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Abstract

Aging is often associated with declines in language production. For example, compared to 

younger adults, older adults experience more tip-of-the-tongue (TOT) states, show decreased 

speed and accuracy in naming objects, and have more pauses and fillers in speech, all of which 

indicate age-related increases in retrieval difficulty. While prior work has suggested that retrieval 

difficulty may be phonologically based, it is unclear whether there are age-related differences in 

the organization of phonological information per se or whether age-related difficulties may arise 

from accessing that information. Here we used fMRI to investigate the neural and behavioral basis 

of phonological neighborhood denisty (PND) effects on picture naming across the lifespan (N=91, 

ages 20-75). Consistent with prior work, behavioral results revealed that higher PND led to faster 

picture naming times and higher accuracies overall, and that older adults were less accurate in 

their responses. Consistent with the behavioral analyses, fMRI analyses showed that increasing 

PND was associated with decreased activation in auditory and motor language regions, including 

bilateral superior temporal gyri and bilateral precentral gyri. Interestingly, although there were 

age-related increases in functional activation to picture naming, there were no age-related 

modulations of neural sensitivity to PND. Overall, these results suggest that having a large cohort 

of phonological neighbors facilitates language production, and although aging is associated with 

increases in language production difficulty, sensitivity to phonological features during language 

production is stable across the lifespan.

1. Introduction

Although most language abilities are remarkably stable over the lifespan, older adults often 

have increased difficulty with language retrieval and production. Indeed, older adults often 
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cite word retrieval as a frequent and frustrating challenge (Ossher et al., 2013; Sadat et al., 

2014, Vitevitch and Stamer, 2006). In laboratory studies, older adults are often slower to 

name pictures (Mortensen et al., 2006), and have more omissions in speech. However, while 

these issues have been widely investigated behaviorally, less is known about the neural bases 

of these effects. Moreover, many prior studies of language production and aging have 

examined only younger and older adults, limiting our understanding of how language 

production differs across the lifespan. To examine these issues, individuals aged 20 – 75 

years old completed an fMRI picture naming study to investigate neural and behavioral 

sensitivity to phonological aspects of production by manipulating a well-established 

phonological variable — phonological neighborhood density (PND).

PND is the number of words that differ from a target word by the addition, subtraction, or 

substitution of a single sound (Landauer and Streeter, 1973). For example, the word “phone” 

has many neighbors including “cone”, “tone”, “loan”, “own”, “foam”, etc., whereas 

“month ” has none. Phonological neighborhood density has been shown to influence both 

perception and production, where larger neighborhoods often produce interference during 

perception and facilitation during production (for a review see, Baus et al., 2008; Goldrick et 

al., 2010; Harley and Brown, 1998; Perez, 2007; Stemberger, 2004; Tsai, 2018; Vitevitch, 

2002; Vitevitch and Luce, 2016) but see also (Newman and German, 2005; Sadat et al., 

2014; Tabak et al., 2010; Vitevitch and Stamer, 2006). Focusing on language production, 

items with larger phonological neighborhoods are generally named faster (Vitevitch, 2002) 

and more accurately (Stemberger, 2004), and others have shown that words with dense 

phonological neighborhoods are named more accurately in tongue twisters (Vitevitch, 2002), 

and elicit fewer malapropisms (e.g., mitten for muffin, Vitevitch, 1997).1 These facilitatory 

effects are thought to arise from form-related activation of phonologically-similar neighbors 

which then feeds back to the intended target. Phonological neighborhoods have also been 

found to influence articulatory aspects of production, in which words with dense 

phonological neighborhoods have shorter vowel durations, more expanded vowel space 

(Gahl et al., 2012; Munson and Solomon, 2004; Wright, 2004), longer voice onset times 

(Fox et al., 2015; Fricke et al., 2016; Zhang et al., 2019), and more pronounced 

coarticulatulatory effects (Scarborough, 2013; Scarborough and Zellou, 2013). Collectively, 

these findings suggest that phonological neighbors influence the speed, accuarcy, and form 

of language production.

However, many of these studies have been conducted in younger adults. Although less is 

known about middle-aged adults, the few studies that have examined language production 

suggest that middle-aged individuals have the highest picture naming accuracy (Kavé et al., 

2010; Newman and German, 2005). In contrast, older adults often have increased difficulty 

with language production. Several empirical studies have suggested that at least some part of 

these age-related increases in retrieval difficulty may be related to phonological aspects of 

the stimuli. For example, older adults have more tip-of-the-tongue (TOT) experiences 

(Burke et al., 2004; Burke et al., 1991; Maylor, 1990; Rastle and Burke, 1996) which reflect 

1However, not all studies of language production find facilitatory effects of PND, e.g., (Newman and German, 2005; Sadat et al., 
2014). Moreover, effects of PND may interact with other factors, such as age of acquisition (Karimi & Diaz, In Press). However, in the 
present study we focus on basic neural effects of PND, since these have not been previously examined.
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phonological, but not semantic retrieval failure. These age-related phonological deficits have 

been taken as evidence that phonological connections may be particularly vulnerable to 

decline (Burke et al., 1991).

