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NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation contributes to the progression of
atherosclerosis, and autophagy inhibits inflammasome activation by targeting macrophages. We investigated whether fucoidan,
a marine sulfated polysaccharide derived from brown seaweeds, could reduce NLRP3 inflammasome activation by enhancing
sequestosome 1 (p62/SQSTM1)-dependent selective autophagy to alleviate atherosclerosis in high-fat-fed ApoE-/- mice with
partial carotid ligation and differentiated THP-1 cells incubated with oxidized low-density lipoprotein (oxLDL). Fucoidan
significantly ameliorated lipid accumulation, attenuated progression of carotid atherosclerotic plaques, deregulated the
expression of NLRP3 inflammasome, autophagy receptor p62, and upregulated microtubule-associated protein light chain 3
(LC3)-II/T levels. Transmission electron microscopy and GFP-RFP-LC3 lentivirus transfection further demonstrated that
fucoidan could activate autophagy. Mechanistically, fucoidan remarkably inhibited NLRP3 inflammasome activation, which was
mostly dependent on autophagy. The inhibitory effects of fucoidan on NLRP3 inflammasome were enhanced by autophagy
activator rapamycin (Rapa) and alleviated by autophagy inhibitor 3-methyladenine (3-MA). Fucoidan promoted the
colocalization of NLRP3 and p62. Knockdown of p62 and ATG5 by small interfering RNA significantly reduced the inhibitory
effects of fucoidan treatment on NLRP3 inflammasome. The data suggest that fucoidan can inhibit NLRP3 inflammasome
activation by enhancing p62/SQSTM1-dependent selective autophagy to alleviate atherosclerosis.

1. Introduction

Ischemic stroke is a destructive cerebrovascular disease
worldwide, with a high rate of death, disability, and recur-
rence [1]. The main pathogenesis mechanism of ischemic
stroke is carotid atherosclerosis, which is recognized as a
chronic vascular inflammatory disease [2]. The unbalanced
activation of plaque resident macrophages and the overex-
pressed inflammatory cytokines interleukin-1p (IL-18) con-
tribute to the formation and rupture of atherosclerotic
plaques [3]. Among the multitudinous pathways that regu-
late the maturation and secretion of IL-1p, the classical
NOD-like receptor family pyrin domain containing 3

(NLRP3) inflammasome-dependent pathway is of great sig-
nificance [4].

During the development of atherosclerosis, the NLRP3
inflammasome is inappropriately activated by cholesterol
crystals, oxidized low-density lipoprotein (oxLDL), and
abnormal hemodynamics, which results in massive inflam-
mation [5]. The NLRP3 inflammasome is a cytosolic protein
complex consisting of the NLRP3, apoptosis-associated
speck-like protein (ASC), and protease caspase-1, which
can cleave pro-IL-1f into mature IL-18, thus aggravating
the inflammatory response in atherosclerosis [6]. A genetic
deficiency of NLRP3, ASC, or caspase-1 results in the low
production of IL-1f and stabilizes atherosclerotic plaques
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in ApoE-/- mice [7-9]. Emerging evidence has suggested that
autophagy is the essential process in controlling NLRP3
inflammasome activation [10].

Autophagy is a highly conserved cellular degradation pro-
cess that can traffic damaged organelles or misfolded proteins
to lysosomes for clearance [11]. We previously demonstrated
that the autophagy inducer Rapa plays a protective role in
the progression of atherosclerotic plaques [12]. Several basic
examinations also revealed that mice with a macrophage-
specific deletion of the essential autophagy gene ATG5 devel-
oped plaques with increased oxidative stress and exhibited
enhanced plaque necrosis [10, 13]. It has been proposed that
autophagic adaptor protein p62 participates in selective
autophagy to directly engulf and eliminate ubiquitinated
NLRP3 and ASC by binding with LC3 [14, 15]. Furthermore,
p62 ablation contributes to lipid deposition, increased secre-
tion of IL-13, and increased formation of plaques in ApoE-/-
mice [16]. These observations prompt us to speculate that
the effective inhibition of the NLRP3 inflammasome pathway
via autophagy is essential to stabilize atherosclerotic plaques
and prevent the development of atherosclerosis.

