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Abstract

OBJECTIVE——Type 2 diabetes has become a global epidemic, and Asian Indians have a higher
susceptibility to diabetes than Europeans. We investigated whether Indians had any metabolic
differences compared with Northern European Americans that may render them more susceptible
to diabetes.

RESEARCH DESIGN AND METHODS——We studied 13 diabetic Indians, 13 nondiabetic
Indians, and 13 nondiabetic Northern European Americans who were matched for age, BMI, and
sex. The primary comparisons were insulin sensitivity by hyperinsulinemic-euglycemic clamp and
skeletal muscle mitochondrial capacity for oxidative phosphorylation (OXPHOS) by measuring
mitochondrial DNA copy humber (mtDNA), OXPHQOS gene transcripts, citrate synthase activity,
and maximal mitochondrial ATP production rate (MAPR). Other factors that may cause insulin
resistance were also measured.

RESULTS——The glucose infusion rates required to maintain identical glucose levels during the
similar insulin infusion rates were substantially lower in diabetic Indians than in the nondiabetic
participants (£ < 0.001), and they were lower in nondiabetic Indians than in nondiabetic Northern
European Americans (P< 0.002). mtDNA (P< 0.02), OXPHOS gene transcripts (P < 0.01), citrate
synthase, and MAPR (P < 0.03) were higher in Indians irrespective of their diabetic status.
Intramuscular triglyceride, C-reactive protein, interleukin-6, and tumor necrosis factor-a
concentrations were higher, whereas adiponectin concentrations were lower in diabetic Indians.

CONCLUSIONS——Despite being more insulin resistant, diabetic Indians had similar muscle
OXPHOS capacity as nondiabetic Indians, demonstrating that diabetes per se does not cause
mitochondrial dysfunction. Indians irrespective of their diabetic status had higher OXPHOS
capacity than Northern European Americans, although Indians were substantially more insulin
resistant, indicating a dissociation between mitochondrial dysfunction and insulin resistance.

There is a global epidemic of type 2 diabetes (1); and while mortality from other leading
causes of death, including coronary artery disease, stroke, and cancer is declining, deaths
attributed to type 2 diabetes are escalating (2). It is estimated that Asian Indians have the
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highest world-wide prevalence of diabetes (~32 million), and it is conservatively predicted
that the number of affected individuals will double in the next 30 years (3). Population
growth, urbanization, aging, obesity, and physical inactivity are well recognized contributing
factors for the increase in type 2 diabetes (3). In addition, Indians show several unique
features, including a younger age of onset of type 2 diabetes, relatively lower BMI compared
with Northern European descendants at the onset of type 2 diabetes, and lower thresholds for
the other risk factors associated with type 2 diabetes (4,5). Recently, an increased prevalence
of nonalcoholic fatty liver disease in association with insulin resistance has also been
reported among Indians (6). Body fat distribution that causes insulin resistance is also
reported to be different among South Asian Indians (7), and they show a higher body fat
percentage for a given BMI in comparison with Caucasians. The underlying cause of the
unusual susceptibility of Indians to type 2 diabetes remains to be determined.

We investigated whether Indians have underlying differences in energy metabolism that may
render them to be more insulin resistant and contribute to their greater susceptibility to type
2 diabetes. There were several reasons to consider the involvement of energy metabolism
and mitochondrial function in potentially contributing to insulin resistance and type 2
diabetes. First, Indians lived for centuries as an agrarian society with a predominantly
vegetarian diet, which provided lower energy density in comparison with the predominantly
meat diet of Northern Europeans. The emigration to Europe occurred ~40,000 years ago
when the European continent had sparse vegetation for many months due to long winters
(8,9), and the diet therefore consisted predominantly of energy-dense meat products. It has
also been proposed that obesity (and type 2 diabetes) stemmed from a natural selection of
our ancestors favoring a “thrifty genotype” that enabled highly efficient storage of energy
during periods of food abundance (10). Similarly, a relationship between low birth weight
and type 2 diabetes has been observed, epigenetically suggesting that type 2 diabetes may be
attributed to a “thrifty phenotype” (11). A corollary of the above two hypotheses is that
prolonged periods of low energy availability induced adaptive changes in genes and/or
phenotypes that may become disadvantageous when food is plentiful and energy expenditure
is minimized. Because the mitochondria is the primary organelle involved in fuel
metabolism, we sought to determine whether differences in mitochondrial function may
occur in the Indian population with high susceptibility to develop diabetes.