In contrast to a phonological deficit account, others have suggested that cognitive decline 

among older adults may be influenced by inhibitory deficits (Hasher et al., 1991; Hasher and 

Zacks, 1988). If older adults inhibit less efficiently, then this could lead to activation of the 

intended target as well as other less relevant candidates, producing increased selection 

demands. Although phonological and inhibitory deficits are not mutually exclusive, these 

theoretical perspectives predict different effects of phonological neighborhoods in older 

adults. If phonological links weaken across the lifespan, the facilitory effect of phonological 

neighbors should also weaken. This may leave words with smaller phonological 

neighborhoods most vulnerable to age-related declines because such words have fewer 

neighbors from which to benefit. Alternatively, if inhibitory deficits increase with age, then 

we may expect a more pronounced influence of phonological neighbors on language 

production because if more phonological neighbors are active this might boost the activation 

of the intended target.

We know of only one study that has examined age-related differences in the effects of 

phonological neighborhoods (Vitevitch and Sommers, 2003). Vitevitch and Sommers found 

that older adults experienced more TOTs compared with younger adults, but only for items 

that had both low phonological neighborhood density and low neighborhood frequency, 

suggesting that older adults had increased retrieval difficulty when there were particularly 

weak neighborhood effects. In a separate picture naming experiment, they found that high 

neighborhood frequency led to faster naming speed and higher accuracy rates for older 

adults. These findings support the idea that older adults may be disproportionately impaired 

when processing items with relatively weak or few phonological neighbors, and that strong 

phonological neighborhoods facilitate retrieval.2 These results also suggest that both the size 

and the strength of the phonological neighborhood may influence retrieval.

All of the studies discussed thus far have focused on behavior; however, less is known about 

the neural bases of phonological neighborhood effects on language production. Peramunage 

and colleagues examined how younger adults processed minimal pairs (words varying by 

only a single phonemic element such as voicing, e.g., cape - gape, Peramunage et al., 2011). 

They found that words with close phonological neighbors elicited less activation than words 

without close phonological neighbors in left hemisphere regions that have been implicated in 

phonological processing (left superior temporal gyrus and left supramarginal gyrus) as well 

as language selection (left inferior frontal gyrus) and motor planning (left precentral gyrus). 

Although they did not look at phonological neighborhood density effects per se, these 

findings suggest that greater phonological overlap elicited less activation in younger adults. 

Others have used the picture-word interference design to examine how explicitly presenting 

a phonologically-related word affects retrieval. Consistent with what Peramunage and 

colleagues found, these picture-word interference studies find that written and auditorily 

2It may also be the case that the influence of phonological neighbors varies as a function of that item’s relative activation in relation to 
its neighborhood (e.g., as reflected in frequency in Vitevitch and Sommers, 2003).
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presented phonologically-related words also engage bilateral superior temporal gyri, left 

supramarginal gyrus, and left inferior frontal gyrus (Abel et al., 2009; de Zubicaray and 

McMahon, 2009; de Zubicaray et al., 2002; Diaz et al., 2014). Collectively, these findings 

highlight the importance of bilateral superior temporal gyri, and left hemisphere language 

regions (precentral, supramarginal, and inferior frontal gyri) in phonological processing.

Neuroimaging studies that have examined phonological processing in older adults suggest 

that they may be impaired in phonological aspects of production. For example, Shafto and 

colleagues showed that older adults had less brain activation in the left insula compared to 

younger adults during TOT states, and linked these lower levels of activation to poorer 

naming performance (Shafto et al., 2010). Interestingly, they found no age differences 

during successful naming, suggesting that age differences in the neural bases of language 

production may be strongest specifically during phonological retrieval failures, as TOTs do 

not involve failed semantic access. Consistent with these results, research from our lab has 

demonstrated that older adults are less accurate and less efficient when making phonological 

decisions and have weaker brain-behavior relations (Diaz et al., 2014; Diaz et al., 2018). 

Moreover, older adults may engage key language regions such as the insula less, when 

retrieval demands are high, as when naming low frequency items (Gertel et al., 2020).

Although age-related increases in language production impairments have been documented, 

older adults show stability in other aspects of language, such as similar patterns of semantic 

priming (Burke et al., 1987; Madden et al., 1993), and similar sensitivity to frequency 

manipulations (Gertel et al., 2020; Gollan et al., 2008; LaGrone and Spieler, 2006; Newman 

and German, 2005). While none of these previous investigations have specifically examined 

phonological processes, these findings raise the possibility that the underlying organization 

of language may be largely intact. Indeed several studies within the domain of language 

suggest that age-related increases in functional activation may be due to external task 

demands. For example, in language production tasks, older adults have more difficulty with 

increasing task demands compared to younger adults (Zhang et al., 2019), and age-related 

increases in fMRI activation during language comprehension have been attributed to the 

addition of an explicit task (Davis et al., 2014). Thus, an open question is whether age-

related deficits in language production reflect differences in the organization of basic 

linguistic abilities or differences in executive aspects such as selection or adjusting to task 

demands.