Fucoidan, a natural polysaccharide mainly made of
fucose and sulfate, is abundant in brown seaweeds and widely
utilized in the cosmetic and food industries [17]. Fucoidan
has also long been considered an attractive compound as a
drug in traditional Chinese medicine [18]. Recently, various
pharmacological properties with the potential medicinal
value, such as antioxidant, anti-inflammatory, antiprolifera-
tive, and anticoagulant activities have been described in
fucoidan [19-22]. A study reported that fucoidan signifi-
cantly reduced atherosclerotic plaques in the aortic arch of
spontaneously hyperlipidemic (Aposm) mice [23]. However,
the exact effects and biochemical mechanisms of fucoidan
in terms of inflammation and atherosclerosis are unclear.
No reports have addressed fucoidan-mediated regulation of
the NLRP3 inflammasome and autophagy in atherosclerosis.

In the present study, we used ApoE-/- mice, which
exhibit the development of more severe atherosclerotic
lesions than Apo™ mice, to generate a widely used vulnerable
carotid atherosclerotic plaque model involving the ligation of
the carotid artery and a high-fat, high-cholesterol diet [24,
25]. We analyzed whether fucoidan can stabilize the vulner-
able atherosclerotic plaques and whether this stabilization is
due to regulation of the NLRP3 inflammasome and autoph-
agy. At the same time, a foam cell model was established
in vitro to investigate the underlying mechanism.

2. Materials and Methods

2.1. Drugs and Reagents. Fucoidan extracted from the brown
seaweed Fucus vesiculosus by a modified method was pur-
chased from Sigma-Aldrich (St. Louis, MO, USA; #F5631).
Fucoidan was dissolved in distilled water, stirred at 25°C for
30 min, filtered through a 0.22 ym pore size filter (Millipore,
Billerica, MA, USA), and stored at -20°C until use [26].
oxLDL made by oxidizing human LDL using Cu,SO, (oxi-
dant) in PBS at 37°C for 20h was purchased from Yiyuan
Biotech (Guangzhou, China; Cat. No. YB-002). All cell cul-
ture consumables were purchased from the Corning Com-
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pany (New York, NY, USA). The following reagents and
their suppliers were also acquired: fetal bovine serum and
RPMI 1640 medium (Biological Industries, Beit HaEmek,
Israel), penicillin-streptomycin (Hyclone, Logan, UT, USA),
phorbol-12-myristate-13-acetate (PMA), BafAl, 3-MA, and
rapamycin (MCE Company, Monmouth Junction, NJ,
USA), and Lipofectamine™ 2000 reagent (Invitrogen, Carls-
bad, CA, USA).

2.2. Animal Models and Ethics Statements. All experiment
procedures followed the ARRIVE guidelines for the reporting
of experiments involving animals [27]. The animal experi-
mental protocol was reviewed and approved by the ethics
commiittee of Qingdao University (QUMC 2018-08). Thirty-
six (C57BL/6 background) 6-week-old-male ApoE-/- mice
(Huafukang Biotechnology Company, Beijing, China) were
housed in the animal center at standard room temperature
and a 12-h light/dark cycle conditions, with three to four mice
per cage. The ApoE-/- mice were randomly divided into the
following three groups (n =12 per group): control group,
model group, and fucoidan group. All mice were fed with
normal food 2 weeks before surgery. At 8 weeks of age,
ApoE-/- mice in the control group were fed with normal food
without surgery. In the other two groups, silica gel rings were
inserted into the right common carotid artery, and the mice
were fed a high-fat, high-cholesterol diet (0.25% cholesterol,
15% cocoa butter, and basic diet; License No.: SCXK-Bei-
jing-2014-0008, China) to induce carotid atherosclerotic
lesion formation. At 12 weeks of age, the mice in the fucoidan
group each received an intraperitoneal injection of fucoidan
(60 mgkg 'day™"), and the mice in the model group were
injected intraperitoneally with physiological saline once per
day [28, 29]. At 16 weeks of age, all mice were anesthetized
using isoflurane and sacrificed by inner canthus artery exsan-
guination while still anesthetized [30].

