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Abstract

The direct analysis of 3D Optical Coherence Tomography (OCT) volumes enables deep learning 

models (DL) to learn spatial structural information and discover new bio-markers that are relevant 

to glaucoma. Down-sampling 3D input volumes is the state-of-art solution to accommodate for the 

limited number of training volumes as well as the available computing resources. However, this 

limits the network’s ability to learn from small retinal structures in OCT volumes. In this paper, 

our goal is to improve the performance by providing guidance to DL model during training in 

order to learn from finer ocular structures in 3D OCT volumes. Therefore, we propose an end-to-

end attention guided 3D DL model for glaucoma detection and estimating visual function from 

retinal structures. The model consists of three pathways with the same network architecture but 

different inputs. One input is the original 3D-OCT cube and the other two are computed during 

training guided by the 3D gradient class activation heatmaps. Each pathway outputs the class-label 

and the whole model is trained concurrently to minimize the sum of losses from three pathways. 

The final output is obtained by fusing the predictions of the three pathways. Also, to explore the 

robustness and generalizability of the proposed model, we apply the model on a classification task 

for glaucoma detection as well as a regression task to estimate visual field index (VFI) (a value 

between 0 and 100). A 5-fold cross-validation with a total of 3782 and 10,370 OCT scans is used 

to train and evaluate the classification and regression models, respectively. The glaucoma detection 
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model achieved an area under the curve (AUC) of 93.8% compared with 86.8% for a baseline 

model without the attention-guided component. The model also outperformed six different feature 

based machine learning approaches that use scanner computed measurements for training. Further, 

we also assessed the contribution of different retinal layers that are relevant to glaucoma. The VFI 

estimation model achieved a Pearson correlation and median absolute error of 0.75 and 3.6%, 

respectively, for a test set of size 3100 cubes.
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I. INTRODUCTION

GLaucoma is the leading cause of irreversible blindness worldwide. The number of 

worldwide glaucoma patients, aged 40–80 years, is estimated to be approximately 80 million 

in 2020 with about 20 million increase since 2010 [1]. Glaucoma is associated with optic 

nerve damage, functional vision loss and death of retinal ganglion cells [2]. Structural and 

functional methods are utilized jointly to determine the severity of glaucoma and monitor its 

progression [3]. One of the functional tests utilized is called visual field test (VFT), and it is 

used to evaluate vision loss due to glaucoma and other optic nerve diseases [4]. VFT, 

however, is costly, time-consuming and shows poor repeatability as it is greatly affected by 

cataracts, visual acuity, glaucoma medications, severity of glaucoma, learning effect, 

distraction and other factors [5], [6].

On the other hand, structural measurements are objective and based on the imaging of the 

optic nerve head (ONH), macula and surrounding regions. It enables the quantification of 

retinal structures relevant to glaucoma such as the retinal nerve fiber layer (RNFL) and 

ganglion cell-inner plexiform layer (GCIPL) complex [3]. Many researchers have 

investigated the relationships between visual field test results and structural measures that 

are produced by optical coherence tomography (OCT) scanners [7]–[9]. For instance in [7], 

[8], RNFL thickness was found to be linearly related to visual field loss at advanced disease 

stage. However, finding such relationship is very challenging as sometimes the optic nerve 

changes before the visual field loss [10]–[13], and other times visual field loss occurs prior 

to structural damage at the optic nerve [14].

Deep learning (DL) approaches have been previously used with fundus 2D-colour images 

for ocular disease detection and diagnosis [15], [16]. This includes segmentation of retinal 

vessels [17]–[20], optic disc and optic cup segmentation [18], [21], [22], classification of 

glaucoma [23]–[28], and image registration [29]. A more recent 3D imaging modality is the 

spectral-domain OCT technology that provides clinicians with high-resolution images and 

quantified measurements of the retinal structures. In clinics, OCT scans are the standard for 

eye care and are employed for diagnosing and monitoring various retinal diseases, evaluating 

progression, and assessing response to therapy [30]. This technology enables the use of 3D 

DL techniques to learn new structural parameters useful for the diagnosis and management 

of glaucoma, quantify its relevant ocular structures (such as the individual retinal layers, 
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optic nerve head, choroid, and lamina cribrosa) [31], and investigate whether functional 

measurements such as visual field index (VFI) or mean deviation (MD) can be inferred from 

structure (i.e. OCT volumes).