In the present study we investigated language production using an fMRI picture naming 

paradigm. Specifically, we were interested in assessing neural and behavioral sensitivity to 

PND across the lifespan using a minimally demanding task. If language production deficits 

are related to a purely phonological deficit, then we would expect older adults to show less 

behavioral and neural sensitivity to PND, compared to younger adults. Alternatively, if 

language production deficits are related to decreased inhibition we might expect age-related 

increases in sensitivity to PND. However, if the underlying organization of the phonological 

system is maintained across the lifespan, we would expect similar sensitivities to PND 

across ages. We adopted a simple picture naming paradigm, to limit the potential influence 

of task demands, and focused our question of interest on an implicit manipulation of the 

underlying PNDs of the items. Moreover, we expand upon many of the previous studies of 
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aging and language by examining age as a continuous variable to asses age-related 

differences across the lifespan.

2. Methods

2.1. Participants

Ninety-three adults participated in the experiment, one was removed due to poor 

performance and a second participant was removed due to the possibility of depression, 

leaving 91 complete data sets. Participants were aged 20-75 (mean age = 47.40 years, sd = 

17.45 years, 54 female). Participants’ ages were distribued across the lifespan in order to 

assess age-related differences in language production, see Fig. 1 for a histogram of the age 

distribution. All participants were community-dwelling, right-handed, native American-

English speakers who had minimal exposure to other languages. All participants had normal 

or corrected-to-normal vision, and reported no history of neurological, psychological, or 

major medical conditions (Christensen et al., 1992). Prior to the MRI session, each 

participant completed a battery of psychometric and neuropsychological tests to assess basic 

cognitive functions such as speed, working memory, executive function, and language. 

These tasks included the Mini-Mental State Exam to screen for mild cognitive impairment 

or dementia (MMSE, Folstein et al., 1975); the geriatric depression scale (GDS) to screen 

for depression (Yesavage et al., 1982); WAIS-III vocabulary, digit-symbol, and digit span 

subtests (Wechsler et al., 1997); phonemic (F, A, S) and categorical (animals) verbal fluency 

(Patterson, 2011); the author recognition test to assess reading habits (Acheson et al., 2008); 

the California Verbal Learning Test to assess immediate and delayed memory (Woods et al., 

2006); simple and choice reaction time tests to assess speed3; a reading span task (Conway 

et al., 2005; Loboda, 2012), a computerized version of the Stroop task (Stroop, 1935), and a 

story elicitation task as a more naturalistic measure of language production. Age was 

significantly positively correlated with RT measures of speed (simple speed, choice speed, 

digit symbol) and inhibition (Stroop) and negatively correlated with measures of working 

memory and recall (backward digit span, verbal working memory, immediate and delayed 

recall). Age was also positively correlated with reading habits, with older adults reporting 

greater familiarity with authors, which has been interpreted as increased reading experience 

(Acheson et al., 2008). Demographic characteristics and assessment scores are reported in 

Table 1. All participants provided written, informed consent, and all procedures were 

approved by the Institutional Review Board at The Pennsylvania State University.

2.2. Stimuli and procedure

Participants performed a picture naming task in the MRI scanner, see Fig. 2. On each trial, 

one of 191 color photographs (396 pixels × 396 pixels, duration = 1500 ms) was presented 

on a white background and participants were instructed to overtly name the photograph as 

quickly as possible while still responding accurately. Participants were also asked to be as 

specific as possible in their answers (e.g., robin instead of bird). To control for brain 

activation to basic visual and motoric features, we included a control condition that 

3Speed tests consisted of computerized, lab-developed, reaction time tasks involving detection of a square (simple) and pressing a left 
or right button in response to arrows pointing left or right (choice). The story elicitation task involved telling the story of the picture 
book “Frog, where are you?” by Mercer Mayer.
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consisted of 50 photographs that had been diffeomorphically transformed to yield 

unrecognizable objects that maintained the basic visual properties of untransformed 

photographs (See Fig. 2 and supplemental materials for examples of transformed images, 

Stojanoski and Cusack, 2014). Participants were instructed to respond to these abstract items 

with the word ‘picture’. Items were presented in a randomized order with a variable inter-

stimulus interval (range = 1.5 – 15 s, mean = 3.40 s) that was determined using the optseq2 

program, as jittered presentations have been shown to optimize the hemodynamic response 

(Dale, 1999) and prevent participants from anticipating the onset of events. Participants 

completed 4, 6-minute runs. During the task, overt verbal responses were recorded and 

filtered using an MR-compatible, dual-channel, fiber-optic microphone system 

(Optoacoustics Ltd., Or-Yehuda, Israel). Prior to scanning, participants practiced overt 

picture naming while minimizing head movement in a mock scanner.