2.3. Lipid Analysis. Blood was withdrawn from the inner can-
thus artery and centrifuged at 1000 X g. Serum biochemical
analyses including total cholesterol (TC), triglyceride (TG),
and low-density lipoprotein cholesterol (LDL-c) were per-
formed in the clinical laboratory of the Affiliated Hospital
of Qingdao University.

2.4. Histology. The right common carotid arteries of all
groups were rapidly removed and fixed in 4% paraformalde-
hyde, embedded in optimum cutting temperature compound
(Sakura Finetek USA, Torrance, CA, USA), and stored at
-80°C until use. Blood vessel tissue sections approximately
7 um in thickness were selectively stained with Oil Red O
and hematoxylin-eosin (HE) for the observation of carotid
atherosclerotic plaque formation using a microscope (Olym-
pus, Tokyo, Japan).

2.5. Immunohistochemical Staining. After the carotid arteries
were dried and dewaxed using dimethyl benzene, arteries
were rehydrated with graded ethanol solutions. The endoge-
nous peroxidase activity was blocked using 3% hydrogen
peroxide for 20min. After treatment with fetal bovine
serum, the arteries were incubated overnight at 4°C with
anti-NLRP3 antibody (Novus, Littleton, Co, USA) and
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anti-p62 antibody (Abcam, Cambridge, MA, USA). The
samples were then incubated with a secondary antibody for
1h at room temperature.

2.6. Cell Culture. THP-1 human monocytic leukemia cell line
was obtained from Shanghai Institutes for Biological Sciences
(Shanghai, China). Cells were cultured in RPMI 1640
medium containing 10% fetal bovine serum supplemented
with 100nM penicillin-streptomycin at 37°C and 5% CO,
in cell incubators. For experiments, logarithmic growth
phase THP-1 cells (4 x 10° cells mL™") were differentiated
into macrophages by treatment with 100ngmL™" of PMA
for 48N in dishes or wells. Subsequently, macrophages were
transformed into foam cells treated with 80 ugmL™" oxLDL
for 36 h. For experiments involving autophagy modulation,
macrophages were pretreated with bafAl, rapamycin
(25nM), and 3-MA (5 mM) for 2 h and subsequently treated
with fucoidan (300 ygmL™).

2.7. Transfection. The p62 and control siRNAs were pur-
chased from Cell Signaling Technology (Danvers, MA,
USA). Red fluorescent protein-green fluorescent protein-
LC3 (RFP-GFP-LC3) adenoviral vectors, ATG5 siRNA, and
control siRNA were designed and synthesized by Jikai
(Guangzhou, China). THP-1 cells were transfected according
to the manufacturer’s protocol. Autophagic flux observation
and mounting were performed with a fluorescence micro-

scope (Olympus).

2.8. Analysis of Cell Viability. The 3-(4, 5-dimethylthiazol-2-
yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was used
to analyze cell viability (Solarbio, Beijing, China). Briefly,
THP-1 cells were plated in 96-well plates and differentiated
into macrophages. After exposure to fucoidan and oxLDL,
20 uL of MTT working solution was added to each well of
the plate, and incubation was continued for 4h at 37°C.
The solution was removed, and 150 yL of dimethyl sulfoxide
(DMSO; Solarbio, Beijing, China) was added to each well for
30 min to dissolve the insoluble formazan that had accumu-
lated from the reduction of MTT by viable cells. The plates
were detected at 570 nm using a microplate reader (Bio-
Rad, Hercules, CA, USA).