A hallmark metabolic defect of type 2 diabetes is insulin resistance, especially in skeletal
muscle, which is the predominant organ involved in glucose disposal after a meal (12).
Recent studies (13-17) have shown an association between insulin resistance and
mitochondrial dysfunction. We therefore, sought to determine whether diabetic and
nondiabetic Indians were more insulin resistant than nondiabetic Northern European
Americans, who are reported to have a lesser susceptibility to type 2 diabetes than Indians
(3). In addition, we determined whether the theory that insulin resistance may result from
mitochondrial dysfunction is supported by studies in Indians and Northern European
Americans.

Diabetes. Author manuscript; available in PMC 2021 January 18.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Nair et al. Page 3

RESEARCH DESIGN AND METHODS

Thirteen diabetic Indians, 13 nondiabetic Indians, and 13 nondiabetic Northern European
Americans who were matched for sex (eight men and five women per group), age, and BMI
(Table 1) were recruited. Type 2 diabetic participants were selected based on a known
diagnosis and matched to nondiabetic control participants who had no first-degree relatives
with type 2 diabetes and a fasting plasma glucose concentration <100 mg/dl. Participants
were excluded after history and physical examination if there was evidence of clinically
important coexisting illnesses or conditions that could have an effect on the outcome
measures. Participants with serum creatinine concentrations >1.5 mg/dl, taking medications
that may have an impact on energy metabolism, with liver function abnormalities, or with
active coronary artery disease were excluded. All attempts were made to match participants
for their activity levels. Except for one nondiabetic Indian and one nondiabetic Northern
European American who were matched for their exercise programs, no other participants
were involved in any regular exercise programs.

Participants on thiazolidinediones (2 of 13 diabetic Indians) were required to stop these
medications for 3 weeks before the study. Of the other 11, 1 was on metformin alone, 2 were
on sulfonylurea alone, 6 were on combination of sulfonylurea and metformin, and 2 were on
diet alone. These other oral hypoglycemic agents were also stopped 5 days before the study,
and during these days, their blood glucose levels were maintained between 4.4 and 7.8
mmol/l (80-140 mg/dl) by variable doses of short-acting insulin (11 of 13 diabetic Indians).
Subjects were admitted to the General Clinical Research Center (current name Clinical
Research Unit of Mayo Clinic CTSA) on the evening before the study. They received a
standardized meal (16 kcal/kg fat-free mass [FFM] with carbohydrate:fat:protein 55:30:15)
at 6:00 P.M. followed by insertion of a retrograde hand vein catheter for blood collections. A
second catheter in the contralateral arm was used for infusion of insulin. Plasma glucose
levels were maintained in type 2 diabetic participants between 5.0 and 6.7 mmol/l (90-120
mg/dl) using a standardized insulin infusion protocol starting at 6:00 P.M. At bedtime, a
snack (5.5 kcal/kg FFM) was provided to all subjects to avoid long-term fasting. At 7:00
A.M., in both diabetic and nondiabetic participants, we collected a baseline blood sample
and then started an infusion of insulin at a rate of 1.5 mU - kg™* FFM - min~1; plasma
glucose was monitored every 10 min; and a variable 40% dextrose infusion was adjusted to
maintain glucose between 4.7 and 5.0 mmol/l (85-90 mg/dl) as previously described
(13,18). Two vastus lateralis muscle percutaneous needle biopsies were performed in two
different legs under local anesthesia as previously described (19) before and 8 h through the
glucose clamp. Arterialized (20) blood samples were collected every 2 h for measurements
of hormones and substrates.

Muscle mitochondrial studies.

