
ORIGINAL ARTICLE

Dynamic Brain Responses Modulated by Precise Timing Predic-
tion in an Opposing Process

Minpeng Xu1,2
• Jiayuan Meng1

• Haiqing Yu1
• Tzyy-Ping Jung1,3

• Dong Ming1,2

Received: 9 December 2019 / Accepted: 11 February 2020 / Published online: 16 June 2020

� Shanghai Institutes for Biological Sciences, CAS 2020

Abstract The brain function of prediction is fundamental

for human beings to shape perceptions efficiently and

successively. Through decades of effort, a valuable brain

activation map has been obtained for prediction. However,

much less is known about how the brain manages the

prediction process over time using traditional neuropsy-

chological paradigms. Here, we implemented an innovative

paradigm for timing prediction to precisely study the

temporal dynamics of neural oscillations. In the experiment

recruiting 45 participants, expectation suppression was

found for the overall electroencephalographic activity,

consistent with previous hemodynamic studies. Notably,

we found that N1 was positively associated with pre-

dictability while N2 showed a reversed relation to pre-

dictability. Furthermore, the matching prediction had a

similar profile with no timing prediction, both showing an

almost saturated N1 and an absence of N2. The results

indicate that the N1 process showed a ‘sharpening’ effect

for predictable inputs, while the N2 process showed a

‘dampening’ effect. Therefore, these two paradoxical

neural effects of prediction, which have provoked wide

confusion in accounting for expectation suppression,

actually co-exist in the procedure of timing prediction

but work in separate time windows. These findings strongly

support a recently-proposed opposing process theory.

Keywords Expectation suppression � Predictive coding �
Event-related potentials � Timing prediction

Introduction

Human perceptions are shaped by not only sensory inputs,

but also prior knowledge stored in the brain [1, 2]. The

ability to generate and utilize prediction is fundamental for

survival [2, 3], and has been demonstrated to be indis-

pensable in a wide range of mental processes [4–8].

However, the neural effect and underlying mechanism of

prediction remains controversial.

Predictive coding, an influential theory of the neural

process of prediction, proposes that the brain actively

builds up predictive templates to shape perceptions, rather

than being driven merely by bottom-up stimuli. It opti-

mizes perceptions using prediction errors, i.e., differences

between predictions and sensory inputs [9–11]. In this way,

unexpected stimuli would induce more neural activity than

expected stimuli, to address larger prediction errors. This is

known as the ‘dampening’ effect, i.e. the neural represen-

tations is ‘dampened’ for predictable stimuli. The phe-

nomenon of expectation suppression has been reported in

both the electroencephalographic (EEG) and hemodynamic

studies [12–16]. However, some studies have shown that

even with lower brain responses, the expected stimuli have

more salient neural representation than unexpected stimuli

[17–21], which is beyond the ‘dampening’ account. This
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unusual phenomenon was explained by Kok et al. as

prediction actually ‘sharpening’ and not ‘dampening’ the

neural representation [22]. The ‘sharpening’ account holds

the view that, although the overall neural activity in

response to expected information seems to be suppressed,

the neurons encoding the expected information are not

suppressed—it is the neurons not tuned to the expected

information that are suppressed, making the expected

features more salient and selective, concurrently resulting

in lower neural responses [3]. Although some conflicting

phenomena can be explained by the reversal of prediction-

related representations by attention [23], we are still far

from understanding the mechanism underlying the reported

paradoxical effects of prediction.

Recently, increasing numbers of studies have realized

that it may be misleading to stress only one effect of

prediction during the whole predictive coding process

[2, 3]. Clark et al. highlighted the duplex architecture of

predictive coding theory [2], which assumes that at each

prediction processing level, the representational and error

signals are encoded by two functionally distinct units

[1, 24–26], although how they interact over time remains

unclear. Moreover, Friston proposed that prediction pro-

cessing may dynamically evolve from sensory representa-

tion to error correction (or perceptual learning) [10].

