaccharide S3 and analogs obtained.

Assays were performed in duplicate at 30 °C for 10 min (with 0.20 μg of NmSiaDW) or 10 h 

(with 12 μg of NmSiaDW) in a total volume of 10 μL in a buffer (MES, 100 mM, pH 6.5) 

containing MgCl2 (10 mM), UDP-Gal (2 mM), a sialyltrisaccharide S3 or analog (7N3-S3, 

9N3-S3, 7NAc-S3, or 9NAc-S3) (1 mM), and NmSiaDW. Reactions were quenched by 

adding 10 μL of pre-chilled ethanol followed by incubation of the mixture at −20 °C for 30 

min. Samples were analyzed using UHPLC with an EcilpsePlusC18 column (Agilent) and 

by Bruker UltraFlextreme MALDI-TOF in a negative mode.

Donor and acceptor substrate specificity studies of the α2–6-sialyltransferase activity of 
NmSiaDW using G4 or its analogs.

In the first step of the assay, CMP-sialic acid or its analog was synthesized in duplicate at 30 

°C for 4 h in a total volume of 10 μL in a buffer (Tris-HCl, 100 mM, pH 8.5) containing a 

sialic acid or precursor (Neu5Ac, ManNAc4N3, or ManNAc6N3) (6 mM), CTP (5 mM), 

sodium pyruvate (25 mM), MgCl2 (10 mM), NmCSS (15 μg), and PmAldolase (40 μg). Step 

2 sialylation reactions were performed in duplicate at 30 °C for 10 min (with 0.10 μg of 

NmSiaDW) or 10 h (with 33 μg of NmSiaDW) in a total volume of 10 μL in a buffer (Tris-

HCl, 100 mM, pH 8.5) containing a reaction mixture from step 1 (2.5 μL), a 

galactosyltetrasaccharide G4 or analog (7N3-G4, 9N3-G4, 7NAc-G4, or 9NAc-G4) (1 mM), 

MgCl2 (10 mM), and NmSiaDW. Reactions were quenched by adding 10 μL of pre-chilled 

ethanol followed by incubation of the mixture at −20 °C for 30 min. Samples were analyzed 

using UHPLC with a Dionex CarboPac PA100 column (Thermo Scientific) and by Bruker 

UltraFlextreme MALDI-TOF in a negative mode.

OPME synthesis of Neu5Ac7N3α2–6Galα1–4Neu5AcαProNHCbz (7N3-S3).

A reaction mixture in a total volume of 10 mL containing Tris-HCl buffer (100 mM, pH 

8.5), galactosyldisaccharide G2 (150 mg, 0.22 mmol), ManNAc4N3 (75 mg, 0.30 mmol), 

sodium pyruvate (253 mg, 2.3 mmol), CTP disodium salt (218 mg, 0.41 mmol), MgCl2 (20 

mM), PmAldolase (20 mg), NmCSS (7 mg) and NmSiaDW (4 mg) was incubated in a 50 

mL centrifuge tube in a shaker (100 rpm) at 30 °C for 2 days. The reaction progress was 

monitored by UHPLC (EclipsePlus C18, Agilent, 5–12% Acetonitrile + 0.1% TFA in water 
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over 7 min, monitored at 215 nm). When an optimal yield was achieved, pre-chilled ethanol 

(10 mL) was added and the resulting mixture was incubated at 4 °C for 30 min. The 

precipitates were removed by centrifugation (4300 g) at 4 °C for 30 min. The supernatant 

was concentrated and purified by a C18 column using a CombiFlash Rf 200i system with a 

gradient (0–100% acetonitrile) of water with 0.1% TFA (v/v) and acetonitrile for elution. 

Fractions containing the product were collected, neutralized, concentrated, and further 

purified by a C18 column to produce 7N3-S3 as a sodium salt (120 mg, 55%).