Further, the literature shows that most of DL initiatives in OCT glaucoma detection have 

primarily depended on scanner measurements of different retinal structures such as the 

thickness of RNFL and the ganglion cell complex (GCC), limiting the generalizability of DL 

models to measurements from different commercial scanners since they are calculated 

differently. This also limits the ability of DL models to discover new structural biomarkers 

which are not quantified by the scanners. For example, in [32], glaucoma was diagnosed by 

training DL model using thicknesses maps for both RNFL and GCIPL with an AUC of 

93.7%. Also in [33], AlexNet pretrained model [34] was used for feature extraction using 

probability and thickness maps of RNFL and GCIPL layers, followed by random forest 

classifier [35] to discriminate between healthy and glaucomatous eyes. The best 

performance was achieved using RNFL probability map with an accuracy of 93.1%. In 

another study by An et al. [36], VGG19-based transfer learning model was performed to 

detect glaucoma using both thickness and deviation maps for each of RNFL and GCC 

layers. Then, a random forest classifier combining features from different inputs achieved an 

AUC of 96%. Further, Wang et al. [37] proposed S-D net that has two parts, S-net for 

segmentation of 6 retinal layers and D-net for the diagnosis of glaucoma according to RNFL 

thickness vector of length 1024 calculated from the segmentation results. The method 

achieved a dice coefficient of 0.959 for S-net and an accuracy of 85.4% for D-net.

The only end-to-end DL model that relied on the 3D scans as an input was presented by 

Maetschke et al. [38]. A 3D-CNN model composed of 5 convolutional layers with ReLU 

activation, batch-normalization using input volumes that were downsampled by a factor of 

nearly 80 (64×64×128 (b-scans×a-scans×depth) vs original size of 200×200×1024). The 

highest achieved AUC was 94% which outperformed classical machine learning (ML) 

techniques. In [39], we extended the 3D-CNN model proposed by Maetschke et al. [38] to 

investigate whether utilizing larger input volumes would improve the network performance 

or not. We used an input volumes of size 128×128×256 to train a network with 8 

convolutional layers. We obtained an AUC of 97% using the same dataset used in [38]. 

Further, in [40], Maetschke et al. extended his work to assess structural-functional 

correlation using 3D-CNN model. Specifically, VFI and MD functional measures were 

estimated directly from 3D raw OCT scans. The highest achieved Pearson Correlation (ρ) 

was 0.88 compared with 0.74 for the best performing classical ML algorithms.

Another important aspect is the clinical interpretability and transparency [41] of the 

developed DL models. In this regard, class activation maps (CAMs) [42] and gradient-

weighted class activation maps (grad-CAMs) [43] have been recently proposed to reveal 

insights into the decisions of deep learning models. Both of these techniques identify areas 

of the images that the network relied on heavily to generate the classification. However, 

CAM requires a specific network architecture, namely the use of a global average pooling 

layer prior to the output layer. Grad-CAM is a generalized form of CAM and can be used 

with any CNN-based architecture without any additional requirements.
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Further, the visualization of DL models for glaucoma detection has been studied in three 

papers [36], [38], [39]. An et al. [36] identified pathologic regions in 2D thickness maps 

using grad-CAM, which have shown to be in agreement with the important decision making 

regions used by physicians. Also, Maetschke et al. [38] implemented 3D-CAM to identify 

the important regions for detecting glaucoma in 3D OCT volumes. The maps were however, 

in a coarse resolution that matched the downsampled input image. This method also 

employed specific architecture changes to accommodate the requirements of CAM 

generation. It is also noteworthy that neither of these approaches analyzed the CAMs in any 

systematic fashion, and merely used the heat maps to validate findings in a small number of 

images that were qualitatively assessed. Lastly, in our previous work [39], we used 3D grad-

CAM to visualize the important decision regions in a higher resolution than was available 

before. One of the conducted experiments was to quantitatively validate grad-CAM results 

for 3D OCT volumes by occluding important decision regions identified in the heat maps 

and assessing the impact of this on the performance of the model. Occluding the most 

important decision regions in grad-CAM heatmaps dropped the performance by nearly 40% 

while occluding the least important areas only resutled in a 4% drop in the performance. The 

paper also included a quantitative comparison between CAM and grad-CAM heatmaps with 

the later significantly outperforming CAM heatmaps. This has motivated us to use grad-

CAM heatmaps to provide guidance to DL model during training and improve the 

performance by learning the finer ocular structures in 3D OCT volumes associated with 

disease as well as visual function.