Inspired by these assumptions, a recent opposing process-

ing theory posited that perception is initially biased

towards the expected information after the sensory repre-

sentation, and no other process is needed if the inputs are

sufficiently in line with current expectation, while error-

correction would be conducted if the input is different

enough from the expectation [27]. That means, the

paradoxical ‘sharpening’ and ‘dampening’ effects of pre-

diction may be reconciled by studying the neural signals at

fine temporal resolution. Therefore, we set out to investi-

gate the temporal dynamics of predictive timing processes

to obtain experimental evidence associated with the

‘sharpening’ and ‘dampening’ effects, and to determine

whether these conflicting effects are compatible during the

dynamic process. To this end, we designed an innovative

experimental paradigm to study the time course of neural

oscillations under different precise timing prediction states,

and found that the ‘sharpening’ and ‘dampening’ effects of

prediction actually co-exist in the predictive timing pro-

cess, but in distinct processing stages with an opposing

trend.

Materials and Methods

Participants

Forty-five healthy individuals (23 females, 19–28 years

old) participated in the current experiment. Forty-two were

right-handed and other three were left-handed. All indi-

viduals had normal or corrected-to-normal vision, and were

free from psychological or neurological diseases. The

experimental procedures were approved by the Institutional

Review Board at Tianjin University. All possible conse-

quences of the study were explained, and written informed

consent was given by all participants.

Stimulus

The double-flashes used in this study were presented by a

15 9 15 mm2 LED placed at the eye level and 80 cm from

the participant. The LED was driven by a chronometric

FPGA platform (Cyclone II: EP2C8T144C8) with 20-ns

resolution. The duration of each flash was 120 ms (Fig. 1).

Each trial started with an auditory cue that lasted for

1,000 ms. Then there was a blank with a random duration

selected from 1,000 ms, 1,500 ms, or 2,000 ms. Next, a

double-flash appeared with unpredictable stimulus-onset

asynchrony (SOA) of 400 ms, 600 ms, or 900 ms. Finally,

there was a blank period between 1,600 ms and 2,600 ms

before the next trial. A total of 30 trials were conducted in

one session, and 16 sessions were conducted for each

participant. Thus, there were 160 trials for each kind of

double-flash.

Training Procedure

According to predictive coding theory, the construction of

the perceptual template is a prerequisite for the brain’s

predictive processing [28–30]. Therefore, it is very impor-

tant for participants to set up a precise template in their

minds before testing its influences on sensory inputs. As

the mental clock in the human brain is not very precise, and

is relatively insensitive to sub-second time intervals

without proper training [31], it is difficult for participants

to set up a precise timing template only using recent

ambiguous experiences, such as temporarily learning past

repetitions [13, 32] or temporal associations [33]. For this

reason, training sessions were necessary in this study. The

precise timing template built up in the training sessions

made the predictive processing in the formal experiment

more stable and invariable across trials, and made this

study sensitive and reliable.

All participants were trained for about three days before

testing (the specific training time in each day differed
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among participants). The averaged task accuracy improved

from 62.58% to 92.36%, and the average reaction time

shortened from 998.60 ms to 509.32 ms (details in

Fig. S1). Only when the participants achieved high enough

accuracy ([ 85%) for more than five training blocks, which

indicated that the timing templates were stably stored in

their minds, were they allowed to take part in the formal

experiment.

Formal Experimental Procedure

In the formal experiment, each participant was required to

conduct four different kinds of mental task. Specifically,

they were required to (1) compare the actual double-flash

with the SOA400 double-flash in their mind (under this

instruction, the participants were only allowed to recall the

SOA400 double-flash so that the SOA400 timing template

was exclusively deployed as the initial predicative code.

Therefore, the actual SOA400 double-flash absolutely

matched the prediction, AMP); (2) compare the actual

double-flash with the SOA600 timing template (under this

instruction, the participants were only allowed to recall the

SOA600 double-flash so that the SOA600 timing template

was exclusively deployed as the initial predictive code.