1H NMR (800 MHz, D2O) δ 7.47–7.38 (m, 5H, Ar-H), 5.11 (s, 2H, O-CH2-Ar), 5.04 (d, J = 

3.9 Hz, 1H, H”−1), 4.03 (t, J = 10.2 Hz, 1H, H’−5), 4.00–3.74 (m, 12H), 3.74–3.59 (m, 7H), 

3.56 (dd, J = 9.2, 2.0 Hz, 1H, H”’−7), 3.50 (dt, J = 9.7, 6.2 Hz, 1H, O-CH2-CH2), 3.24–3.16 

(m, 2H, CH2-NH), 2.87 (dd, J = 12.5, 4.7 Hz, 1H, H’−3eq), 2.72 (dd, J = 12.5, 4.7 Hz, 1H, 

H”’−3eq), 2.07 (s, 3H, H’-CH3-CO), 2.04 (s, 3H, H”’-CH3-CO), 1.78–1.69 (m, 3H, O-CH2-

CH2-CH2-NH; H”’−3ax), 1.61 (t, J = 12.0 Hz, 1H, H’−3ax). 13C{1H} NMR (200 MHz, D2O) 

δ 174.53, 174.37, 173.34, 173.16, 158.37 (NH-COO), 136.56 (O-CH2-Ar), 128.75 (Ar), 

128.27 (Ar), 127.56 (Ar), 100.58 (C’−2), 100.51 (C”’−2), 94.87 (C”−1), 72.89, 72.15, 71.85, 

71.61, 70.97, 69.33, 69.17, 68.76, 68.37, 68.07, 67.83, 66.75 (O-CH2-Ar), 62.58, 62.54, 

62.40, 62.06 (O-CH2-CH2), 61.23 (C”’−7), 52.51 (C”’−5), 49.54 (C’−5), 39.88 (C”’−3), 

37.47 (CH2-NH), 36.78 (C’−3), 28.89 (O-CH2-CH2-CH2-NH), 22.43 (C’-CH3-CO), 22.11 

(C”’-CH3-CO). HRMS (ESI-Orbitrap) m/z: [M - H]− Calcd for C39H57N6O23 977.3475; 

found 977.3476.

Chemical synthesis of Neu5Ac7NAcα2–6Galα1–4Neu5AcαProNHCbz (7NAc-S3).

7N3-S3 (17 mg) was added to a round bottom flask (50 mL) containing saturated sodium 

bicarbonate aqueous solution (2 mL), thioacetic acid (200 μL) was then added drop-wisely. 

The reaction was heated in an oil bath under argon at 65 °C for 30 h. After completion of the 

reaction, the solvent was removed, and the compound was purified by silica gel 

chromatography using a mixed solvent of ethyl acetate:methanol (6:1 by volume) as an 

eluent and then by a C18 column in a CombiFlash Rf 200i system using CH3CN in H2O 

gradient as the elution solvent. 7NAc-S3 was obtained as a white solid (13 mg, 76% yield). 
1H NMR (800 MHz, D2O) δ 7.46–7.39 (m, 5H), 5.11 (s, 2H), 5.09 (d, J = 3.9 Hz, 1H), 4.05 

(t, J = 10.2 Hz, 1H), 3.98–3.92 (m, 3H), 3.89–3.84 (m, 5H), 3.82–3.76 (m, 3H), 3.74–3.68 

(m, 3H), 3.66–3.60 (m, 3H), 3.56 (ddd, J = 9.9, 8.4, 4.5 Hz, 2H), 3.52–3.46 (m, 2H), 3.20 (h, 

J = 7.3 Hz, 2H), 2.91 (dd, J = 12.6, 4.7 Hz, 1H), 2.74 (dd, J = 12.4, 4.6 Hz, 1H), 2.05 (s, 

3H), 1.99 (s, 3H), 1.94 (s, 3H), 1.75 (dd, J = 14.8, 9.0 Hz, 3H), 1.62 (t, J = 12.0 Hz, 1H).
13C{1H} NMR (200 MHz, D2O) δ 174.4, 173.9, 173.8, 173.3, 158.4, 136.6, 128.8, 128.3, 

127.6, 100.6, 100.2, 94.2, 72.4, 72.1, 71.8, 71.6, 71.6, 69.6, 69.2, 69.2, 68.6, 68.0, 67.9, 

66.8, 63.8, 62.5, 62.4, 62.1, 52.0, 49.5, 49.2, 40.2, 37.5, 36.4, 28.9, 22.3, 22.1, 21.9. HRMS 

(ESI-Orbitrap) m/z: [M - H]− Calcd for C41H61N4O24 993.3681; found 993.3696.