In this paper, we propose an end-to-end attention guided DL framework for glaucoma 

detection and estimating VFI. The model is trained directly on 3D volumes using three 

inputs, one is the original 3D-OCT cube and the other two are computed during training 

guided by 3D grad-CAM heatmaps [43]. The model consists of three pathways that have the 

same network architecture. First pathway uses the original volumes as an input after 

downsampling to size 256×64×64. Then grad-CAM heatmaps are generated to identify 

retinal structures in the original volumes, which the network relies on for detecting 

glaucoma. Occlusion of the less important retinal structures in original cubes is used as an 

input for the second pathway. The input for the third pathway is obtained by cropping the 

region with the most important structures. The contribution of this work can be summarized 

as follows:

• The proposed approach continues to avoid the dependency on segmented 

structural thicknesses through direct analysis of raw OCT scans, and also 

improves on previously approached techniques by focusing on the important 

decision areas, identified by grad-CAM heatmaps, to learn more about fine 

ocular structures.

• The performance of the model is evaluated for two different tasks: i) A 

classification task for glaucoma detection and ii) A regression task for VFI 

functional parameter estimation.

• The proposed DL framework provides analysis of 3D attention maps in a higher 

resolution than was available before. This facilitates the understanding and 

interpretation of the network’s decision for glaucoma detection and diagnosis.
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• For the first time, we provide a quantitative clinical assessment for the 

contribution of different ocular structures that the network relied on when 

detecting glaucoma.

• Intensive experiments are conducted to demonstrate the effectiveness of the 

proposed approach and it was compared with another 3D-CNN and classical ML 

approaches trained on scanner computed measurements.

The rest of the paper is organized as follows. Section II explains the proposed network 

architecture and DL framework. In Sections III and IV, we describe the dataset and 

experimental setup used for training and testing each of the glaucoma detection and VFI 

estimation models, respectively. Section V discusses the experimental results and the 

performed clinical assessment techniques. Finally, we conclude and outline future research 

directions in Section VI.

II. ATTENTION-GUIDED NETWORK ARCHITECTURE

The framework of the proposed attention-guided DL model (AG-OCT) is presented in 

Figure 1. The model consists of three pathways called global, focused and local OCT 

structure pathways. They have same network architecture but different inputs with resolution 

of 256×64×64 (depth×b-scans×a-scans). Also, the first two pathways share same trainable 

weights, while the third one has its own learned weights. This is because the first two 

pathways have the same field of view, where the inputs are centered on the ONH and cover 

an area of 6×6×2 mm3. While the third pathway has a smaller field of view, i.e. different 

coverage area, as it focuses on a small region of the original area. The network architecture 

contains eight 3D-convolutional layers, each is followed by ReLU activation [44], batch-

normalization [45] and max-pooling in order. The 3D convolutional layers have incremental 

number of filters of 16-16-32-32-32-32-64-128 with kernel size of 3, and stride of 1 for all 

layers. Also, 3D max-pooling layers have size of 2 and stride of 2. This is followed by 

global average pooling layer and a fully-connected output layer in order). Details about each 

pathway and the model loss are provided in the following sub-sections.

A. Pathway#1: Global OCT Structure

This pathway learns the global OCT retinal structures that are relevant to the target task, i.e. 

glaucoma or VFI estimation. It receives its input by downsampling the original 3D-OCT 

cubes to size 256 ×64×64. We implement 3D grad-CAM to generate heatmaps that highlight 

the important decision areas in input volumes, following the explanation provided in [43]. In 

this context, grad-CAM heatmap is compute for conv#2 feature map that is 128×32×32 )

(Lay. 2 in Figure 1). The generated heatmap is then used to derive the input of the other two 

pathways during training. We do not use CAM as it restricts the network architecture design. 

Further, CAM would generate heatmap visualization only for conv#8 feature map, which in 

our case has a size of 4×2×2. Hence, when resizing and overlaying on the original cube of 

size 1024×200×200 (depth×b-scans×a-scans) will not provide any meaningful results.
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B. Pathway#2: Focused OCT Structure

The aim of the second pathway is to learn the correct output (e.g. glaucoma or healthy) using 

occluded cubes. The least important regions in the original cube are hidden, guiding the 

network to learn the location of the important decision areas. The rational is that if grad-

CAM yields the correct decision areas, then hiding the least important decision areas should 

not have a great impact on the network performance results, since these areas are not 

important and most likely refer to noise and/or redundant information that are contained in 

the OCT volumes.