2.9. Oil Red O Staining. The foam cells were incubated with
or without fucoidan for 36h. After being washed three
times with PBS, the cells were fixed with 4% paraformal-
dehyde for 25min. Oil Red O solution was added and
incubated for 30 min at 37°C. After extensive washing with
PBS, the cells were immediately photographed using a
microscope (Olympus).

2.10. Western Blot Analysis. All proteins extracted from
carotid arteries or cells were separated by SDS-PAGE and
transferred to polyvinylidene difluoride (PVDF) membranes
(Millipore, Vimodrone, Milan, Italy). After blocking with 5%
skim milk in PBS or 4% bovine serum albumin for 2h at
room temperature, the membranes were incubated with
appropriate primary antibodies against NLRP3 (#15101,
1:800; Cell Signaling Technology, Danvers, MA, USA),
ASC (#67824, 1:1000; Cell Signaling Technology), caspase-

1 (ab1872,1:1000; Abcam), IL-13 (ab9787, 1:1000; Abcam),
LC3B (ab192890, 1:1000; Abcam), GAPDH (10494-1-AP,
1:5000; Proteintech, Rosemont, IL, USA), p62 (18420-1-
AP, 1:1000; Proteintech), or ATG5 (#12994, 1:1000; Cell
Signaling Technology) at 4°C overnight. The membranes
were then incubated with horseradish peroxidase (HRP)-
conjugated antirabbit or antimouse secondary antibody
(1:10,000 dilution) for 1h. Bands were visualized using an
enhanced chemiluminescence (ECL) detection kit (Millipore
Co, Billerica, MA, USA). The relative protein quantity was
measured using Image] software (NIH, Bethesda, MD, USA).

2.11. Detection of IL-13 by Enzyme-Linked Immunosorbent
Assay (ELISA). The IL-1p ELISA kit was obtained from
eBioscience (San Diego, CA, USA) and was used according
to the manufacturer’s protocol. Serum samples from ApoE-/-
mice and cell culture medium were collected, centrifuged at
1000 g for 20 min, and IL-1p levels were assessed. The optical
density of the peroxidase product was read at 450 nm.
According to the standard curve, the concentration of IL-
1B in each sample was measured.

2.12. Transmission Electron Microscopy (TEM). The tissue or
cells were fixed with 4% paraformaldehyde, postfixed in 1%
osmium tetroxide, dehydrated in a graded ethanol series,
infiltrated with propylene oxide, embedded in epoxy resins,
and sectioned. After double staining with uranyl acetate
and lead citrate, ultrathin sections were examined using a
model HT-7700 transmission electron microscope (Hitachi,
Tokyo, Japan).

2.13. Immunofluorescence. Analysis of colocalization between
NLRP3 and LC3 in cells was performed using double immu-
nohistochemistry staining. Briefly, after different drug treat-
ments, the cells were fixed with 4% paraformaldehyde for
30 min and air-dried. Fixed cells were treated with 0.5% Triton
X-100 for 10 min at room temperature and then blocked with
goat serum 1h. Subsequently, a solution containing diluted
rabbit anti-NLRP3 antibody and mouse anti-p62 were added
to the cells and incubated at 4°C overnight. Subsequently,
Alexa Fluor 488 donkey antirabbit IgG and Alexa Fluor 555
donkey antimouse IgG were used as secondary antibodies
(Invitrogen) in the dark for 1 h. After washing with PBS, the
nuclei were stained by 4', 6-diamidino-2-pheny-lindole
(DAPI; Beyotime, Beijing, China) for 20 min. The images were
examined using a fluorescence microscope (Olympus).

2.14. Statistical Analysis. The statistical analyses were per-
formed with SPSS 19.0 software (IBM, Armonk, NY,
USA). Continuous data are expressed as the mean + SEM.
Statistical significance among several groups was deter-
mined using one-way analysis of variance with Dunnett’s
post hoc test (ANOVA). A value of p < 0.05 was considered
statistically significant.