OPME synthesis of Neu5Ac9N3α2–6Galα1–4Neu5AcαProNHCbz (9N3-S3).

A reaction mixture in a total volume of 10 mL containing Tris-HCl buffer (100 mM, pH 8.5) 

galactosyldisaccharide G2 (150 mg, 0.22 mmol), ManNAc6N3 (75 mg, 0.30 mmol), sodium 

pyruvate (203 mg, 1.85 mmol), CTP disodium salt (194 mg, 0.37 mmol), MgCl2 (20 mM), 

PmAldolase (15 mg), NmCSS (5 mg), and NmSiaDW (4 mg) was incubated in a 50 mL 
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centrifuge tube in a shaker (100 rpm) at 30 °C for 2 days. Procedures for reaction progress 

monitoring, centrifugation, concentration, purification, collection, and neutralization were 

similar to that described above for 7N3-S3. 9N3-S3 was obtained as a sodium salt (98 mg, 

45%). 1H NMR (800 MHz, D2O) δ 7.46–7.37 (m, 5H, Ar-H), 5.11 (s, 2H, O-CH2-Ar), 5.05 

(d, J = 3.9 Hz, 1H, H”−1), 4.06–3.99 (m, 2H), 3.95 (d, J = 3.8 Hz, 1H, H”−3), 3.89–3.74 (m, 

8H), 3.73–3.60 (m, 8H), 3.58 (dd, J = 9.1, 1.8 Hz, 1H, H”’−7), 3.53–3.48 (m, 2H, O-CH2-

CH2; H”’−9), 3.24–3.16 (m, 2H, CH2-NH), 2.88 (dd, J = 12.5, 4.8 Hz, 1H, H’−3eq), 2.72 

(dd, J = 12.5, 4.7 Hz, 1H, H”’−3eq), 2.07 (s, 3H, H’-CH3-CO), 2.03 (s, 3H, H”’-CH3-CO), 

1.75 (p, J = 6.6 Hz, 2H, O-CH2-CH2-CH2-NH), 1.70 (t, J = 12.2 Hz, 1H, H”’−3ax), 1.61 (t, J 
= 12.0 Hz, 1H, H’−3ax). 13C{1H} NMR (200 MHz, D2O) δ 174.93, 174.50, 173.44, 173.30, 

158.37 (NH-COO), 136.56 (O-CH2-Ar), 128.75 (Ar), 128.27 (Ar), 127.56 (Ar), 100.58 (C’

−2), 100.23 (C”’−2), 94.68 (C”−1), 72.80, 72.28, 72.11, 71.84, 70.23, 69.51, 69.17, 68.96, 

68.87, 68.34, 68.03, 67.83, 66.75 (O-CH2-Ar), 62.87, 62.51, 62.05 (O-CH2-CH2), 53.03 

(C”’−9), 51.81 (C”’−5), 49.54 (C’−5), 40.04 (C”’−3), 37.47 (CH2-NH), 36.71 (C’−3), 28.89 

(O-CH2-CH2-CH2-NH), 22.39 (C’-CH3-CO), 22.01 (C”’-CH3-CO). HRMS (ESI-Orbitrap) 

m/z: [M - H]− Calcd for C39H57N6O23 977.3475; found 977.3479.

Chemical synthesis of Neu5Ac9NAcα2–6Galα1–4Neu5AcαProNHCbz (9NAc-S3).

9N3-S3 (14 mg) was added to a round bottom flask (50 mL) containing saturated sodium 

bicarbonate aqueous solution (2 mL), thioacetic acid (200 μL) was then added drop-wisely. 

Reaction conditions and procedures for concentration and purification were similar to that 

described above for 7NAc-S3. 9NAc-S3 was obtained as a white solid (12 mg, 85%). 1H 

NMR (800 MHz, D2O) δ 7.46–7.38 (m, 5H), 5.11 (s, 2H), 5.06 (d, J = 3.9 Hz, 1H), 4.03 (t, J 
= 10.2 Hz, 1H), 3.95 (d, J = 3.4 Hz, 1H), 3.90 (ddd, J = 9.0, 7.9, 2.9 Hz, 1H), 3.84 (dddd, J = 

26.4, 12.7, 7.7, 3.6 Hz, 6H), 3.80–3.75 (m, 2H), 3.71–3.60 (m, 7H), 3.55 (dd, J = 14.0, 2.9 