Photographs were taken from two normed databases (Brodeur et al., 2014; Moreno-Martínez 

and Montoro, 2012), as well as publicly available images from the internet. Images depicted 

common concrete objects from a variety of categories such as animals, clothing, food, and 

household items. In developing the final experimental stimuli, all images were normed by a 

separate group of native English-speaking individuals (N = 28) to ensure that they could be 

identified accurately and consistently. Linguistic characteristics of the final stimuli were 

obtained from the English Lexicon Project (ELP, Balota et al., 2007, see Supplemental 

Materials for detailed word characteristics). The names of photographs had an average word 

length = 5.88 (SD = 2.01, range 3 - 11), log Hyperspace Analog to Language (HAL) word 

frequency = 8.00 (SD = 1.54, range = 4.48 - 12.16), number of phonemes = 4.81 (SD = 1.78, 

range = 2 - 9), number of syllables = 1.77 (SD = 0.83, range = 1 - 4), visual complexity = 

4.00 (SD = 1.68, range = 0.43 - 7.5), and H-index = 0.25 (SD = 0.40, range = 0 - 1.55). H-

index is a measure of name agreement that accounts for both the proportion and variability 

in acceptable names given by participants for a particular image (Snodgrass and Vanderwart, 

1980). Higher name agreement corresponds with lower H-index values. Phonological 

Neighborhood Densities (PND) were varied across the items to allow us to investigate the 

role of these factors on picture naming. PND was restricted to the number of phonological 

neighbors that overlapped with the first syllable, as Fricke, Baese-Berk, & Goldrick have 

demonstrated that phonological overlap in the first syllable is most influential on processing 

(mean PND = 7.72, SD = 10.00, range = 0 – 37, Fricke et al., 2016).

2.3. Acquisition of MRI data

MRI scanning was completed on a 3T Siemens Prisma Fit MRI scanner with a 64-channel 

head coil. Sagittal T1 weighted localizer images were collected and used to define a volume 

for data collection, higher-order shimming, and alignment to the anterior and posterior 

commissures (AC-PC). T1 weighted anatomical images were collected using a 

magnetization-prepared rapid acquisition gradient echo (MP-RAGE) sequence (repetition 

time [TR] = 2300 ms; echo time [TE] = 2.28 ms; Inversion Time [TI] = 900 ms; flip angle = 

8°; echo spacing = 7 ms; acceleration factor = 2; field of view [FOV] = 256 mm2; voxel size 

= 1 × 1 × 1 mm; 160 contiguous slices; duration ~ 5 min).

Diaz et al. Page 6

Neuroimage. Author manuscript; available in PMC 2021 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Functional images were collected using an echo-planar imaging (EPI) sequence (TR = 2000 

ms; TE = 25 ms; flip angle = 90°; echo spacing = 0.49 ms; FOV = 240 mm2; voxel size = 3 

× 3 × 4 mm; 33 contiguous axial slices, parallel to the AC–PC; sequential-descending 

acquisition; phase encoding = anterior to posterior; fat saturation = on; run duration ~ 6 

minutes; 4 functional runs). Two additional volumes were acquired and deleted at the 

beginning of each functional run to reach steady state equilibrium. A field map sequence 

was also collected using a double-echo spoiled gradient echo sequence (TR = 446 ms; TE = 

4.92 ms; flip angle = 60°; FOV = 240 mm2; voxel size = 3 × 3 × 4 mm; 33 contiguous slices; 

phase encoding = anterior to posterior, fat saturation = off; duration = 1:12 minutes) that 

generated 2 magnitude images and 1 phase image. Resting state and diffusion tensor images 

were also collected; however, those data were analyzed separately.

2.4. Behavioral data analyses

Responses were coded for accuracy and naming time based on the recordings from the MRI 

session. Responses were marked as correct if the participant provided the exact target name 

(e.g., chicken for chicken) or the plural form of the target name (e.g., chickens for chicken). 

Because our analyses focused on phonological neighborhood characteristics, exact overlap 

in onsets was required for the manipulation to be valid, and all other responses were 

classified as errors. Errors were further subdivided into acceptable alternatives (e.g., jet for 

plane), dysfluencies (e.g., helicopter, I mean plane or uh, … plane), incorrect responses (e.g., 

helicopter for plane), omissions, and technical errors4. Incorrect responses accounted for 

21.20% of the data. This high percentage is largely a result of our strict accuracy rubric, as 

acceptable alternatives accounted for 79.9% of errors. The distribution of errors was 

analyzed with a chi-square goodness of fit test to assess distributional differences. In this and 

other by-group follow up analyses, we divided the participants into 3 roughly equal groups 

based on their distance from the mean age (younger age range = 20-40, mean age = 27.42, N 

= 33; middle-aged age range = 41-57, mean age = 49.38, N = 26; Older age range = 58-75, 

mean age = 66.38, N = 32).

Accuracy was analyzed using generalized logistic mixed-effect modeling, employing the 

glmer function in the lme4 package (Bates et al., 2014) in R (R Core Team, 2017). This 

approach has the advantage of accounting for individual data points, allowing intercepts and 

slopes to be random across participants and items. As recommended by Barr, Levy, 

Scheepers, and Tily (Barr et al., 2013), for all regression models we always included the 

maximal random effects structure. By-participant random slopes for frequency5 and PND, 

random intercepts of participant and item, and by-item random slopes for the effect of Age 

were included in the final accuracy and naming time models.6

Naming times were calculated using customized PRAAT scripts (Boersma and Weenink, 

2019). The PRAAT scripts identified response onsets by searching the recordings for pitch 