Therefore, the actual SOA400 double-flash mismatched the

prediction, MMP); (3) determine which SOA the actual

double-flash was from 400, 600, or 900 ms (under this

instruction, the participants needed to concurrently recall

SOA400, SOA600, and SOA900 double-flashes so that all

three timing templates were deployed for the initial

prediction state. Therefore, the actual SOA400 double-

flash partially matched the prediction, PMP); and (4)

indicate the onset of the second flash (under this instruc-

tion, no predictive code, NPC, was initially deployed).

After each double-flash, each participant made a judgement

by pressing a specific button as soon as possible. This study

only focused on the brain responses to stimuli with the

SOA400 double-flash, because the longer SOA raised the

problem of information disclosure to participants after

400 ms.

There were 4 sessions for each mental task, and all the

sixteen sessions were interleaved. In each session, the three

kinds of double-flash were presented in a random order

with equal probability, and no choice preference was found

when participants made decisions (Fig. S2). Moreover,

pressing a button with the right or left thumb was balanced

across sessions. In particular, for AMP and MMP, each

participant was required to use the right or left thumb to

press the Match/Mismatch button in two sessions, and have

an exchange in the other two sessions. For PMP, they were

required to use the right thumb to press the SOA400 button

in two sessions, and the left thumb to press the SOA400

button in the other two sessions. For NPC, they were

required to use the right thumb to press the button in two

sessions, and the left thumb to press the button in the other

two sessions.

In addition, two points need to be further explained for a

better understanding of the experimental paradigm. First,

this study shaped the matching and mismatching processes

of timing prediction by comparing the actual with the

predicted time lapses, which was adapted from previous

studies of feature-based prediction [30, 34]. Second, the

current paradigm for shaping the timing prediction avoided

the problem caused by using recent experiences of past

stimulus repetitions. As the stimulus repetition would entail

entrainment of neural oscillations which could influence

the following neural process and response [33, 35, 36], it

would disturb the natural predictive processing, making it

impossible to decouple the top-down influence of timing

prediction from the bottom-up influence of neural

entrainment.

EEG Recording and Pre-processing

EEG was recorded by a Neuroscan Synamps2 system at a

sample rate of 1000 Hz, and filtered by a low-pass filter at

200 Hz and a notch filter at 50 Hz. Sixty-four electrodes

Fig. 1 Illustration of a single trial in the testing experiment. In each

trial, a loudspeaker first sounds for 1,000 ms to alert the participant to

the upcoming double-flash, followed by a random blank period

(1,000 ms, 1,500 ms, or 2,000 ms). Then the LED in front of the

participant flashes twice with an unpredictable SOA. Each participant

was required to press different buttons to indicate their judgments.
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were positioned on the scalp according to the International

10–20 system. We only focused on signals from the

parietal and occipital regions. All channels were referenced

to the tip of the nose and grounded to the frontal region.

Eye-blinks were monitored by signals recorded at FP1 and

FP2. The stored EEG data were then filtered by a

ChebyshevII low-pass filter cutting at 45 Hz, and down-

sampled to 200 Hz. EEG trials were segmented from

- 900 ms to 2,100 ms after the second flash onset. Only

correct trials with reaction latencies between 100 ms and

800 ms were considered in the subsequent analyses. For

the first ERP, the baseline was corrected by subtracting the

mean of 200 ms of data before the first flash onset, while

for the second ERP, the baseline was corrected by

subtracting the mean of 50 ms of data before the second

flash onset to avoid the influence of contingent negative

variations (CNVs).

ERP Amplitude and Latency Measurements

The predictive coding theory was originally proposed to

explain the prediction mechanism in primary visual cortex

[9]. Low-level sensory processing is an important issue for

the prediction mechanism and has become a research topic

of interest [12, 23, 37]. Therefore, we mainly focus on the

ERPs of the posterior scalp locations where low-level

visual processing predominately takes place. On the basis

of grand averages, the time windows of the first N1 and N2

ERPs were defined as - 260 ms to - 225 ms and

- 170 ms to - 105 ms, and those of the second N1 and

N2 ERPs as 130 ms to 165 ms and 200 ms to 260 ms,

respectively. In addition, as the durations of the N2

component varied with conditions, we also applied jack-

knife-based scoring methods to measure the N2 compo-

nents (AMP, 205 ms–225 ms; PMP, 205 ms–250 ms;

MMP, 205 ms–275 ms; details in Fig. S3). The amplitude

of each ERP component was calculated as the mean within

the specified time window. The latency was measured as

the time point before which 50% of the total component

area occurred in the specified time window.

