Skip to main content
. Author manuscript; available in PMC: 2021 Dec 4.
Published in final edited form as: IEEE J Biomed Health Inform. 2020 Dec 4;24(12):3421–3430. doi: 10.1109/JBHI.2020.3001019

TABLE III.

5-FOLD AVERAGE PERFORMANCE MEASURES FOR GLAUCOMA DETECTION USING FEATURE-BASED MACHINE LEARNING METHODS

Accuracy MCC Recall Precision F1-score AUC
Extra Trees 85.563 0.436 87.367 96.160 91.498 89.556
Gradient Boosting 90.318 0.395 95.660 93.692 94.586 90.380
Logistic Regression 82.908 0.475 83.223 97.464 89.660 91.499
Naive Bayes 81.583 0.448 82.370 96.806 88.776 89.689
Random Forest 88.128 0.469 91.026 95.588 93.176 89.098
SVM (Linear) 81.120 0.454 81.202 97.477 88.450 91.550
SVM (Poly) 88.008 0.447 91.166 95.244 93.117 91.204
SVM (RBF) 80.749 0.442 81.126 97.140 88.254 90.602

Proposed AG-OCT 91.073 0.557 95.119 94.730 94.882 93.769