4There were two types of technical errors—ones in which the responses were recorded but the naming times were missing, and ones 
in which both the recorded response and naming times are missing.
5We included effects of frequency as a covariate to better isolate effects due to PND (frequency – PND correlation in our data set: r2 = 
0.42, p < .001).
6Note that each participant has only one value for age, and each item has only one value for frequency and PND. Thus, by-participant 
random slopes for age and by-item random slopes for frequency and PND cannot be calculated and were not included.
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deviations within the filtered auditory signal. These onsets were then manually verified by 

using both the audio and visual speech stream. The naming times were calculated as the 

difference between the photograph onsets generated from the E-Prime output and the 

response onsets. Only trials with correct responses, responses longer than 200 ms, and 

responses with naming times within 3 SDs were included in further analyses7. Excluded 

outliers accounted for 3.13% of total data points. Naming times were subjected to a square 

root transformation to better approximate a normal distribution and analyzed using mixed-

effect regression modeling, employing the lmer function in the lme4 package (Bates et al., 

2014) in R (R Core Team, 2017). PND, Age, and the interaction between PND and age were 

included as independent variables and naming time was included as the continuous 

dependent variable. As with the accuracy model, frequency was included as a covariate in 

the naming time model. The R script and the full behavioral data are available via the Open 

Science Framework: https://osf.io/7bc8w

2.5. fMRI data analyses

The fBIRN QA tool was used to assess data quality (Glover et al., 2012, https://

www.nitrc.org/projects/bxh_xcede_tools/), measuring the number of potentially clipped 

voxels, mean signal fluctuation to noise ratio (SFNR), and per-slice variation. Additionally, 

the anatomical and functional images were visually inspected for artifacts and signal drop-

out. Non-brain tissue of the anatomical images was removed using Optimized Brain 

Extraction for Pathological Brains (optiBET: Lutkenhoff et al., 2014). We used FSL (version 

5.0.9), with FEAT (fMRI expert analysis tool) version 6.0 (Smith et al., 2004; Woolrich et 

al., 2004), to carry out preprocessing and statistical analyses. Preprocessing steps included 

motion correction (FSL MCFLIRT), B0 unwarping, slice timing correction, spatial 

smoothing (FWHM = 5 mm), high-pass filtering (50 s), coregistration, and normalization. 

During normalization participants functional data was first aligned to his or her own 

anatomical data using boundary-based registration (Greve and Fischl, 2009) and then to the 

MNI 152 standard image (12 degrees of freedom). We conducted first level analyses on 

correct trials within each participant’s individual runs, convolving each trial onset with a 

double-gamma hemodynamic response function8, and including the standard motion 

parameters as nuisance covariates. Participants moved less than ½ a voxel, as recommended 

for inclusion in data analyses (average motion = .26 mm, SD = .12 mm, range = .06 - .68 

mm, Huettel et al., 2014). However, age and motion were significantly positively correlated 

(r = .27, p < .01). For the contrasts of interest (described below), only trials with correct 

responses were included. Errors were always included in the fMRI models, but as a separate 

regressor. Because there were few errors, we did not conduct further analyses on these 

trials9. Run-level analyses were combined across runs within participants and then across 

participants in group-level analyses using FMRIB’s local analysis of mixed effects (FLAME 

1+2, Beckmann et al., 2003; Woolrich et al., 2004). All significant activations were 

7Naming times within 3 SDs should capture > 99% of a normal distribution. Naming times < 200ms are typically due to microphone 
problems or inadvertent noises.
8We used FSL’s double gamma HRF which is a combination of two gamma functions, a standard positive function at a normal lag and 
a small delayed inverted gamma function that models a late undershoot in the BOLD response.
9We ran a second fMRI model that included effects of naming time and frequency, and the PND results were consistent across both 
models.
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determined using a two-step process in which Z (Gaussianised T/F) statistical images were 

initially thresholded at the voxel level (p < .001). Clusters of identified voxels were then 

corrected for multiple comparisons (p < .05, corrected) based on Gaussian random field 

theory (Worsley, 2001) in which each cluster’s estimated significance level was compared 

with the cluster probability threshold, and then only clusters whose estimated significance 

exceeded the threshold were included in the results (Hayasaka and Nichols, 2003). 

Additionally, results from comparisons between conditions were masked to ensure that only 

differences based on significant positive hemodynamic responses were included in the 

analyses. All reported brain regions were identified using the Harvard-Oxford Structural 

Atlas (Desikan et al., 2006). Coordinates are reported in MNI space, and results are overlaid 

on a representative brain in MNI space.

For our functional MRI analyses, we first examined the main effect of picture naming, 

looking at regions in which naming pictures elicited greater activation than the control 

condition (i.e., viewing scrambled images and saying “picture ”). We then conducted a 

parametric analysis in which we looked for regions in which variability in PND elicited 

increases or decreases in functional activation. Then, we examined both analyses to 

determine if there were any influences of Age on the functional activation patterns to 

naming pictures, or sensitivity to PND. Lastly, we were interested in brain-behavior relations 

specifically whether PND-related and age-related differences in fMRI activation related to 

task performance or individual differences. To assess this, we correlated behavioral 

performance (i.e., RT) as well as language-related neurocognitive measures (verbal fluency, 

verbal working memory, vocabulary, and reading habits) with brain activation. This 

approach allowed us to examine the relationship between overall behavioral performance 

and functional activation across individuals.