To do this, the input volumes are occluded by zeroing the rows and columns with the lowest 

heatmap weights. Specifically, we extract a set of indices with the lowest weights per each 

dimension using average pooling for spatial dimension reduction. For example, a heat map 

with size 1024×200×200 is reduced to a vector of size 1024×1×1 by averaging the values of 

each 200×200 map to get a rank of weights for the first dimension, i.e. depth. The indices of 

the lowest x values (i.e. weights) in the resultant vector represent the least important region 

for this dimension. We apply this process on the b-scans and depth dimensions with x values 

of 64 and 256 respectively (both values are chosen to match the desired input shape of the 

network), while we consider the 200 a-scan columns are all important. This means that a 

fixed region of size 256×64×200 is occluded for each volume in its original resolution. The 

occluded-cube is downsampled to sizefor the second pathway of the network.256×64×64 

and is used as input

C. Pathway#3: Local OCT Structure

The third pathway enables the network to learn more about the local structures in the OCT 

volumes by retaining detail and image resolution in the important areas (i.e. a close up zoom 

into the important ocular structures). In this context, we use the generated grad-CAM 

heatmap to find the most important 3D sub-region in the input volume, which we call the 

attention-cropped cube. Specifically, we performed spatial dimension reduction method used 

in the second pathway to select the most important 64 b-scans from a total of 200 b-scans 

(i.e. rows with the highest weights along this dimension). This means that more than two-

third of the voxels of input volumes are discarded. For example, given a cube of size 

1024×200×200, the extracted attention-cropped cube size is 1024×64×200, while the size of 

the region which is taken away is 1024×136×200. The attention-cropped cube is also 

downsampled to size 256×64×64 and is used as an input for the third pathway.

D. Training Loss

The three pathways of the proposed model are trained concurrently, so that the attention 

maps are learned jointly. Each pathway has its prediction vector and loss as shown in Figure 

1. The objective of the training is to minimize the total loss described in Equation 1, that is 

the sum of the three pathway losses, in addition to a regularization loss term to avoid 

overfitting during training.

ℒ = ℒ Y p1′′ Y + ℒ Y p2′′ Y + ℒ Y p3′′ Y + ∥ W ∥2
2

(1)

George et al. Page 6

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2021 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Where Y p1′
′ Y p2′

′ Y p3′  are the predictions of pathway #1, 2, and 3 in order. Y is the ground truth 

vector and ℒ is the loss and ∥ W ∥2
2 is the regularization loss term for convolutional layers.

III. GLAUCOMA DETECTION

In this section, we explain how the proposed AG-OCT model is used for glaucoma 

detection. The model is trained to classify an OCT volume as healthy or glaucoma. The 

output has a value of [1,0] for healthy class and [0,1] for glaucoma class.

Dataset.

The dataset contains 3782 OCT scans from both eyes of 555 individuals, acquired on a 

Cirrus SD-OCT Scanner (Zeiss; Dublin, CA, USA) over multiple visits. The dataset has 427 

healthy scans from 109 individuals and 3355 glaucoma scans from 446 individuals with 

primary open angle glaucoma (POAG). The clinical definition of healthy/glaucoma is made 

based on the visual field test results. The scans are centered on the ONH and has 

200×200×1024 (a-scans×b-scans×depth) voxels per cube covering an area of 6×6×2 mm3. 

This study is an observational study that is conducted in accordance with the tenets of the 

Declaration of Helsinki and the Healthy Insurance Portability and Accountability Act. The 

Institutional Review Board of New York University and the University of Pittsburgh 

approved the study, and all subjects give written consent before participation.

Training and Testing.

We use a fully-connected softmax layer with 2 units for FC prediction layer (see Figure 1). 

The 3782 OCT volumes are split into a training, validation and testing subsets, containing 

3031 (healthy: 325, POAG: 2706), 379 (healthy: 47, POAG: 332) and 372 (healthy: 55, 

POAG: 317) scans, respectively. OCT scans belonging to the same patient are included in 

only one of the three splits. The proposed model is trained using Adam optimizer with a 

learning rate of 1e−4. We also use weighted cross entropy loss [46] to avoid biased training 

due to the class size imbalance in the data. Training is performed with a batch of size 12 

through 100 epochs. To avoid overfitting during training, we use L2 regularization loss with 

λ = 0.0001 and drop out layer with probability of 0.3. After each epoch, the area under the 

curve (AUC) was computed for the validation set, and the network is saved if an 

improvement in the AUC is observed.