Hz, 1H), 3.52–3.49 (m, 1H), 3.47 (dd, J = 9.0, 1.8 Hz, 1H), 3.31 (dd, J = 14.1, 7.9 Hz, 1H), 

3.24 – 3.16 (m, 2H), 2.88 (dd, J = 12.5, 4.7 Hz, 1H), 2.72 (dd, J = 12.4, 4.7 Hz, 1H), 2.07 (s, 

3H), 2.03 (s, 3H), 2.02 (s, 3H), 1.75 (p, J = 6.6 Hz, 2H), 1.70 (t, J = 12.2 Hz, 1H), 1.62 (t, J 
= 12.0 Hz, 1H). 13C{1H} NMR (200 MHz, D2O) δ 174.9, 174.5, 174.4, 173.5, 158.4, 136.1, 

128.8, 128.3, 127.6, 100.3, 94.7, 72.8, 72.3, 72.1, 71.8, 70.0, 69.8, 69.5, 69.2, 68.9, 68.3, 

68.0, 67.8, 66.4, 62.8, 62.5, 62.1, 51.8, 49.1, 42.1, 40.0, 37.5, 36.7, 28.9, 22.4, 22.0, 21.8. 

HRMS (ESI-Orbitrap) m/z: [M - H]− Calcd for C41H61N4O24 993.3681; found 993.3691.

OPME synthesis of Galα1–4Neu5Ac7N3α2–6Galα1–4Neu5AcαProNHCbz (7N3-G4).

A reaction mixture in a total volume of 10 mL containing Tris-HCl buffer (100 mM, pH 

8.5), sialyltrisacchairde 7N3-S3 (50 mg, 0.05 mmol), galactose (12 mg, 0.07 mmol), ATP 

disodium salt (38 mg, 0.07 mmol), UTP trisodium salt (38 mg, 0.07 mmol), MgCl2 (20 

mM), SpGalK (1 mg), BLUSP (1 mg), PmPpA (1 mg), and NmSiaDW (0.5 mg) was 

incubated in a 50 mL centrifuge tube in a shaker (100 rpm) at 30 °C for 16 h. Procedures for 

reaction progress monitoring, centrifugation, concentration, purification, collection and 

neutralization were similar to that described above for 7N3-S3. 7N3-G4 was obtained as a 

sodium salt (54 mg, 93%). 1H NMR (800 MHz, D2O) δ 7.47–7.38 (m, 5H, Ar-H), 5.11 (s, 

2H, O-CH2-Ar), 5.08 (d, J = 4.0 Hz, 1H, H””−1), 5.05 (d, J = 3.9 Hz, 1H, H”−1), 4.07 (t, J = 

10.2 Hz, 1H, H”’−5), 4.03 (t, J = 10.3 Hz, 1H, H’−5), 4.00–3.90 (m, 5H), 3.89–3.59 (m, 

20H), 3.50 (dt, J = 9.7, 6.1 Hz, 1H, O-CH2-CH2), 3.25–3.15 (m, 2H, CH2-NH), 2.90–2.85 
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(dd, J = 12.8, 4.8 Hz, 2H, H’−3eq; H”’−3eq), 2.08 (s, 3H, H’-CH3-CO), 2.05 (s, 3H, H”’-

CH3-CO), 1.75 (p, J = 6.7 Hz, 2H, O-CH2-CH2-CH2-NH), 1.68 (t, J = 12.1 Hz, 1H, H”’

−3ax), 1.61 (t, J = 12.0 Hz, 1H, H’−3ax). 13C{1H} NMR (200 MHz, D2O) δ 174.51, 174.07, 

173.37, 172.81, 158.37 (NH-COO), 136.57 (O-CH2-Ar), 128.76 (Ar), 128.27 (Ar), 127.56 

(Ar), 100.58 (C’−2), 100.54 (C”’−2), 95.19 (C””−1), 94.62 (C”−1), 73.06, 72.56, 72.16, 

71.81, 71.43, 71.06, 70.79, 69.36, 69.22, 69.17, 69.03, 68.80, 67.99, 67.85, 67.75, 66.75 (O-

CH2-Ar), 62.77, 62.48, 62.40, 62.06 (O-CH2-CH2), 61.24 (C”’−7), 60.70, 50.34 (C”’−5), 

49.55 (C’−5), 37.48 (CH2-NH), 36.78 (C”’−3), 36.66 (C’−3), 28.90 (O-CH2-CH2-CH2-NH), 

22.43 (C’-CH3-CO), 22.15 (C”’-CH3-CO). HRMS (ESI-Orbitrap) m/z: [M - H]− Calcd for 

C45H67N6O28 1139.4003; found 1139.4007.