3. Results

3.1. Fucoidan Reduces Lipid Levels and Ameliorates the
Formation of Unstable Carotid Atherosclerotic Plaques in
ApoE-/- Mice. We first investigated the impact of fucoidan



on lipid metabolism, which is the main characteristic of
atherosclerosis. As shown in Figures 1(a)-1(c), serum
TC, TG and LDL cholesterol, and HDL cholesterol levels
were obviously increased in the model group. In contrast,
the fucoidan showed obviously decreased serum TC level
(fucoidan group vs. model group: 19.85 + 2.23 mmol L™! vs.
26.68 + 1.42mmol L™}, p < 0.05), TG level (fucoidan group
vs. model group: 0.68 + 0.15mmol L ™! vs. 1.46 + 0.19 mmol
L', p<0.05), and LDL cholesterol level (fucoidan group vs.
model group: 3.05 + 0.42mmol L™! vs. 5.57 + 0.63 mmol L™
, p<0.05).

To explore the potential effects of fucoidan on the forma-
tion of carotid atherosclerotic plaques in ApoE-/- mice, the
carotid artery on the cannulated side in mice was stained
with HE and Oil Red O. Compared with the control group,
the model group showed obvious plaque formation, throm-
bosis, and lipid-laden foam cell infiltration. However, the
formation of carotid atherosclerotic plaques and lipid dis-
position were significantly alleviated in the fucoidan group
(Figures 1(d)-1(g)).

3.2. Fucoidan Inhibits the NLRP3 Inflammasome Activity in
ApoE-/- Mice. To explore the effect of fucoidan on NLRP3
inflammasome and IL-1f production in atherosclerosis, we
examined the serum secretion of IL-1 using ELISA. As
shown in Figure 2(a), the elevated levels of IL-1f in the
model group were significantly decreased after fucoidan
treatment. Western blotting was used to detect NLRP3
inflammasome component and IL-1f production in the
carotid artery of mice. The protein levels significantly
increased in the model group compared with those in
the control group. However, treatment with fucoidan effec-
tively decreased the levels of NLRP3, ASC, and caspase-1
compared with the control and model groups (Figure 2(b)).
Consistent with these findings, immunohistochemistry analy-
sis showed increased NLRP3 expression in the intima and
necrotic core where macrophages were found in the model
group. The NLRP3 level was markedly lower in the fucoi-
dan group (Figures 2(d) and 2(e)). These findings revealed
that fucoidan inhibited NLRP3 inflammasome activity and
IL-1f3 production.

3.3. Fucoidan Enhances Autophagy in ApoE-/- Mice. TEM
was used to detect autophagosomes and autolysosomes in
the carotid arteries. The number of autophagosomes in the
carotid arteries of ApoE-/- mice increased significantly after
fucoidan treatment (Figure 3(a)). The expression of autoph-
agy markers LC3 and p62 was examined by western blot.
The level of LC3II/LC3I in the model group was not obvi-
ously decreased compared with that in the control group,
but the expression of p62 was significantly increased, indicat-
ing that autophagic flux was inhibited. Fucoidan treatment
significantly increased the LC3II/LC3I level and decreased
the p62 level to a normal extent, indicating enhanced autoph-
agic flux (s 3(b) and 3(c)). Consistently, immunohistochem-
istry analysis showed the same results (Figure 3(d)). Taken
together, these results suggested that fucoidan could activate
autophagy in ApoE-/- mice.
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3.4. Fucoidan Reduces Lipid Accumulation in OxLDL-Treated
Macrophages. To further investigate the specific molecular
mechanism of fucoidan in atherosclerosis, we established a
foam cell model by inducing foam cell formation in macro-
phages treated with oxLDL. After foam cells were incubated
with different concentrations of fucoidan for 36 h, cytotoxic-
ity was detected using the MTT assay, and lipid droplets were
observed with Oil Red O staining. Fucoidan treatment did
not affect the viability of the foam cells (Figure 4(a)). The
staining results revealed that the oxLDL treatment group dis-
played a great number of lipid droplets, which accounted for
more than 50% of the cell volume. However, compared with
oxLDL treatment, fucoidan treatment reduced the intracellu-
lar lipid droplet content (Figure 4(b)).