Evaluation.

For the evaluation of the proposed model, five statistical performance measures are used, 

namely, AUC, accuracy, Matthews correlation coefficient (MCC), recall, precision and F1-

score. Performance measures are computed using predictions from each pathway separately 

as well as the fusion of 3-pathway predictions using min, max and average operations. For 

reliable and stable results, we repeat the training 5 times and report the average performance 

measures for the five folds.
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IV. STRUCTURAL-FUNCTIONAL CORRELATION

The purpose of this section is to explore the generalizability and robustness of our attention-

guided model (AG-OCT). To do this, we train the AG-OCT model to estimate the VFI 

parameter from structural data (i.e. OCT volumes), which is very important since clinicians 

use both structural and functional data to monitor glaucoma progression. The output is a 

value between 0 and 100.

Dataset.

We use a large dataset consisting of 10,370 ONH OCT volumes and their corresponding 

visual field test results. Structural OCT scans are captured from 1678 individuals across 

multiple visits using Cirrus SD-OCT scanners. Scans with signal strength less than 6 are 

discarded. The visual field test is performed using the Swedish interactive thresholding 

algorithm 24–2 perimetry (SITA standard; Humphrey Field Analyzer; Zeiss). The VFI can 

range from 0% (perimetrically blind field) to 100% (normal visual field). Similar to the 

previous cohort, all subjects give written consent before participation.

Training and Testing.

We trained and evaluated the regression model using the same architecture and experimental 

setup as the glaucoma detection experiment with three main changes. Firstly, we replace the 

last softmax layer with one unit fully connected layer with linear activation. Secondly, the 

mean squared error loss is used during training instead of weighted cross entropy. Lastly, we 

employ polynomial regression [47] for combining the 3-pathway predictions that is trained 

using same training data as the AG-OCT model (i.e. 70% of data) and the rest is used for 

testing (i.e. 30%, 3100 scans). Also, hyperparameter selection for polynomial degree is 

performed using Grid-search with 10-fold cross validation.

Evaluation.

For the evaluation, five evaluation metrics are computed namely, root mean squared error 

(RMSE), mean absolute error (MAE), median absolute error (MDAE), Pearson’s correlation 

coefficient (ρ) and Spearman’s rank correlation coefficient (r).

V. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed attention-guided DL model is implemented using Python and TensorFlow [48] 

on a single V100 GPU. We divide our results and experiments into five sections. In section 

V-A, we report the performance measures for glaucoma detection. In section V-B, we 

conduct different experiments to analyze the performance of our AG-OCT model. This 

followed by detailed clinical analysis of grad-CAM attention maps in section V-C. In section 

V-D, we provide comparative results with state-of-art approaches including classical ML 

techniques. Finally, in section V-E, we present the regression model results for VFI 

estimation.
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A. Glaucoma Detection

Table I has the performance measures for glaucoma detection using the proposed attention-

guided model. The table shows that the average of the 3-pathway predictions has the best 

performance with an AUC of 93.8%. Interestingly, the second best performance comes from 

pathway #2, i.e. the occluded cube with an AUC of 93.0%. This means that hiding some of 

the least important regions in 3D cubes improves the performance, because those regions 

might refer to noisy or redundant areas in 3D volume. This is followed by predictions from 

max-fusion, min-fusion, pathway #3, and pathway #1 with AUCs of 92.8, 92.2, 91.2, and 

86.7% in order. Further, to examine the computational complexity of the proposed 

framework, we compute the average and standard deviation for execution time of the 

validation and test sets with 23.4± 2.2 and 22.7±3.8 (in seconds), respectively, for a batch of 

size 12. This means that the network takes less than 2 seconds for one cube to be processed.

B. Quantitative Analysis Results

To demonstrate the influence of attention maps on the performance of the AG-OCT model, 

we trained one branch of our proposed framework, where the input is the downsampled 

original volumes and the output is the prediction label (i.e. glaucoma or healthy). This 

means that we trained pathway #1 only without the attention-guided branches, which we 

used as our baseline model. Table I reported an AUC of 86.8% for the baseline model that is 

very close to the performance of pathway #1 when it is learned jointly with Pathway #2 and 

3. This confirms that training the network without the guidance of grad-CAM heatmaps has 

approximately 7% and 3% drop in the AUC and F1-score measures respectively.