Inter-trial Coherence (ITC), Event-Related Spectral

Perturbation (ERSP), and Evoked EEG Energy

ITC measures the consistency across trials of the EEG

spectral phase at each frequency and time window [38]; it

ranges from 0 to 1. The testing trials showed more phase

coherence, so the ITC value was closer to 1. ERSP reflects

the changes of event-related spectral power at each time-

frequency point compared to the baseline of pre-stimulus

spectral power in its corresponding frequency band [38].

For the first response, the baseline was the mean of 200 ms

of data before the first flash onset, while for the second

response, the baseline was the mean of 50 ms of data

before the second flash onset. The evoked EEG energy was

the sum of the ERSP values from 0 s to 2.4 s after the first

flash onset, where the baseline was the mean of 200 ms of

data before the first flash onset.

Statistical Tests

One-way repeated-measures ANOVA with Bonferroni

correction was used to test the significance of behavioral

differences among conditions. Two-way repeated-measures

ANOVA (electrode 9 condition) was used to test the

significance of the ERP, ITC, ERSP, and evoked EEG

energy differences, and only the effects of condition are

shown. Bonferroni correction was used for multiple

comparisons of conditions. Paired t-tests were used to test

the significance of ERP differences between AMP and

NPC. All error bars show 95% within-participant confi-

dence intervals of the mean difference between conditions.

Results

Behavioral Analyses

In this study, a participant’s behavior could be influenced

by two factors – task difficulty and prediction state – which

were addressed separately. Since NPC was the easiest and

simplest task, it elicited the highest response accuracy

(99.89% ± 0.52%) and the shortest reaction time (RT,

268.25 ± 55.50 ms), which were significantly superior to

AMP (accuracy, 97.33% ± 2.89%; RT,

398.60 ± 56.42 ms; both P\ 0.001 after Bonferroni cor-

rection), PMP (accuracy, 92.94% ± 5.44%; RT,

494.21 ± 54.85 ms; both P\ 0.001 after Bonferroni

correction), and MMP (accuracy, 89.67% ± 7.66%; RT,

530.22 ± 57.45 ms; both P\ 0.001 after Bonferroni cor-

rection) (Fig. 2A, B). From the number of options, PMP

was the most difficult task because participants had to

address three options, while there were only two options

for AMP and MMP. However, the behavioral performance

of MMP was, on the contrary, worse than that of PMP.

Specifically, MMP had a longer RT (P\ 0.001) and lower

accuracy than PMP (P = 0.105 after Bonferroni correc-

tion). This can only be explained by a wrong prediction

slowing the reaction, which indicated that the prediction

state played a greater role than task difficulty here. In

addition, AMP had significantly higher accuracy and a

shorter RT than PMP (both P\ 0.001 after Bonferroni

correction) and MMP (both P\ 0.001 after Bonferroni

correction), which further demonstrated that a correct

prediction speeds up the reaction [33]. Therefore, the

prediction state indeed played a crucial role in responding
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to the SOA400 double-flash. The setting of three but not

two options for PMP was to rule out the risk that

participants could mistakenly treat the task in the same

way as AMP and MMP, because judging which one the

SOA was from two options might be replaced by judging

whether the SOA was familiar and expected or not, as the

latter was easier, which required participants to remember

only one SOA.

Analyses of Evoked EEG Energy

Expectation suppression (neural responses suppressed by

correct compared to the incorrect predictions) has been

widely demonstrated in blood-oxygen-level-dependent

(BOLD) imaging studies [12, 14, 30]. However, electro-

physiological evidence is still lacking. Here, we measured

the evoked EEG energy of the whole predictive response to

the SOA400 double-flash (the background EEG energy

estimated by the baseline before the first flash was removed

from the total energy of the brain responses after stimulus

onset) to assess the degree of neural activation for different

conditions. We found that the predictive response under

matching prediction induced significantly less energy than

that under mismatching prediction (F (2,88) = 5.607,

P = 0.005), especially in the low-frequency band

(\ 13 Hz). Specifically, the evoked energy for AMP was

smaller than MMP (AMP vs PMP P = 0.012 after

Bonferroni correction; Fig. 3). However, there were no

significant differences among the three conditions for the

other frequency bands (details in supplementary materials).