Fresh muscle needle biopsy samples (~50 mg) (see above) were kept on ice in a saline-
soaked gauze for immediate measurement of maximal mitochondrial ATP production rates
(MAPR). Mitochondrial separation procedures and buffer solutions have been described
previously (13). In brief, samples were homogenized in buffer A (100 mmol/l KCI, 50
mmol/l Tris, 5 mmol/l MgCl,, 1.8 mmol/l ATP, and 1 mmol/l EDTA) and spun at 1,020gin
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an Eppendorf 5417C centrifuge at 4°C. The supernatant was removed and spun at 10,000¢.
The new pellet was resuspended in buffer A and recentrifuged at 9,0009, and supernatant
was removed. The resulting pellet was resuspended in buffer B (180 mmol/l sucrose, 35
mmol/l KH,PO,, 10 magnesium acetate, and 5 mmol/l EDTA) and kept on ice. This
mitochondrial separation procedure yields a mitochondrial fraction that consists largely of
subsarcolemmal mitochondria (19). Maximal MAPR were measured as previously described
(13). The reaction mixture for MAPR measurement included a luciferin-luciferase ATP
monitoring reagent (formula SL; BioThema, Dalard, Finland), substrates for oxidation, and
35 pmol/l ADP. Substrates used were 10 mmol/l glutamate plus 1 mmol/l malate, 20 mmol/Il
succinate plus 0.1 mmol/l rotenone, 1 mmol/l pyruvate plus 0.05 mmol/I palmitoyl-L-
carnitine plus 10 mmol/l a-ketoglutarate plus 1 mmaol/l malate, 1 mmol/l pyruvate plus 1
mmol/l malate, and 0.05 mmol/I palmitoyl-L-carnitine plus 1 mmol/l malate with blank tubes
used for measuring background activity. All reactions for a given sample were monitored
simultaneously at 25°C for 20-25 min and calibrated with addition of an ATP standard using
a BioOrbit 1251 luminometer (BioOrbit Oy, Turku, Finland). Mitochondrial integrity was
monitored by measuring citrate synthase activity before and after freeze-thaw membrane
disruption and the addition of Triton X-100. Accordingly, mitochondria were 94 + 1% intact
with no differences between treatments. In addition, citrate synthase activity and
mitochondrial protein concentrations were determined (DC Protein Assay; Bio-Rad,
Hercules, CA) as previously described (19). The MAPR values were normalized to the
mitochondrial protein content.

Mitochondrial DNA copy number.

Mitochondrial DNA (mtDNA) was extracted from skeletal muscle and measured as
previously described (13). Specifically, real-time PCR (Applied Biosystems 7900HT
Sequence Detection System) was used to measure mtDNA copy numbers (14), using primer/
probe sets to mtDNA-encoded NADH dehydrogenase 1 and cytochrome B genes. The
abundance of each gene was normalized to 28S ribosomal DNA, which was co-amplified
within the same reaction well.

Hormones, substrates inflammatory markers assays, and intramuscular triglycerides.

Glucose, insulin, glucagon, plasma lipids (21), and intramuscular triglyceride (IMTG) levels
(22) were measured as previously described. Total adiponectin and high-molecular weight
adiponectin concentrations were measured by the human adiponectin double antibody
radioimmunoassay kit (Linco Research, St. Louis, MO) and the HMW Adiponectin ELISA
kit (Linco Research), respectively. Highly sensitive C-reactive protein (hsCRP) was
measured on the Hitachi 912 chemistry analyzer by a polystyrene particle enhanced
immunoturbidimetric assay from DiaSorin (Stillwater, MN). Tumor necrosis factor-a. (TNF-
a) and interleukin (IL)-6 concentrations were measured by chemiluminescent enzyme
immunometric assay (Immulite, Diagnostic Products, Los Angeles, CA).

Microarray experiment.

Total RNA was extracted from skeletal muscle of individual subjects using Qiagen RNeasy
Fibrous Tissue kit (Qiagen) treated with DNase and then processed for microarray
experiments as previously described (15,23).
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Microarray data analysis.

The arrays were normalized using invariant probe set normalization, and the expression
measurement for each transcript was calculated using perfect match—only model based
expression index by dChip (24). Genes with all “absent” calls by dChip across all compared
samples were removed from further analysis. In addition, we did not consider the genes with
average intensities <50 in both compared groups. Genes with a P value <0.05 were
considered as potential candidates of differentially expressed genes between the compared
groups and used as the “focus genes” for ingenuity pathway analysis (IPA). To avoid
inflating pathways, only the nonredundant probe sets were used in the focus and reference
gene lists.

Real-time PCR.

MRNA gene transcript levels for selected genes were examined using quantitative real-time
PCR (Applied Biosystems 7900HT Sequence Detection System) as described previously
(15,25). The abundance of each target gene was normalized to the signal for 28s ribosomal
RNA, which was co-amplified within the same reaction well (15,25).

Immunoblotting.