3.5. Fucoidan Inhibits OxLDL-Induced Inflammasome
Activation in a Dose-Dependent Manner. Previous studies
have demonstrated that oxLDL induces an inflammatory
response and activates the NLRP3 inflammasome. Presently,
fucoidan significantly inhibited the oxLDL-induced NLRP3
inflammasome-associated protein expression in a dose-
dependent manner (Figures 4(c) and 4(d)). We further used
ELISA to assess cytokine IL-1 secretion in the cell culture
medium. OxLDL could induce the secretion of IL-1f from
cells, and fucoidan inhibited the oxLDL-induced secretion
of IL-1p3 (Figure 4(e)).

3.6. Fucoidan Alleviates the Impairment of Autophagic Flux
Induced by OxLDL in a Dose-Dependent Manner. OxLDL
inhibits autophagy in macrophages and promotes the devel-
opment of atherosclerosis [31]. In addition, autophagy
induction results in NLRP3 inflammasome degradation and
reduced IL-1f3 secretion. Hence, we hypothesized that fucoi-
dan could rescue autophagic flux in foam cells. TEM showed
that treatment with fucoidan (300 uyg mL™") increased the for-
mation of autophagosomes (Figure 5(a)). As shown in
Figures 5(b) and 5(c), fucoidan significantly upregulated
LC3II/LC3I and downregulated p62 expression in a dose-
dependent manner. To further study fucoidan-induced
autophagy, we used GFP-RFP-LC3 adenovirus transfection
to observe autophagic flux. Because GFP is unstable in acidic
conditions, weakening of the GFP signal indicates that lyso-
somes fuse with autophagosomes to form autolysosomes,
resulting in quenching of GFP fluorescence. As demonstrated
in Figures 5(d) and 5(e), the abundant formation of red
puncta indicating autolysosomes was observed in the
fucoidan-treated (300 ugmL™) group, and few red puncta
were observed in the bafAl group. These results suggested
that fucoidan treatment enhanced the impaired autophagy
flux induced by oxLDL.

3.7. Fucoidan Mediates P62-Dependent Selective Autophagy
of NLRP3 Inflammasome. A large body of evidence has shown
that autophagy links the inflammasome [10]. To explore the
relationship between autophagy inhibition and NLRP3
inflammasome activation by fucoidan, we used the autophagy
inducer Rapa and the autophagy inhibitor 3-MA. As shown in
Figure 6(a), the protein levels of NLRP3, ASC, caspase-1, and
IL-18 were markedly increased in 3-MA pretreated
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macrophages exposed to fucoidan (300 ugmL™), indicating
that the anti-inflammatory effect of fucoidan was reversed.
In contrast, pretreatment of the macrophages with rapamycin
led to lower IL-1f3 secretion and NLRP3 inflammasome
expression (Figure 6(a)). These data indicate that fucoidan
can inhibit inflammasome activity by activating autophagy.
Immunostaining showed that fucoidan-induced autoph-
agy increased the colocalization of NLRP3 and p62
(Figure 6(c)). The autophagic adaptor p62 can bind and
deliver substrates to the autophagosome for degradation
[13]. To further verify the role of p62 in fucoidan-mediated
regulation of the NLRP3 inflammasome, macrophages were
transfected with p62-siRNA to silence p62 expression
(Figure 6(d)). The expression levels of NLRP3, ASC, cas-
pase-1, and IL-1f in p62-siRNA-treated cells were higher
than in siRNA negative control cells after fucoidan treatment
(Figures 6(f) and 6(g)). Next, we silenced autophagy using
ATGS siRNA (Figure 6(e)). The expression levels of NLRP3,
ASC, caspase-1, and IL-1 were enhanced in fucoidan-

treated macrophages (Figures 6(h) and 6(i)). The collective
results indicated that fucoidan-induced autophagy could
selectively degrade the NLRP3 inflammasome via p62.