Therefore, the overall neural activation in the early sensory

regions was suppressed for the correct compared to the

incorrect prediction, in line with the BOLD studies.

ERP Analyses

We compared the posterior ERPs of AMP, PMP, and

MMP, and found the variations of N1 and N2 induced by

the second flash were relevant to the process of timing

prediction. To be specific, the SOA400 double-flash

elicited two successive ERPs with a time interval of

400 ms (Fig. 4A). Since the upcoming moment of the first

flash was unpredictable for all conditions, their responses

would be the same. As expected, the first grand average

ERPs following the first flash did not markedly differ

across the three conditions, and their topographies were

remarkably similar (Fig. 4D, F). Component analyses

demonstrated no significant differences among the three

conditions for the first N1 (F (2,88) = 0.793, P = 0.456)

and N2 (F (2,88) = 0.776, P = 0.463) potentials in the

posterior area. However, the grand average ERPs following

the second flash showed considerable differences after

removal of their different baselines caused by distinct

CNVs (Fig. 4B, the reason for removing the CNVs is

explained in the discussion). Topographic analyses

revealed that the second N1 component was the largest

for AMP on the whole posterior scalp, medium for PMP,

and smallest for MMP, which were positively related to

predictability (Fig. 4E). On the contrary, the second N2

component was largest for MMP, medium for PMP, and

smallest for AMP, which were negatively related to the

predictability (Fig. 4G). Component analyses further

demonstrated that the two potentials had an opposite

changing trend, i.e. decreasing N1 but increasing N2

against unpredictability (Fig. 4H, I). Such amplitude

changes among the three conditions were significant for

both N1 (F (2,88) = 5.367, P = 0.006; AMP vs MMP:

P = 0.009; AMP vs PMP: P = 0.537; PMP vs MMP:

Fig. 2 Accuracy rate (A) and

reaction time (B) for different
conditions. Comparison of the

evoked EEG energy of the

whole predictive response.

Evoked energies in the delta and

theta bands were summed from

0 s to 2.4 s after the first flash

onset. Vertical lines, error bars;

*P\ 0.05, **P\ 0.01,

***P\ 0.001 after Bonferroni

correction.

Fig. 3 Analyses on the evoked EEG energy of brain responses.
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P = 0.071 all after Bonferroni correction) and N2

(F (2,88) = 40.907, P\ 0.001; PMP vs MMP:

P = 0.035; others: P\ 0.001, all after Bonferroni correc-

tion). Then the second posterior scalp ERPs of AMP were

compared to those of the NPC. Since the NPC had no

timing prediction and needed no comparisons between the

predictive code and sensory input, it was the least

influenced by the top-down factors, which could act as a

baseline for studying the neural effects of timing predic-

tion. The two ERP waveforms were almost identical; no

statistical difference was found in both the amplitudes (N1:

T (44) = 0.307, P = 0.760; N2: T (44) = - 0.620,

P = 0.539) and latencies (N1: T (44) = 1.366, P = 0.179;

N2: T (44) = 0.878, P = 0.385) (Fig. 5A–E).

The above phenomena indicated that both N1 and N2

were modulated by prediction but in different manners.

Specifically, compared to the baseline of NPC, the

amplitude decreased for N1 while increasing for N2 with

the increase of unpredictability, i.e., concurrent changes of

N1 and N2 in opposite trends with the modulation of

precise timing prediction.