Further, Figure 2 displays the training loss curves for each pathway separately as well as the 

total training loss. Loss of pathway#1 reached its minimum at epoch 20 while other losses 

decreased further until epoch 40. Also, the total loss was highly influenced by pathway#2 

loss. This also clarifies why pathway#2 predictions has the best performance for glaucoma 

detection. This also suggests that weighting losses of 3-pathways might guide the network to 

pay more attention to the branch with slow convergence.

We also examined the impact of sharing weights across branches/pathways by running 3 

experiments that use same data split and different settings for sharing weights, 

colorbluenamely: i) full sharing: the 3-pathways share the same weights, ii) no sharing: each 

pathway learned its own weights, and iii) partial sharing: only pathway#1 and pathway#2 

share the same weights, while pathway #3 had its own weights. Table II reports the 

performance measures for the 3 experiments, where separate weights for each pathway has 

the lowest performance, while partial sharing recorded the highest AUCs. The results 

confirm our hypothesis for sharing weights between first two pathways since they share the 

same field of view, where the inputs are centered on the ONH and cover an area of 6×6×2 

mm3. While the third pathway has a smaller field of view, i.e. different coverage area, as it 

focuses on a small region of the originally scanned area.

Table II also shows the average fusion results for all possible pairs of pathways namely, 

pathways# 1&2, 1&3 and 2&3. From the table, there is a very slight performance difference 

for average fusion of 3-pathways versus 2-pathways. More importantly, dropping the 
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attention map pathway from the fusion (i.e. pathway# 3) resulted in approximately 2% 

decrease in the recorded performance measures. While, fusion of pathway# 2&3 had the 

highest performance measures.

C. Clinical Analysis of Attention Maps for Glaucoma

In this section, we present detailed analysis of grad-CAM heatmaps to give insights about 

the clinical biomarkers that our AG-OCT model relies on for glaucoma detection. This is 

very essential not only to understand the network decision, but also to increase reliability of 

DL approaches for direct analysis of 3D-OCT scans by showing agreement of decision 

making process between DL approaches and clinicians. Figure 3 visualizes the important 

retinal structures for both healthy and glaucoma cases by overlaying grad-CAM heatmap on 

the original volumes. The figure displays the overlaid heatmaps for both the enface/top view 

as well as the b-scans/side view. It is clear from the figure that the AG-OCT model depends 

on the OCT retinal layers region for detecting glaucoma.

Further, to show which retinal structure/layer has the greatest impact, we quantify the 

presence of each retinal layer in the generated grad-CAM heatmaps. If the presence of a 

specific retinal layer, i.e bio-marker, is high, then this means that our model depends on this 

retinal structure for detecting glaucoma. Visualization and abbreviation of retinal layers are 

presented in Figure 4. In this regard, we adopt the OCT retinal layers segmentation method 

described in [49], to classify each 2D b-scan slice into 9 classes, namely: background and 8 

different retinal layers, namely RNFL, GCL+IPL, INL, OPL, ONL, IS, OS, and RPE as 

shown in Figure 5.

To run this experiment, we perform the following steps. We select 80 3D OCT scans from 

the test set (40: healthy and 40: POAG) and apply the segmentation method on each b-scan 

separately to generate 9 binary masks: one for each of the eight retinal layers in addition to 

the background mask. We also extracted the foreground mask to assess the influence of the 

whole retina area. Then, we computed the average heatmap weights for each b-scan in each 

generated mask. In total, this resulted in 16000 average heatmap values for each binary mask 

(200 b-scans × 80 cubes). The validation process was done for each set of healthy and 

POAG cases, separately.

To report the contribution of each retinal layer, we use box-plots to represent the average 

computed heatmap values for each layer separately, as shown in the first row of Figure 6. 

From the figure, RPE, OS, IS, RNFL and GCL+IPL have the highest correlation with grad-

CAM heatmaps, in order, where the median heatmap value lies between 0.3 and 0.5 for 

those layers. While ONL, INL, and ONL have shown less influence on the network decision 

where median value lies between 0.1 and 0.3. These findings are non-intuitive for clinicians 

because these layers are not traditionally associated with glaucoma. However, these findings 

show that DL approaches might depend on information from unknown features in the tissue 

such as thinning of the inner retina layers. Also, the figure demonstrates that RNFL has 

higher heatmap values in healthy cases versus POAG cases with median values of 0.3 and 

0.4 respectively. As expected, background area has the least influence on the network 

decision.
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D. Comparative Results

For comparative study, we follow Maetschke et al. [38] and compare our AG-OCT model 

against feature based ML approaches, where we use Cirrus OCT scanner computed 

measurements for training classical ML algorithms. Specifically, we use 22 measurements 

including peripapillary RNFL thickness at 12 clock-hours, peripapillary RNFL thickness in 

the four quadrants, average RNFL thickness, rim area, disc area, average cup-to-disc ratio, 

vertical cup-to-disc ratio and cup volume. We normalize all features by subtracting the mean 

and scaling to unit variance.