4. Discussion

Although it was shown that atherosclerosis in the ApoE-/-
mice was prevented by fucoidan in a few reports, the mole-
cule mechanism of the protection remains unknown [32].
The present study is the first evidence that fucoidan
inhibits NLRP3 inflammasome activation by enhancing
p62/SQSTM1-dependent selective autophagy to alleviate
atherosclerosis.

We established a carotid vulnerable atherosclerotic pla-
que model in ApoE-/- mice and confirmed that exposure
to fucoidan significantly ameliorated lipid accumulation,
delayed the development of carotid atherosclerotic plaques,
inhibited the NLRP3 inflammasome, and activated autophagy.
To further explore the mechanism underlying the relationship
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between NLRP3 and autophagy after using fucoidan, oxLDL
was used to induce macrophages into foam cells. We found
that fucoidan attenuated foam cell formation, suppressed the
NLRP3 inflammasome, and enhanced autophagy. Moreover,
the fucoidan-mediated antiatherosclerotic effects were medi-
ated by p62-dependent autophagy, which selectively degraded
the NLRP3 inflammasome.

In a groundbreaking paper, Gerrity et al. identified mac-
rophages as the main component of the atherosclerotic
plaque [33]. Macrophages, derived from circulating mono-
cytes, produce proinflammatory cytokines, participate in lipid
retention and vascular cell remodeling, and express Toll-like

receptors that connect the innate and adaptive immune
response during atherosclerosis [34]. Recent studies have
shown that fucoidan exerts anti-inflammatory effects by
decreasing the secretion of IL-1f3, a proinflammatory cytokine
secreted by macrophages [22, 35]. IL-18 production is a tightly
controlled process that typically requires NLRP3 inflamma-
some pathway activation [6]. We previously described that
the activation of the NLRP3 inflammasome contributes to
the development of atherosclerosis in high-fat-fed ApoE-/-
mice with partial carotid ligation and differentiated THP-1
cells incubated with oxLDL [12, 36]. Inhibition of the NLRP3
inflammasome results in decreased inflammation and reduced
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atherosclerosis [37]. However, to the best of our knowledge,
the fucoidan-mediated regulation of NLRP3 inflammasome
has not previously been reported in atherosclerosis. The
present study is the first description that fucoidan, one of
the most abundant extracts obtained from brown seaweed,
can reverse the activation of the NLRP3 inflammasome that
accelerates the development of atherosclerosis. The findings
suggest that the antiatherosclerotic mechanism could be
associated with the decrease of the NLRP3 inflammasome.
The same results were obtained in foam cells after fucoidan
treatment. Therefore, the NLRP3 inflammasome might be
the key regulator accounting for the protective effects of
fucoidan on atherosclerosis.

Accumulating evidence suggests that autophagy nega-
tively regulates the activation of the NLRP3 inflammasome
to maintain homeostasis [38]. For example, deficiency of

the autophagy gene Atgl6L1 leads to the secretion of IL-1p
and the activation of the NLRP3 inflammasome [39].
Another study reported that once autophagy activators were
used, NLRP3 inflammasome activity was significantly inhib-
ited and IL-1f secretion was significantly reduced [40].
Importantly, autophagy has been associated with the fate of
macrophage-derived foam cells and atherosclerotic plaques
[41]. It is worth mentioning that fucoidan can induce
autophagy through reduced phosphorylation of key compo-
nents of the phosphoinositide 3-kinase/Akt/mammalian tar-
get of rapamycin pathway in cancer cells [42]. Based on these
data, we speculate that fucoidan can activate autophagy,
resulting in the inhibition of NLRP3 inflammasome activity
in atherosclerosis. First, we used TEM to investigate the effect
of fucoidan on autophagy. As expected, many autophagic
vesicles and lysosomes were apparent in the fucoidan group.
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oxLDL-treated group.