Chemical synthesis of Galα1–4Neu5Ac7NAcα2–6Galα1–4Neu5AcαProNHCbz (7NAc-G4).

To a round bottom flask containing 7N3-G4 (26 mg), saturated sodium bicarbonate solution 

(3 mL) was added, 300 μL of thioacetic acid was then added drop-wisely. Reaction 

conditions and procedures for concentration and purification were similar to that described 

above for 7NAc-S3. 7NAc-G4 was obtained as a white solid (20 mg, 75%). 1H NMR (800 

MHz, D2O) δ 7.51–7.34 (m, 5H), 5.11 (s, 2H), 5.08 (d, J = 3.9 Hz, 1H), 5.07 (d, J = 4.0 Hz, 

1H), 4.07–3.99 (m, 2H), 3.96–3.85 (m, 7H), 3.85–3.76 (m, 6H), 3.76–3.60 (m, 11H), 3.55–

3.46 (m, 2H), 3.28–3.16 (m, 2H), 2.90 (ddd, J = 12.0, 6.9, 4.7 Hz, 2H), 2.06 (s, 3H), 1.99 (s, 

3H), 1.95 (s, 3H), 1.75 (p, J = 6.8 Hz, 2H), 1.68 (t, J = 12.0 Hz, 1H), 1.62 (t, J = 12.0 Hz, 

1H). 13C{1H} NMR (200 MHz, D2O) δ 174.4, 173.8, 173.7, 173.3, 172.9, 158.4, 136.6, 

128.8, 128.3, 127.6, 100.4, 94.9, 94.3, 72.8, 72.5, 72.1, 71.8, 71.4, 71.4, 71.0, 69.6, 69.3, 

69.2, 69.2, 69.0, 68.0, 67.9, 67.9, 66.8, 63.9, 62.5, 62.4, 62.1, 60.7, 49.8, 49.6, 49.3, 37.5, 

37.0, 36.5, 28.9, 22.3, 22.1, 21.8. HRMS (ESI-Orbitrap) m/z: [M - H]− Calcd for 

C47H71N4O29 1155.4209; found 1155.4214.

OPME synthesis of Galα1–4Neu5Ac9N3α2–6Galα1–4Neu5AcαProNHCbz (9N3-G4).

A reaction mixture in a total volume of 10 mL containing Tris-HCl buffer (100 mM, pH 

8.5), sialyltrisacchairde 9N3-S3 (50 mg, 0.05 mmol), galactose (12 mg, 0.07 mmol), ATP 

disodium salt (38 mg, 0.07 mmol), UTP trisodium salt (38 mg, 0.07 mmol), MgCl2 (20 

mM), SpGalK (1 mg), BLUSP (1 mg), PmPpA (1 mg), and NmSiaDW (2 mg) was incubated 

in a 50 mL centrifuge tube in a shaker (100 rpm) at 30 °C for 2 days. Procedures for reaction 

progress monitoring, centrifugation, concentration, purification, collection and neutralization 

were similar to that described above for 7N3-S3. 9N3-G4 was obtained as a sodium salt (55 

mg, 95%). 1H NMR (800 MHz, D2O) δ 7.46–7.37 (m, 5H, Ar-H), 5.10 (d, J = 4.1 Hz, 3H, 

O-CH2-Ar; H””−1), 5.06 (d, J = 3.9 Hz, 1H, H”−1), 4.08 (td, J = 10.3, 5.5 Hz, 2H, H’−5; 

H”’−5), 4.01 (ddd, J = 8.9, 6.0, 2.7 Hz, 1H), 3.98–3.53 (m, 24H), 3.49 (dd, J = 13.2, 6.0 Hz, 

1H, H”’−9), 3.22–3.18 (m, 2H, CH2-NH), 2.88–2.82 (m, 2H,, H’−3eq; H”’−3eq), 2.06 (s, 3H, 