The skeletal muscle protein abundance for peroxisome proliferator—activated receptor-y
coactivator (PGC) 1-a and PGC1-f were measured using standard immunoblotting
techniques as previously described (15). PGC1-a and PGC1-f antibodies were purchased
from Calbiochem (San Diego, CA) and Novus Biologicals (Littleton, CO), respectively.

Statistical analyses.

All statistical analyses were conducted using SAS software (version 9.1; SAS, Cary, NC).
Data are presented as means + SE. The body composition variables were analyzed on their
traditional scales of measure, and these data were analyzed via ANOVA. Metabolic
measurements were log transformed to produce symmetric shaped distributions, and these
measurements were analyzed via ANCOVA. The covariates included in the ANCOVA model
were age, sex, and percent body fat. The glucose infusion rate and insulin concentrations
that were measured during the euglycemic clamp were analyzed via two-way, mixed-effects
ANCOVA. The model specification for these models included parameters to estimate the
group main effect, the time main effect, and group-by-time interaction on the mean
response. The covariates included age, sex, and percent body fat. The ANCOVA model
parameters for the glucose infusion rate and insulin concentrations during the euglycemic
clamp were estimated based on the principles of restricted maximum likelihood, with the
variance-covariance structure estimated in the compound symmetry form. The mRNA gene
transcripts and protein abundance levels were log transformed to produce symmetric shaped
distributions and were analyzed via ANOVA. For all analyses, linear contrasts of the means
were constructed to test our a priori hypotheses. Fisher’s restricted least significant
differences criterion was used to maintain the a priori type | error rate at 0.05.
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RESULTS

Body composition.

The three groups had similar FFM and skeletal muscle mass, although the diabetic Indians
had a significantly higher percentage of body fat than nondiabetic Northern European
Americans (Table 1).

Hormonal, metabolic, and inflammatory measurements.

Fasting plasma glucose concentrations were higher in diabetic Indians than both nondiabetic
groups, but no differences were noted between the two nondiabetic groups (Table 1). Fasting
plasma insulin concentrations were higher in diabetic Indians than both nondiabetic groups
and were higher in nondiabetic Indians than nondiabetic Northern European Americans
(Table 1). No differences in plasma concentrations of glucagon were noted (Table 1).

Total cholesterol concentrations were not different among the three groups (Table 1),
although both diabetic and nondiabetic Indians had lower HDL cholesterol than the
nondiabetic Northern European Americans (Table 1). Triglyceride concentrations were
higher in nondiabetic Indians than nondiabetic Northern European Americans (Table 1).

CRP, IL-6, and TNF-a concentrations were higher in diabetic Indians than in both
nondiabetic groups (Fig. 1), and IL-6 concentrations were higher in nondiabetic Indians than
in nondiabetic Northern European Americans (Fig. 1). Total and high molecular weight
adiponectin concentrations were lower in diabetic Indians than both nondiabetic groups, and
nondiabetic Indians had lower concentrations than Northern European Americans (Fig. 1).

Insulin sensitivity.

The glucose infusion rate needed to maintain identical plasma glucose concentrations
(diabetic Indians, 5.01 + 0.02 mmol/l; nondiabetic Indians, 5.06 + 0.02; and nondiabetic
Northern European Americans, 4.99 £ 0.03; NS) were substantially lower in diabetic Indians
(4.5 £ 0.6 umol - kg~ FFM - min~1) than nondiabetic Indians (42.3 + 4.0 pmol kg~ FFM -
min~1) and nondiabetic Northern European Americans (68.3 + 4.2 umol - kg™ FFM - min™1)
(P<0.001) (Fig. 2). Nondiabetic Indians required a lower glucose infusion rate than the
nondiabetic Northern European Americans (£ < 0.002).

Muscle mitochondrial data.

Measurements of maximal MAPR (corrected for mitochondrial protein content) using
different substrate combinations in nondiabetic and diabetic Indians were significantly
higher than those observed in nondiabetic Northern European Americans (£ < 0.03 to
<0.001 for measurements based on five substrate combinations) (Fig. 3). No differences
between the Indian groups were noted. We also measured MAPR in muscle biopsy samples
taken at baseline and after maintaining plasma glucose and insulin at the same
concentrations for 8 h, and both showed higher ATP production rates in Indians (only
baseline values shown). As expected, the 8-h infusion of insulin showed an overall trend for
an insulin-induced increase in MAPR in all six substrate combinations; however, the insulin-
induced elevations in MAPR did not reach the level of statistical significance among
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nondiabetic Northern European Americans (Fig. 3). Among nondiabetic and diabetic
Indians, insulin resulted in a more variable MAPR response, and again, these insulin-
induced changes in MAPR did not reach the level of statistical significance (except for the
change in MAPR in the palmitate and malate condition in diabetic Indians). Moreover, there
were no significant between-group differences with respect to the insulin-induced changes in
MAPR. Previous studies showing increases in MAPR after insulin infusion in nondiabetic
subjects occurred either when amino acids were infused (13) or when infused during
somatostatin clamp (15). Muscle citrate synthase activity was also higher in Indians (P <
0.01), indicating higher mitochondrial oxidative capacity with no differences between two
Indian groups (Fig. 3).