Six ML classifiers are trained, namely, Support Vector Machine (SVM), Logistic 

Regression, Naïve Bayes, Gradient Boosting, Extra Trees and Random Forest. We used the 

same dataset used for training AG-OCT model and same split (i.e. train, validation and test). 

We used the validation set to select the best hyper-parameters for each classifier using grid-

search. We also computed the same performance measures. For reliability, we perform 5-

fold cross-validation and report the average performance measures for the test set as shown 

in Table III.

From the table, the best feature based ML model that has the highest AUC and a good 

balance between recall and precision is gradient boosting with an AUC of 91.5%, that is 

2.3% less than our AUC (i.e. AG-OCT). This is followed by SVM with polynomial kernel 

with AUC of 91.2%, with higher measure for precision than recall. All other feature based 

ML classifiers either showed an AUC less than 89% or strongly biased towards one class 

(i.e. significant difference between recall and precision). In a nutshell, not only does this 

experiment confirm the effectiveness of our proposed approach but it also shows that DL 

approaches have the potential to learn directly from raw volumes with better performance 

than the one achieved by relying on scanner extracted features.

E. Structural-Functional Correlation

Table IV reports the performance measures for the attention-guided regression model. It is 

revealed from the table that polynomial regression using 3-pathway predictions has 

significantly outperformed the other predictions with Pearson correlation (ρ) of 0.75 and 

MAE of 8 for a test set of size 3100 cubes. The table also shows that predictions from 

pathway#2 has slightly better performance measures than the other two pathways with 

Pearson correlation (ρ) of 0.65 and MAE of 11.6. Also, refining the predictions from the 

individual pathways had decreased the MAE by at least a values of 2.5 (i.e. MAE = 9.1).

VI. CONCLUSION AND FUTURE WORK

We present an end-to-end 3D attention-guided model that can be used for multiple tasks 

including classification and regression through direct analysis of 3D raw volumes that 

outperformed the scanner computed measurements. The model leverages the rich structural 

information embedded in the high resolution 3D OCT cubes by the guidance of grad-CAM 

attention map, which resulted in better performance compared with baseline models and 

feature based ML approaches. Importantly, we showed that using the attention-guided 

framework we can identify the important regions in the OCT volumes, whereby redundant 
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regions of the scan can be excluded from the analysis. Also, grad-CAM allowed for a 

qualitative clinical analysis and understanding of the DL network. In particular, we 

quantitatively measured the importance of different retinal layers in 3D OCT cubes which 

the network relied on for detecting glaucoma. Further, the glaucoma detection and VFI 

estimation experiments confirmed the effectiveness, robustness and generalization of the 

proposed model that is able to learn from high resolution 3D volumes. Both tasks showed 

that the fusion of predictions from the three pathways (i.e. attention-guided) had the best 

performance. In the future, we will apply this approach for estimating other functional 

parameters and detecting other ocular diseases. We also plan to improve the performance of 

the model by enhancing the attention map.
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Fig. 1. 
Framework of the proposed attention-guided DL model using 3D OCT volumes (AG-OCT)
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Fig. 2. 
Training losses for glaucoma detection using AG-OCT model
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Fig. 3. 
Grad-CAM attention maps. First row shows overlaid grad-CAM heatmap for enface view 

while second and third rows show b-scan slices# 50 and 100 in order
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Fig. 4. 
Visualization and abbreviation of different retinal layers in OCT scan. The left image is 

taken from this paper [50]
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Fig. 5. 
Segmentation method results adopted from [49] for clinical assessment of retinal structures 

relevant to glaucoma. (a) original b-scan slice, (b) ground truth, (c) segmentation results 

based on the method described in [49]
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Fig. 6. 
Contribution of different retinal layers for glaucoma detection using the proposed AG-OCT 