3. Results

3.1. Behavioral results

We conducted a logistic mixed effects regression analysis on Accuracy, examining the effect 

of PND, Age, and the interaction between PND and Age, while covarying effects of 

frequency. This revealed a significant main effect of PND on accuracy in which increasing 

PND was associated with higher accuracies, Z = 4.51, p < .001, eta squared = .22. There was 

also a significant main effect of Age, in which increasing Age was associated with lower 

accuracies, t = −2.92, p < .005, eta squared = −.08. Moreover, there was a marginally 

significant quadratic effect of age on accuracy (p = .08), with the strongest effect of age on 

accuracy among the oldest adults. See Fig. 3. There was no significant interaction between 

Age and PND, suggesting that the effect of PND on accuracy is stable across the lifespan. 

We also examined the response data for any effect of error type, considering 4 types of 

errors: acceptable alternatives (e.g., baby deer for fawn), dysfluencies, incorrect responses 

(e.g., book for menu), and omissions. A chi-square analysis showed that the three groups 

differed from one another with middle-aged adults making the fewest errors both overall and 

within each category ( χ2 = 51.669, df = 6, p < .001). Younger adults made significantly 

fewer errors than older adults (χ2 = 16.008, df = 3, p < .01), both overall and within each 

error category, except for dysfluencies.
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We conducted a similar mixed effects regression analysis on naming time. Again, there was 

a significant main effect of PND in which larger PND values were associated with faster 

naming times, t = −3.22, p < .005, eta squared = −.11, Fig. 3. Although there was no 

significant main effect of Age on naming time, there was a marginally significant interaction 

between Age and PND, t = −1.88, p = 0.06. To better understand this interaction, we looked 

at the effect of PND across 3 age groups: younger adults, middle aged adults, and older 

adults. This analysis showed that there was a facilitatory effect of PND in all three groups, 

and that this effect was strongest among older adults. Follow-up analyses showed that this 

effect was driven by older adults responding similarly to younger and middle-aged adults on 

items with higher PND, but more slowly than the other two groups on items with lower 

PND. Consistent with our accuracy results, the naming time analyses suggest that the effect 

of PND on naming time is relatively stable across the lifespan but that older adults may be 

more slowed by low PND items compared to younger and middle-aged adults.

4. fMRI results

First, we looked at the main effect of picture naming (pictures > scrambled objects) 

collapsed across participants. Picture naming elicited significant patterns of activation in 

ventral visual, temporal, and frontal regions (see Fig. 4a, Table 2). Notably, these activations 

included left superior frontal gyrus, left medial prefrontal cortex, left inferior frontal gyrus, 

bilateral insula, bilateral orbital frontal cortex, anterior cingulate, bilateral precentral gyri, 

bilateral hippocampi, bilateral parahippocampal gyri, bilateral lateral occipital cortex, which 

extended into bilateral inferior temporal gyri, and right cerebellum.

Significant effects of Age on picture naming (Fig. 4b, Table 2) were found in several regions 

across the brain in which increases in age were associated with increases in functional 

activation. These regions included bilateral frontal pole, which extended into middle and 

superior frontal gyri, bilateral precentral gyri, bilateral superior and middle temporal gyri, 

bilateral thalamus, bilateral hippocampus, and bilateral lateral occipital cortices. In short, 

consistent with prior research, we observed age-related increases in functional activation. 

There were no regions in which age-related decreases in activation were observed.

Our main interests were in the effects of PND on brain activation and whether these effects 

differed as a function of age. Analysis of functional activation indicated that PND was 

negatively related to functional activation. That is, as PND increased, this was associated 

with decreases in fMRI activation, consistent with a facilitatory effect of larger phonological 

neighborhoods. Reductions in activation are shown in Fig. 5 and Table 3, and were found in 

left frontal pole, right orbital frontal gyrus, bilateral superior temporal gyri, which extended 

into Heschl’s gyrus, bilateral precentral gyri, and bilateral lateral occipital cortex, which 

extended into bilateral fusiform and lingual gyri. There were no regions in which increases 

in PND were related to increases in fMRI activation. To examine the influence of age on 

PND, we looked for an interaction between PND and Age; however, there were no 

significant regions in which sensitivity to PND differed across ages.10 Consistent with our 

10To further investigate the possibility of age-related differences, we categorized age across 3 groups: younger adults, middle-aged 
adults, and older adults, and conducted an ANOVA to look for an interaction of Age Group by PND. Consistent with our parametric 
analysis, the overall interaction was not significant.
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behavioral results, this suggests a relative stability in the neural effect of PND across the 

lifespan.

Given the significant age-related increases in functional activation to picture naming and the 

significant decreases in functional activation to PND, we were interested in whether these 

patterns related to behavior. There was no relationship between these effects and picture 

naming RT, nor several language-related behavioral assessments (e.g., reading habits, verbal 

fluency, verbal working memory, or vocabulary). Although null results should be interpreted 

with caution, these suggest that sensitivity to phonological neighborhoods is relatively robust 

and less sensitive to individual differences in these behavioral measures.