Both diabetic and nondiabetic Indians had higher mtDNA copy number (P< 0.02) than
nondiabetic Northern European Americans (Fig. 3); there were no significant differences
between the diabetic and nondiabetic Indians.

Gene transcript levels.

Microarray analyses were conducted on the nondiabetic groups to evaluate whether
nondiabetic Indians had any pattern of gene transcript levels consistent with their enhanced
mitochondrial function. Of the 19,285 present and nonredundant genes analyzed, 1,222 were
differentially expressed between the nondiabetic Indians and nondiabetic Northern European
Americans (Table 2). Subsequently, we used these 1,222 genes as “focus genes” for IPA, and
the full set of 19,285 genes were used as reference genes for IPA. As shown in Fig. 4, the top
canonical pathways associated with up- or downregulated genes in nondiabetic Indians
compared with the nondiabetic Northern European Americans were listed. The complete list
of altered canonical pathways by IPA is reported (Table 2). A cluster of genes (Table 3)
involved in oxidative phosphorylation (OXPHQS) and the citric acid cycle were upregulated
in the nondiabetic Indians compared with the nondiabetic Northern European Americans.
We did not observe any significant differences in OXPHOS gene transcript levels between
the nondiabetic and diabetic Indians. A list of the gene transcript levels is available in an
online appendix at http://dx.doi.org/10.2337/db07-1556.

RT-PCR and immunoblotting.

Table 4 presents the mRNA and transcript levels of selected target genes and the protein
abundance for PGC1-a and PGC-B by study group. There were no significant differences in
MRNA transcripts for PGC1-a, mitochondrial transcription factor-A (TFAM), nuclear
respiratory factor-1 (NRF-1), estrogen-related receptor-a (ERR-a), myosin heavy chain
(MHC)-1, MHC-lla, or MHC-I1x among the three groups. In contrast, nondiabetic Northern
European Americans had significantly higher levels of GLUT4 gene transcripts than both
Indian groups (Table 4). There were no significant differences in protein abundance for
PGC1l-a and PGC1- among the three groups.

DISCUSSION

The current study demonstrated that nondiabetic Northern European Americans were
substantially more insulin sensitive than both diabetic and nondiabetic Indians. However,
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irrespective of their diabetic status, the Indians had higher skeletal muscle mitochondrial
OXPHOS capacity as demonstrated by the higher abundances of mtDNA, mRNA of
OXPHOS genes, oxidative enzyme activity (citrate synthase), and maximal ATP production
rate. Despite being more insulin-resistant than nondiabetic Indians, the diabetic Indians had
similar skeletal muscle mitochondrial OXPHOS capacity.

We measured mtDNA copy number using two different primer/probe sets and found that
Indians, irrespective of their diabetic status had significantly higher mtDNA copy number
than nondiabetic Northern European Americans. No differences were noted in mtDNA copy
numbers between diabetic and nondiabetic Indians, which is consistent with what has been
observed in diabetic and nondiabetic Northern European American populations (15). A close
correlation has been previously observed between mtDNA abundance, its transcript levels,
and ATP production capacity in skeletal muscle of people of wide range of age groups (14).
The observation of higher maximal MAPR corrected for mitochondrial protein content in
Indians using different substrates and citrate synthase activity support greater capacity to
produce ATP, and this greater capacity was related to increased mtDNA abundance. It is well
known that mtDNA only encodes 13 proteins involved in mitochondrial functions, whereas
the rest of proteins are encoded by nuclear genes. The results from gene array analysis,
which measures nuclear encoded gene transcripts, demonstrated that clusters of genes
involved in OXPHOS and the citric acid cycle were upregulated in the nondiabetic Indians
compared with the nondiabetic Northern European Americans. Among the differentially
expressed genes between nondiabetic Indians and Northern European Americans are
upregulation of genes involved in pyruvate metabolism and citric acid cycle, which are
consistent with observation of increase in OXPHOS pathway. Upregulation of integrin
pathway (26) is consistent with the associated upregulation of ERK/MAPK signaling and
may be involved in cell proliferation. Similarly, the cytokine pathways (IL-2 and IL-6) are
inflammatory pathways and are consistent with the overall increase in circulating
inflammatory factors. Although cytokines and integrin pathways may be involved in cell
cycling, it is not clear whether they may have contributed to increased mtDNA copy number.
It is well established that both nuclear and mitochondrial genes involved in energy
metabolism are well regulated and coordinated (27), and the results from the current study
clearly support the hypothesis that higher mtDNA copy number and nuclear-encoded gene
transcript levels cause the increased mitochondrial oxidative capacity.