model
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TABLE I

5-FOLD AVERAGE PERFORMANCE MEASURES FOR THE ATTENTION-GUIDED AND BASELINE 

MODELS

Accuracy MCC Recall Precision F1-score AUC

Pathway#1 85.184 0.373 89.425 93.576 91.371 86.741

Pathway#2 91.413 0.553 94.838 95.418 95.102 93.007

Pathway#3 90.300 0.513 94.826 94.115 94.426 91.189

Fusion - average 91.073 0.557 95.119 94.730 94.882 93.769

Fusion - min 90.452 0.430 98.690 91.182 94.736 92.243

Fusion - max 85.319 0.528 85.216 97.873 91.056 92.785

Baseline DL model 86.315 0.399 90.928 93.409 92.088 86.803
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TABLE II

SHARING WEIGHTS IMPACT ON THE PERFORMANCE THE PROPOSED ATTENTION-GUIDED 

MODEL

Accuracy MCC Recall Precision F1-score AUC

No weight sharing: each pathway learns its weights

Pathway#1 90.349 0.496 94.311 94.880 94.595 90.198

Pathway#2 91.413 0.553 94.838 95.418 95.102 93.007

Pathway#3 92.225 0.580 95.808 95.522 95.665 88.579

Fusion - average 91.421 0.521 95.808 94.675 95.238 91.392

Fusion - min 92.225 0.484 99.701 92.244 95.827 90.095

Fusion - max 89.008 0.533 91.018 96.508 93.683 90.922

Full weight sharing: Layers of all pathways share weights

Pathway#1 90.349 0.585 91.916 97.152 94.462 90.527

Pathway#2 91.153 0.586 93.413 96.594 94.977 91.528

Pathway#3 92.493 0.599 95.808 95.808 95.808 91.475

Fusion - average 91.689 0.611 93.713 96.904 95.282 92.210

Fusion - min 93.298 0.601 97.904 94.783 96.318 91.481

Fusion - max 89.008 0.588 89.521 98.033 93.584 91.137

Partial sharing: Only pathway 1 and 2 share weights

Pathway#1 89.544 0.520 92.216 95.950 94.046 90.970

Pathway#2 90.080 0.534 92.814 95.975 94.368 93.054

Pathway#3 92.225 0.590 95.509 95.796 95.652 93.432

Fusion - average 90.349 0.553 92.814 96.273 94.512 94.405

Fusion - min 93.298 0.584 98.802 94.017 96.350 92.647

Fusion - max 88.204 0.559 88.922 97.697 93.103 94.505

FusionAvgPath.1&2 89.812 0.539 92.216 96.250 94.190 92.930

FusionAvgPath.1&3 92.493 0.627 94.910 96.646 95.770 94.528

FusionAvgPath.2&3 94.102 0.699 96.108 97.273 96.687 94.271
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TABLE III

5-FOLD AVERAGE PERFORMANCE MEASURES FOR GLAUCOMA DETECTION USING FEATURE-

BASED MACHINE LEARNING METHODS

Accuracy MCC Recall Precision F1-score AUC

Extra Trees 85.563 0.436 87.367 96.160 91.498 89.556

Gradient Boosting 90.318 0.395 95.660 93.692 94.586 90.380

Logistic Regression 82.908 0.475 83.223 97.464 89.660 91.499

Naive Bayes 81.583 0.448 82.370 96.806 88.776 89.689

Random Forest 88.128 0.469 91.026 95.588 93.176 89.098

SVM (Linear) 81.120 0.454 81.202 97.477 88.450 91.550

SVM (Poly) 88.008 0.447 91.166 95.244 93.117 91.204

SVM (RBF) 80.749 0.442 81.126 97.140 88.254 90.602

Proposed AG-OCT 91.073 0.557 95.119 94.730 94.882 93.769
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TABLE IV

PERFORMANCE MEASURES FOR VISUAL FIELD INDEX ESTIMATION EXPERIMENT

Predictions RMSE MAE MDAE r ρ

Pathway#1 17.139 12.362 9.071 0.497 0.648

Pathway#2 16.783 11.628 8.000 0.491 0.649

Pathway#3 19.371 14.060 10.701 0.459 0.582

Fusion-regression (3-pathways) 13.403 7.954 3.615 0.582 0.750

Regression (pathway#1) 14.806 9.103 4.441 0.497 0.680

Regression (pathway#2) 14.834 9.035 3.729 0.451 0.681

Regression (pathway#3) 15.874 10.078 4.602 0.451 0.620
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