5. Discussion

In an across-the-lifespan study we used a picture naming paradigm with objects whose 

names varied in Phonological Neighborhood Density (PND). Consistent with the previous 

literature, objects whose names had larger phonological neighborhoods were named faster 

and more accurately. Moreover, fMRI results showed that objects with larger PNDs elicited 

less activation, which is often interpreted as facilitation, primarily in bilateral superior 

temporal gyri, and bilateral lateral occipital cortex, regions that support phonological (Heim 

et al., 2003; Vaden et al., 2010) and visual object processing (Gerlach et al., 2002; Koutstaal 

et al., 2001) respectively. Additionally, decreases in activation were observed in bilateral 

precentral gyri, a region involved in motor control (Sakai et al., 2000). Consistent with the 

extant literature, behavioral age-related increases in difficulty were observed for naming: age 

was negatively correlated with accuracy. Moreover, age was also positively correlated with 

fMRI activation. This increased need for neural resources is often interpreted as reflecting 

increased difficulty (Reuter-Lorenz and Cappell, 2008). These age-related increases in 

activation were found in both language-relevant regions such as bilateral superior and 

middle temporal gyri and bilateral precentral gyri, as well as in regions associated with 

domain general executive function (bilateral middle and superior frontal gyri), memory 

(bilateral hippocampus), and vision (bilateral lateral occipital cortices). Critically, these age-

related increases in errors and functional activation were related only to picture naming in 

general, as there was no significant Age x PND interaction in the accuracy or fMRI results. 

Overall, these results suggest that neural sensitivity to phonological neighborhood structure 

is intact across the lifespan, although retrieval difficulty, as measured through increased 

errors and functional activation, increases with age.

While no neuroimaging studies to date have explicitly examined the neural bases of PND on 

language production, several studies in younger adults have examined how the brain 

supports phonological aspects of language production (Abel et al., 2009; de Zubicaray and 

McMahon, 2009; de Zubicaray et al., 2002; Diaz et al., 2014; Peramunage et al., 2011). The 

most commonly incorporated task is the picture-word interference paradigm, in which a 

phonologically-related word is shown during a picture naming task. Closer to the present 

study’s design, Peramunage and colleagues (2011) examined the influence of implicit 

phonological competitors (minimal pair words) on language production in younger adults. 

Whether the phonologically-related word was explicitly or implicitly present, these studies 

showed that phonological distractors engage bilateral superior temporal gyri, left supra 
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marginal gyrus, and left inferior frontal gyrus (Abel et al., 2009; de Zubicaray and 

McMahon, 2009; de Zubicaray et al., 2002; Diaz et al., 2014, Peramunage et al., 2011). 

Consistent with these results, we found less fMRI activation for words with larger PND 

values in regions that have been shown to be sensitive to phonology, such as bilateral 

superior temporal gyri, and in regions that have a role in articulatory and motor function, 

such as bilateral precentral gyri. Of note, the neural sensitivity to PND did not vary across 

the lifespan, suggesting that neural sensitivity to basic phonological features remains intact 

throughout the lifespan. We also examined the relationship between PND and other 

behavioral and cognitive factors, such as RT, verbal working memory, vocabulary, and 

reading habits. However, there were no significant relationships between the neural 

measures of PND sensitivity and behavioral measures. Although this suggests that the basic 

phonological organization is robust to other cognitive factors, this interpretation should be 

taken with caution as these are null results.

One caveat to the stability of our fMRI and accuracy results across the lifespan is that we did 

observe a marginally significant interaction between Age and PND in naming time. 

Although older adults were not slower to respond than younger adults to high PND items, 

they were slower to respond to low PND items. This suggests that although the overall 

phonological organization remains intact across the lifespan, older adults may have some 

vulnerability in processing items with weaker representations. This is consistent with what 

others have observed for items with low frequency and items with both low PND and low 

neighborhood frequency values (Gertel et al., 2020; Vitevitch and Sommers, 2003). 

However, this Age x PND interaction did not translate to age-related differences in neural 

patterns of activation, suggesting that the naming time differences were not sufficient to 

incur additional fMRI processing demands. It may be the case that neural age-related 

differences did not emerge because we focused on successful naming. That is, only pictures 

that were precisely named with our intended label were included in our fMRI analyses. 

Other work that has found age-related neural differences has focused on phonological 

retrieval failures (i.e., TOT incidents, Shafto et al., 2007; Shafto et al., 2010). Indeed, Shafto 

and colleagues found few age-related differences when they examined successful naming. 

Consistent with this idea, older adults named words with large PNDs similarly to younger 

adults, suggesting that age-related naming impairments may be selective to words with less 

robust representations (i.e., low frequencies, small PNDs).

While we did not observe strong age-related differences in sensitivity to phonology, there 

were age-related differences in picture naming, generally. First, although participants 

performed well in general, increasing age was associated with less accurate picture naming. 