In the current study, we measured mRNA and protein expression of PGC-1a in skeletal
muscle and could not detect any significant differences among diabetic Indians, nondiabetic
Indians, or nondiabetic Northern European Americans. Moreover, the finding that there was
not a significant difference in mRNA transcript levels between diabetic and nondiabetic
Indians is consistent with our findings in diabetic and nondiabetic Northern European
Americans (15). We also did not find any differences of those nuclear regulators of
mitochondrial biogenesis between Northern European Americans and Indians. Based on
previous studies (15,28), it appears that mMRNA levels of these regulatory genes change
based on insulin levels. Both diabetic and nondiabetic Indians had lower GLUT4 mRNA
transcript levels than nondiabetic Northern European Americans, which is consistent with
their level of insulin resistance. However, we did not observe a significant difference
between diabetic and nondiabetic Indians.
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The potential implication of higher mitochondrial OXPHQOS capacity on energy needs of
Indians remains to be determined. Previous studies across various species, including yeast
(29), rodents (30), and humans, (31), demonstrated enhanced mitochondrial biogenesis in
response to caloric restriction. However, it remains unclear from the current study whether
observed higher muscle mitochondrial oxidative capacity in Indians represents an adaptive
process or whether other genetic factors are involved in this metabolic pattern among
Indians.

The current results clearly demonstrated that irrespective of their diabetic status, Indians
were substantially less insulin sensitive than their nondiabetic Northern European American
counterparts, despite having enhanced mitochondrial function and higher mtDNA copy
numbers. However, the current study did not specifically address the site (i.e., liver versus
skeletal muscle) of insulin resistance in Indians. It is possible a component of insulin
resistance among Indians could be partly localized to liver because it has been shown that
Indians have high prevalence of nonalcoholic fatty liver (6). Insulin resistance and reduced
muscle MAPR have been reported to occur with aging (14,16). This age-related muscle
mitochondrial dysfunction, however, occurs in association with a concomitant reduction in
mtDNA abundance (14); and in a selected cohort of offspring of type 2 diabetic patients,
reduced mitochondrial density was associated with reduced MAPR and insulin resistance
(32). In contrast, we previously reported that nondiabetic and type 2 diabetic Northern
European Americans, have similar muscle MAPR and mtDNA copy numbers at
postabsorptive insulin levels, however, the diabetic Northern European American subjects
failed to increase their MAPR in response to low levels of insulin and only increased when
insulin levels reached high physiological levels (13,15). This failure to increase muscle
MAPR occurred in association with reduced insulin-induced glucose disposal, indicating
insulin resistance (15). A reduction in skeletal muscle mMRNA abundance of OXPHOS genes
has been reported (28,33,34) by insulin treatment (33).