H’-CH3-CO), 2.03 (s, 3H, H”’-CH3-CO), 1.78–1.69 (m, 4H, O-CH2-CH2-CH2-NH; H”’

−3ax; H’−3ax). 13C{1H} NMR (200 MHz, D2O) δ 174.47, 174.33, 171.77, 171.37, 158.35 

(NH-COO), 136.54 (O-CH2-Ar), 128.76 (Ar), 128.29 (Ar), 127.57 (Ar), 99.42 (C’−2), 99.23 

(C”’−2), 94.72 (C””−1), 94.27 (C”−1), 72.38, 72.26, 72.15, 71.61, 71.05, 70.96, 69.77, 

69.54, 69.32, 69.25, 69.06, 69.02, 68.67, 68.01, 67.88, 67.78, 66.77 (O-CH2-Ar), 63.29, 

62.80, 62.06 (O-CH2-CH2), 60.72, 53.43 (C”’−9), 49.36 (C”’−5), 49.31 (C’−5),, 37.37 

(CH2-NH), 36.01 (C”’−3) 35.56 (C’−3), 28.77 (O-CH2-CH2-CH2-NH), 22.30 (C’-CH3-CO), 
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22.11 (C”’-CH3-CO). HRMS (ESI-Orbitrap) m/z: [M - H]− Calcd for C45H67N6O28 

1139.4003; found 1139.4021.

Chemical synthesis of Galα1–4Neu5Ac9NAcα2–6Galα1–4Neu5AcαProNHCbz (9NAc-G4).

To a round bottom flask containing 9N3-G4 (26 mg), saturated sodium bicarbonate solution 

(3 mL) was added, and then 300 μL of thioacetic acid was added drop-wisely. Reaction 

conditions and procedures for concentration and purification were similar to that described 

above for 7NAc-S3. 9NAc-G4 was obtained as a white solid (21 mg, 80%). 1H NMR (800 

MHz, D2O) δ 7.47–7.37 (m, 5H), 5.11 (s, 2H), 5.08 (d, J = 4.0 Hz, 1H), 5.06 (d, J = 3.9 Hz, 

1H), 4.03 (td, J = 10.2, 4.5 Hz, 2H), 3.96 (ddd, J = 13.9, 3.4, 1.2 Hz, 2H), 3.92 (ddd, J = 9.0, 

8.0, 2.9 Hz, 1H), 3.87–3.75 (m, 10H), 3.74–3.67 (m, 7H), 3.67–3.61 (m, 2H), 3.57 (dd, J = 

14.1, 2.9 Hz, 1H), 3.50 (dt, J = 12.5, 4.4 Hz, 2H), 3.30 (dd, J = 14.1, 8.0 Hz, 1H), 3.20 (q, J 
= 6.8 Hz, 2H), 2.88 (ddd, J = 17.3, 12.5, 4.6 Hz, 2H), 2.07 (s, 3H), 2.03 (s, 3H), 2.02 (s, 3H), 

1.75 (p, J = 6.6 Hz, 2H), 1.66 (t, J = 12.0 Hz, 1H), 1.61 (t, J = 12.0 Hz, 1H). 13C{1H} NMR 

(200 MHz, D2O) δ 174.5, 174.5, 174.3, 173.4, 173.1, 158.4, 136.6, 128.8, 128.3, 127.6, 

100.6, 100.3, 95.0, 94.5, 73.2, 72.6, 72.1, 72.1, 71.8, 71.0, 70.1, 69.7, 69.5, 69.2, 69.0, 69.0, 

68.0, 67.9, 67.8, 66.8, 63.0, 62.5, 62.1, 60.7, 49.6, 49.5, 42.1, 37.5, 36.7, 36.6, 28.9, 22.4, 

22.1, 21.8. HRMS (ESI-Orbitrap) m/z: [M - H]− Calcd for C47H71N4O29 1155.4209; found 

1155.4223.
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Figure 1. 
Structure of N. meningitidis serogroup W (NmW) capsular polysaccharide (CPS) containing 

O-acetylation at C7 or C9 of N-acetylneuraminic acid (Neu5Ac).
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Scheme 1. 
Schematic illustration of the reactions for one-pot two-step donor substrate specificity 

studies of the α2–6-sialyltransferase activity of NmSiaDW (in Step 2) using CMP-sialic 

acids and analogs generated in situ in Step 1.
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Scheme 2. 
One-pot multienzyme (OPME) chemoenzymatic systems for the formation of NmW CPS 

trisaccharides, tetrasaccharides, pentasaccharides, and their azido or N-acetyl analogs.
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Table 1.