It should be noted that a slow positive waveform

followed the N2 component. It might be argued that this

waveform was caused by the button-press, so the N2

variation recorded here was also due to the button-press

rather than by timing prediction. However, this is not the

case. First, if the N2 variation was caused by the button-

press, the N2 latency would be closely associated with the

RT. As the RT of NPC was the shortest of all (P\ 0.001),

accordingly, it should have much shorter latency than the

other conditions. However, the N2 latencies of NPC and

AMP were almost identical (P = 0.385), regardless of the

significant differences in RT. Correlation analysis further

showed no correlation between the N2 latency and RT

(r\ 0.01, P = 0.96; Fig. 5F), indicating that the N2

variations were not caused by the button-press. Second,

the component analyzed here occurred in the early sensory

processing stage (200 ms–260 ms after target onset), of

which the defined temporal window was similar to the

typical error-related component reported in a previous

study [39], rather than that caused by the button-press or its

preparation, which mainly emerged at the late sensory

processing stage as a slow waveform [40, 41]. In addition,

in order to further confirm that the N2 component

measured here was dissociated from the subsequent slow

waveform, we also applied the jackknife-based scoring

method [42, 43], which defined the N2 time window

according to the length of the negative-going component

(AMP, 205 ms–225 ms; PMP, 205 ms–250 ms; MMP,

205 ms–275 ms) and obtained similar results (details in

Fig. S3).

Fig. 4 ERP analyses. A Grand average ERPs induced by the

SOA400 double-flash, across participants and electrodes on the

posterior scalp under NPC, AMP, PMP, and MMP conditions (time

zero is defined as the moment when the second flash is triggered).

B Grand average ERPs induced by the second flash of the SOA400

double-flash (baseline averaged between - 50 ms and 0 ms is

removed). C Names and locations of electrodes used. D–G Amplitude

topographies of the first N1 (D), second N1 (E), first N2 (F), and
second N2 (G) under distinct conditions. H N1 amplitudes induced by

the second flash for AMP, PMP, and MMP (small dots, amplitude at

each electrode; large dots, average amplitude). I N2 amplitudes

induced by the second flash for AMP, PMP, and MMP. Vertical lines,

error bars; *P\ 0.05, **P\ 0.01, ***P\ 0.001 (post hoc tests after
Bonferroni correction).

123

M. Xu et al.: Dynamic Responses of Timing Prediction 75



ITC and ERSP Analyses

Next, we analyzed the second posterior ERP using the ITC

and ERSP techniques (Fig. 6A, C). As a result, both ITC

and the evoked power of N1 in the theta band decreased

from AMP to PMP to MMP, consistent with the above ERP

results. Specifically, the theta-band ITC had a significant

decreasing trend from AMP to PMP to MMP (Fig. 6B;

F (2,88) = 15.827; P\ 0.001; AMP vs PMP: P = 0.031;

others: P\ 0.001, all after Bonferroni correction). How-

ever, for the first N1, the theta band ITC showed no

significant differences among conditions (F (2,88) = 1.021;

P = 0.364). Furthermore, no significant differences in ITC

were found in the other frequency bands for both the first

and second N1 components (Fig. S4). The ERSP results

were similar to those with ITC. The theta-band ERSP of

the second N1 was largest for AMP, medium for PMP, and

smallest for MMP (Fig. 6D); the differences were signif-

icant (F (2, 88) = 7.550; P = 0.001; AMP vs PMP:

P = 0.027; AMP vs MMP: P = 0.002; PMP vs MMP:

P = 0.998; all after Bonferroni correction). However, there

was neither a significant ERSP difference in the theta band

for the first N1 (F (2, 88) = 1.183; P = 0.311) nor in other

frequency bands for both the first and second N1 compo-

nents (Fig. S5). Here, we could not analyze ITC and ERSP

of the second N2 because the small N2 components were

smeared by the following large P3 potentials due to the

restricted resolution of time-frequency transformation.

Therefore, greater theta-band neural activity would be

elicited during the sensory matching process for a matching

prediction than a mismatching prediction.