Consistent with the previous reports of association between insulin resistance and IMTG
(35), we found that diabetic Indians have substantially higher IMTG levels than their
nondiabetic counterparts (Table 1). Despite observing substantially lower insulin sensitivity
in nondiabetic Indians, we did not find any higher IMTG in this group in comparison with
nondiabetic Northern European Americans. We also observed that the nondiabetic Northern
European Americans had higher plasma concentrations of total and high molecular weight
adiponectin than the nondiabetic and diabetic Indians. Moreover, the nondiabetic Indians
had higher total and high molecular weight adiponectin concentrations than the diabetic
Indians. Adiponectin, a hormone secreted from fat cells, has been shown to correlate with
insulin sensitivity (36). The inflammatory markers such as CRP, TNF-a., and IL-6 were
higher in the diabetic Indians (Table 1), and the nondiabetic Indians also tended to have
higher levels of these inflammatory markers (37) than the nondiabetic Northern European
Americans, consistent with the reported link between insulin resistance and inflammation
(38). Finally, the observation of lower concentrations of HDL cholesterol in the Indians is
also consistent with the reported higher susceptibility to coronary artery disease among
Indians (39).
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In conclusion, the present data indicate that despite being more insulin resistant, diabetic
Indians had similar muscle OXPHOS capacity as nondiabetic Indians, demonstrating that
diabetes per se does not cause mitochondrial dysfunction. Moreover, irrespective of their
diabetic status, Indians had higher OXPHOS capacity than Northern European Americans,
despite being substantially more insulin resistant, indicating that mitochondrial dysfunction
cannot account for insulin resistance in Asian Indians. The present data also suggest that
Asian Indians might have a greater propensity for intramyocellular triglyceride accumulation
than Northern European Americans, although the molecular mechanisms remain to be
elucidated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary
CRP C-reactive protein
FFM fat-free mass
hsCRP highly sensitive CRP
IL interleukin
IMTG intramuscular triglyceride
IPA ingenuity pathway analysis
MAPR mitochondrial ATP production rate
mtDNA mitochondrial DNA
OXPHOS oxidative phosphorylation
PGC peroxisome proliferator—activated receptor-ry coactivator
TNF-a tumor necrosis factor-a
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European Americans Asian Indians Asian Indians

Plasma concentrations of inflammatory factors and adiponectin. Asian Indian diabetic
patients have significantly higher hsCRP, IL, and TNF-a but lower total and high molecular
weight adiponectin levels. Nondiabetic Indians also have lower total and high molecular
weight adiponectin levels and higher IL-6 than the Northern European Americans.
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FIG. 2.

Glucose infusion rate (A) and insulin concentrations (5) during an 8-h euglycemic-
hyperinsulinemic clamp in 13 each of nondiabetic European Americans, nondiabetic Asian
Indians, and diabetic Asian Indians matched for sex. Data are presented as means + SE.
Mixed-effects ANCOVA models were used to test the main effect of group adjusted for age,
sex, and percent fat. ANCOVA revealed a significant group x time interaction (£ < 0.001)
for the glucose infusion rate. Glucose area-under-the-curve values were significant different
among the all three groups (P < 0.001; data not shown). ANCOVA did not reveal a
significant group x time interaction (P> 0.05) for the insulin concentrations. Post hoc
analyses were conducted using the Fisher’s least significant differences criterion.
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FIG. 3.
Baseline MAPRs (A) and the insulin-induced changes in MAPRs (B) obtained from 13

nondiabetic Northern European Americans, 13 nondiabetic Asian Indians, and 13 diabetic
Asian Indians matched for sex. ATP production rate measurements were made in the
presence of six different substrate combinations: succinate plus rotenone (SR), pyruvate plus
malate (PM), glutamate plus malate (GM), palmitoyl-L-carnitine plus a-ketoglutarate plus
malate (PPKM), a-ketoglutarate, and palmitoyl-L-carnitine plus malate (PCM). C: Baseline
mitochondrial citrate synthase activity. Dand £ mtDNA copy numbers assessed using
primers and probes directed to mitochondrial-encoded genes NADH dehyrogenase 1 (D) and
Cytochrome B (£) normalized to 28 s. ANCOVA was used to test the main effect of group
adjusted for age, sex, and percent fat. Post hoc analyses were conducted using the Fisher’s
least significant differences criterion when the main effect for group was significant at P<
0.05. The data were log normalized for analysis.
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FIG. 4.

Skeletal muscle gene transcript profiles measured using Affymetrix HG-U133 plus 2.0
GeneChip arrays in nondiabetic Asian Indians and Northern European Americans. A
volcano plot of 1,222 differentially expressed gene transcripts is shown. The altered
canonical pathways based on IPA are shown with the pathways associated with higher
expression of gene transcripts in Asian Indians on the right panel and the pathways
associated with lowered expressed transcripts on the /eft panel. The OXPHOS (shown in red,
P=0.013) and citrate cycle (blue, £=0.015) involving mitochondrial function gene
transcripts are expressed at higher levels in Asian Indians. The list of other pathways
significantly different between nondiabetic Asian Indians and Northern European Americans
are given in Tables 2 and 3.
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