Results of donor substrate specificity studies for the α2–6-sialyltransferase activity of NmSiaDW using in situ 

generated CMP-sialic acids and analogs.

Donor precursor

Percentage conversion (%)

CMP-Sialic acid
Sialyltransfer

10 μg/mL, 10 min 3.3 mg/mL, 10 h

1 Neu5Ac aCMP-Neu5Ac (Quant.) 30±0.3 Quant.

2 Neu5Gc aCMP-Neu5Gc (Quant.) 32±2 Quant.

3 Neu5Ac8OMe aCMP-Neu5Ac8OMe (Quant.) 0 83±7

4 Neu4,5Ac2
a,cCMP-Neu4,5Ac2 (Quant.) 0 0

5 Neu5,9Ac2
a,cCMP-Neu5,9Ac2 (Quant.) 0 0

6 Kdn aCMP-Kdn (Quant.) 0 98±2

7 ManNAz bCMP-Neu5NAz (Quant.) 28±2 Quant.

8 ManNAc4N3
bCMP-Neu5Ac7N3 (Quant.) 0 78±3

9 ManNAc6N3
bCMP-Neu5Ac9N3 (Quant.) 0 90±2

10 ManNAc6NAc bCMP-Neu5Ac9NAc (Quant.) 0 18±1

11 Man2N3
bCMP-Neu5N3 (Quant.) 0 64±1

Step 1 of the reaction was carried out with a monosaccharide (1–11, 1.2 equiv.) in the presence of NmCSS (1.5 mg/mL) and CTP (1 equiv.) for 4 h 
awithout (for 1–6) or bwith (for 7–11) PmAldolase (4 mg/mL) and sodium pyruvate (5 equiv.). Tris-HCl (pH 8.5) was used for all reactions except 

for entries 4 and 5 where cTris-HCl (pH 7.5) was used to minimize de-O-acetylation which would take place at pH 8.5.
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Table 2.

Results of the acceptor substrate specificity studies for the α1–4-galactosyltransferase activity of NmSiaDW 

using sialyltrisaccharides as potential acceptors and UDP-Gal as the donor.

Substrates Percentage conversion (%)

20 μg/mL, 10 min 1.2 mg/mL, 10 h

1 S3 22±1 Quant.

2 7N3-S3 11±1 Quant.

3 9N3-S3 0 Quant.

4 7NAc-S3 0 0

5 9NAc-S3 0 68±3
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Table 3.

Substrate specificity study for the α2–6-sialyltransferase activity of NmSiaDW using 

galactosyltetrasaccharides as well as Neu5Ac, ManNAc4N3, and ManNAc6N3.

Acceptor

Percentage conversion (%)

CMP-Sialic acid
Transferase reaction

10 μg/mL, 10 min 3.3 mg/mL, 10 h

1 G4

aCMP-Neu5Ac (Quant.)

35±0.1 97±1

2 7N3-G4 13±1 83±1

3 9N3-G4 14±0.2 89±3

4 7NAc-G4 0 85±2

5 9NAc-G4 0 97±1

6 G4

bCMP-Neu5Ac7N3 (Quant.)

0 90±1

7 7N3-G4 0 82±2

8 9N3-G4 0 36±1

9 7NAc-G4 0 0

10 9NAc-G4 0 0

11 G4

bCMP-Neu5Ac9N3 (Quant.)

0 97±1

12 7N3-G4 0 83±2

13 9N3-G4 0 31±1

14 7NAc-G4 0 0

15 9NAc-G4 0 0

Step 1 of the reaction was carried out with aNeu5Ac, bManNAc4N3, or bManNAc6N3 (1.2 equiv.) in the presence of NmCSS (1.5 mg/mL), CTP 

(1 equiv.) and Tris-HCl (pH 8.5) awithout or bwith PmAldolase (4 mg/mL) and sodium pyruvate (5 equiv.).
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