Discussion

Consistent with previous BOLD studies, in this study we

found the phenomenon of expectation suppression, i.e. the

evoked EEG energy was lower for the matching than the

mismatching prediction. Furthermore, the dynamic process

of timing prediction was revealed by ERP analyses. As a

result, compared to the control condition of no timing

prediction, the N1 potential maintained almost the same

Fig. 5 Second ERPs for NPC and AMP. A Grand averages of the

second ERP for NPC and AMP. B, C Comparison of the second N1

(B) and N2 (C) amplitude under NPC and AMP conditions (small

dots, average N1/N2 amplitude at each electrode across all partici-

pants; large dots, average across all participants and all electrodes in

the posterior area; vertical lines, error bars). D, E Comparison of the

latency of the second N1 (D) and N2 (E) components. F Correlation

analysis between RT and N2 latency (blue dots, RT and N2 latency in

the NPC condition for each person; red dots, those in the AMP

condition).
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profile for the expected condition but was suppressed for

the unexpected condition. This indicates that prediction

‘sharpens’ the expected sensory input during the N1 period.

However, N2 was enhanced for the unexpected compared

to the expected condition. This indicates that prediction

‘dampens’ the expected sensory information and encodes

the prediction error. Therefore, underlying the phe-

nomenon of expectation suppression, the ‘sharpening’

and ‘dampening’ effects work together but in separate

time windows, providing direct neural evidence for the

opposing process theory [27].

Attention Cannot Account for Our Results

We found an enhanced N1 in the matching prediction

compared to the mismatching prediction. As attention has a

facilitatory effect similar to prediction [44] and can be

oriented in time [45], it may be argued that the enhanced

matching N1 can be alternatively accounted for by

temporal attention, rather than solely by timing prediction.

It is possible that participants may orient attention to the

predicted moment they need to discriminate, so more

attentional resources would be allocated to the second flash

of SOA400 for AMP than others. However, we argue this is

not the case. Actually, participants paid equal attention to

the second flash for all conditions, for four reasons. First, as

the brain measures sub-second intervals by an automatic

timing system which can measure time without attentional

modulation [46], the participants would maintain the same

attentional level during the whole double-flash, i.e. the

second flash attracted as much attention as the first flash for

each trial. As the first ERPs of the three conditions had the

same profile, we can conclude that the participants were at

the same attentional level for the first flash. Therefore, their

attentional level would also be the same for the second

flash. Second, according to previous studies [47, 48], if

more attention was paid to the second flash for AMP, its

visual N1 would be larger than that of the NPC. However,

the two conditions had almost the same profiles for the

second ERPs. Therefore, it was not for AMP to enhance

but for PMP and MMP to attenuate the second N1, which

showed a sharpening effect of prediction. Third, it has been

demonstrated that the alpha band oscillation is closely

relevant to the allocation of attention [49–51], while the

theta oscillation is relevant to timing prediction [49, 52].

The ITC and ERSP results only showed significant

differences in the theta band among conditions (Fig. 5),

but not in the alpha band (ITC: F (2,88) = 1.654,

P = 0.288; ERSP: F (2,88) = 1.358, P = 0.302), which

indicated there were no differences in attention but

differences of prediction deployed on the second flash for

the three conditions. Fourth, this study not only included

the condition of no timing prediction, but also the condition

where participants knew there were only three kinds of

stimuli and were required to react to the stimuli as fast as

possible (PMP condition). As participants had known the

content of stimuli and needed to press the button as quickly

as possible in PMP, if attention does play a leading role in

this process, the SOA400 would be the first moment on

which they would allocate more attention. If so, the PMP

N1 would be larger than that of other prediction-related

conditions. However, the PMP N1 induced by SOA400

was smaller, which goes against the assumption of

attentional modulation. In sum, the enhanced matching

N1 cannot be accounted for by an attentional effect.

Fig. 6 Time-frequency decomposition analyses. A ITC for AMP,

PMP, and MMP (white boxes, theta-band N1). B Comparison of N1

ITC in the theta band. C ERSP for AMP, PMP, and MMP (white

boxes, theta-band N1). D Comparison of the N1 ERSP in the theta

band. Vertical lines, error bars; *P\ 0.05, **P\ 0.01,

***P\ 0.001 (post hoc tests after Bonferroni correction).
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Dynamic Process of Brain Responses Modulated

by Precise Timing Prediction

We investigated the dynamic neural responses to the

identical double-flash with different timing predictions.