P62/SQSTM-1, which binds to LC3, is often used as a marker
of autophagic flux because its accumulation is indicative of a
blockage in autophagy [43]. In this study, we found that p62

expression was significantly increased and autophagy flux
was blocked in the model group and foam cells, while fucoi-
dan treatment reversed the effect and promoted the
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transition of LC3 from type I to type IL. To further evaluate
the autophagic flux, we used lentivirus to transfect GFP-
RFP-LC3 into cells to detect autophagic flux. After using
fucoidan, the number of red spots increased, indicating an
increase in autolysosomes. In contrast, when autophagy was
blocked with the late autophagy inhibitor bafA1l, a marked
reduction in autolysosomes was observed. These collective
results showed that fucoidan could restore autophagic flux
and has potential value in attenuating the formation and
destabilization of carotid atherosclerotic plaques. However,
a recent study described that fucoidan inhibited autophagy,
which is counter to our results [44]. A possible explanation
for this difference may be that the regulation of autophagy
in the pathogenesis of different diseases is complex. For
example, in hepatic injury, fucoidan inhibits the phosphory-
lation of JAK2 and STATI, which then blocks the degrada-
tion of p62 and reduces autophagy [44]. While in human
gastric carcinoma AGS cells, fucoidan concomitantly causes
autophagic cell death by the upregulation of beclinl and the
conversion of LC3I to LC3II [45].

Our results also showed that the protective effects of
fucoidan were enhanced by treatment with the autophagy
agonist Rapa and alleviated by treatment with the autophagy
inhibitor 3-MA. These findings indicate the participation of
autophagy in NLRP3 inflammasome activity in the patho-
genesis of atherosclerosis. Next, we examined how
fucoidan-induced autophagy regulated the NLRP3 inflam-
masome. It is important to note that p62/SQSTM1, known
as a selective autophagy substrate, is a multidomain adaptor
protein that localizes at the autophagosome membrane
[46]. In autophagy, p62 sequesters K63-linked polyubiquiti-
nated proteins to the autophagic machinery for degradation
through its ubiquitin-association and LC3-interacting
domains [47, 48]. Recent evidence of p62-mediated clearance
of the NLRP3 inflammasome has been described. Our team
recently demonstrated that the scaffold adaptor protein p62
can recognize and transport ubiquitinated NLRP3 to autoph-
agic vesicles for selective degradation in oxLDL stimulated
foam cells [31]. In the present study, foam cells treated with
fucoidan displayed decreased expression of the NLRP3
inflammasome and p62/SQSTM1 accumulation. In addition,
fucoidan promoted the colocalization of NLRP3 and p62. To
illuminate this complicated relationship, we transfected p62-
siRNA to reduce the expression of p62. The p62-siRNA sig-
nificantly attenuated the inhibitory effect of fucoidan on the
expression of NLRP3, ASC, caspase-1, and the downstream
inflammatory factor IL-18. Thus, after diminishing p62
expression by siRNA, the anti-inflammatory effect of fucoi-
dan was eliminated. Furthermore, when the expression of
ATGS5 was reduced, autophagy triggered by fucoidan was
suppressed, and the anti-inflammatory effect of fucoidan
was decreased. These data indicate that the administration
of fucoidan induces p62-dependent selective autophagy of
the NLRP3 inflammasome in foam cells, and thus having
an anti-inflammatory effect.

In conclusion, our study demonstrated the atheroprotec-
tive effects of fucoidan and provided the first data of the novel
underlying mechanisms. Fucoidan could inhibit NLRP3
inflammasome activation by enhancing p62/SQSTM1-depen-
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dent selective autophagy to alleviate atherosclerosis. These
novel results implicated fucoidan as a valuable candidate drug
for antiatherosclerosis therapy and provided a molecular basis
for its clinical application in atherosclerosis treatment.
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