Clearly, the CNVs in the midst of a double-flash differed

among conditions (Fig. 4A). Previous studies have sug-

gested that the CNV is closely relevant to temporal

expectation [53]. However, recent findings have demon-

strated that the timing of intervals does not depend on

increasing neural activity but is more relevant to evoked

potentials [54]. Therefore, we only focused on the evoked

potential on which the precise timing template would be

imposed. By studying the neural signatures of the evoked

responses, we found that the successive N1 and N2

components were modulated by timing prediction but in

opposite tendencies. Such modulations reflect the interac-

tive process of the underlying representational and error

signals during the predictive brain response. Predictive

coding theory states that the external sensory input is

matched with the internal perceptual template, resulting in

a residual error signal to adjust the initial predictive state

[9, 10]. Although previous evidence has demonstrated the

existence of representational and error signals

[1, 24–26, 55], evidence for the temporal dynamics of

the two signals is still lacking. The results of our study

show how the two signals wax and wane over time.

Compared to the control condition of no timing prediction,

a mismatching prediction attenuates the posterior N1 but

enhances the following N2, while a matching prediction

has no significant effect on the profiles. As N1 is linked to

visual discrimination processes [56] and N2 is referred to

as a mismatch detector [39], the results indicate that the

representational signal during the N1 period is inhibited for

unexpected sensory input but maintained for expected

sensory input, while an error signal during the N2 period is

produced for the unexpected sensory input but absent for

the expected sensory input. This finding can help shed light

on the neural mechanism of expectation suppression, as

discussed below.

Reconciling the ‘Sharpening’ and ‘Dampening’

Accounts for Expectation Suppression

The neural effect of prediction is still poorly understood.

Although the phenomenon of expectation suppression has

been widely reported in previous studies, its underlying

neural mechanism is still under debate. Currently, there are

two paradoxical accounts for how the brain suppresses the

neural response to predictable sensory input. The ‘damp-

ening’ account proposes that the predictive templates in

higher regions are able to dampen or ‘explain away’ the

predictable sensory inputs in lower regions. Therefore,

compared to mismatching prediction, matching prediction

needs to address fewer inconsistent signals between

predictive templates and sensory inputs. Accordingly, the

neural activation would be lower for matching prediction

than mismatching prediction [12–14, 57]. However, the

‘sharpening’ account holds the view that the suppressed

neural activity of matching prediction is formed mainly by

suppressing the neurons encoding the unpredicted, rather

than those encoding the predicted information [3, 58],

making the predicted information more salient and distinc-

tively represented in a specific area of cortex [22]. We

investigated the dynamic process of brain response mod-

ulated by the precise timing prediction, and found the

phenomenon of expectation suppression by calculating the

evoked EEG energy, which was in line with the BOLD

studies. By analyzing the dynamic ERP process, we found

the representational signal was significantly suppressed for

mismatching prediction during the N1 period, which

supported the ‘sharpening’ account. Furthermore, the error

signal was almost absent for matching prediction during

the N2 period, which supported the ‘dampening’ account.

The results indicate that the neural representation of

predicted information is sharpened during the N1 period

and dampened during the N2 period. Therefore, the

‘sharpening’ and ‘dampening’ effects, which seem to

contradict each other, are compatible during the dynamic

prediction process. They work together but in separate time

windows. These findings fit nicely with a recent proposed

notion of opposing perceptual processes [27], which claims

that the expected and unexpected events are addressed

separately in time by applying Bayesian (‘sharpening’) and

cancellation (‘dampening’) models, sequentially.

In sum, by using an innovative experimental paradigm,

we investigated the fine temporal evolution of the evoked

neural responses associated with precise timing prediction.

We not only found the phenomenon of expectation

suppression as in previous studies, but also found the

‘sharpening’ and ‘dampening’ effects of prediction in

distinct processing stages with an opposing trend. These

results provide direct neural evidence for the opposing

processing theory, which is a potential theoretical resolu-

tion for the ‘sharpening’ and ‘dampening’ effects of

prediction.
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