Although it was not the primary goal of the study, picture naming performance was 

correlated with several cognitive measures suggesting that individuals who were better able 

to name pictures had higher cognitive abilities.11 Picture naming was also associated with 

age-related increases in functional activation in both language regions, such as bilateral 

11Naming times were negatively correlated with immediate (r = −.22, t = −2.43, p = .04) and delayed recall (r = −.20, t = −2.29, p 
= .06). Picture naming accuracy was negatively correlated with digit symbol RT (r = −.33, t = −2.83, p < .01)and positively correlated 
with MMSE scores (r = .37, t = 4.09, p < .001), immediate (r = .38, t = 4.10, p < .001) and delayed recall (r = .46, t = 5.49, p < .001), 
and vocabulary (r = .40, t = 4.37, p < .001).
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precentral gyri and bilateral superior and middle temporal gyri, as well as in dorsal superior 

frontal regions that have been shown to be sensitive to task difficulty (e.g., Badre and 

D’Esposito, 2007), as well as in regions sensitive to memory demands (i.e., bilateral 

hippocampus, for a review see Rajah et al., 2015). These findings suggest that age-related 

increases in word retrieval activation involve both increased reliance on language specific 

processes, as well as domain-general executive function and memory resources.

An increased reliance on domain-general neural resources is consistent with age-related 

increased difficulty in adjusting to task demands. Although we adopted a relatively 

straightforward task (picture naming) with an implicit manipulation (varying PND of the 

items), behavioral and neural data suggest that tasks become increasingly difficult with age. 

Consistent with this, several studies have demonstrated that older adults are more sensitive 

to task demands during language comprehension (Davis et al., 2014; Kennedy et al., 2015; 

Zhang et al., 2019) and during non-language tasks (e.g., Braver and Barch, 2002; Cappell et 

al., 2010; Reuter-Lorenz and Cappell, 2008; Rieck et al., 2017). Our work has observed such 

task difficulty effects specifically during picture naming (Zhang et al., 2019). We have also 

found that older adults may be slower to adjust to task demands, even when practice trials 

are provided. For example, in a blocked picture naming paradigm, older adults were less 

accurate compared to younger adults, but only during the first task run (Gertel et al., 2020).

One other novel aspect of our approach was the inclusion of middle-aged adults, as very few 

language studies have examined this age range. Behaviorally, we found that middle-aged 

adults (roughly 40 – 60 years old) performed on par with younger adults, suggesting that 

although aging is associated with declines in language production, these declines may not 

emerge until later in life. Of note, our participants represent a relatively well-educated 

sample (average years of education = 16.2), and education was significantly positively 

correlated with age. Additional studies are needed to establish the role of education in this 

context. Individual differences, such as these, may have also been reflected in the variability 

in responses, as acceptable alternatives accounted for ~16% of responses. It is possible that 

there were differences in how individuals approached the naming task and how they selected 

their responses. These kinds of cohort effects may have influenced our results and because 

we incorporated a cross-sectional design, we were unable to assess how our effects might 

have changed within individuals across time. As a future direction we would like to 

investigate how neural sensitivity to PND across the lifespan may interact with other factors 

such as frequency, neighborhood frequency, and name agreement, as previous investigations 

have shown that these factors can interact in picture naming (Karimi and Diaz, 2020; 

Vitevitch and Sommers, 2003)

Despite these limitations, we were able to measure behavioral and neural sensitivity to 

phonological characteristics in a large lifespan sample of adults. Our results suggest that, 

overall, sensitivity to phonological features is stable across the lifespan. However, with 

increasing age, difficulty in overt production increases, and older adults rely on both 

increased activation of language-relevant regions as well as domain-general executive and 

memory resources. These results demonstrate consistency in the effect of PND on language 

production across the lifespan.
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Fig. 1. 
Distribution of participant ages. Ninety-one adults, roughly evenly distributed across the 

lifespan, participated in the experiment (age range = 20 – 75, mean age = 47.40, SD = 17.45, 

54 Females).
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Fig. 2. 
An overview of the experimental procedure. Participants overtly named pictures that varied 

in phonological neighborhood density (e.g., deer, kite = high PND, trumpet = low PND), as 

well as abstract pictures.
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Fig. 3. 
Behavioral results for picture naming. The colors reflect the data split across three age 

groups (see the methods for full details, red dots and lines = younger adults, green dots and 

lines = middle–aged adults, and blue dots and lines = older adults). Top panels: Effects of 

PND on naming time and accuracy are shown (grouped by item, N = 191), increasing PND 

is associated with faster naming times and higher accuracies. Additionally, there was an 

interaction between PND and Age on naming time suggesting that older adults were more 

impaired by items with small PNDs. Bottom panels: Effects of Age on naming time and 
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accuracy are shown (grouped by individual, N = 91). There were significant effects of age on 

naming time and accuracy, and a marginally significant quadratic trend of age on accuracy.
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Fig. 4. 
fMRI activation to picture naming. a. red-yellow activations represent regions of significant 

activation to picture naming, collapsing across age. b. blue activations illustrate regions 

where age was positively correlated with picture naming activation. There were no regions 

in which age was negatively correlated with picture naming. In both a and b, the color bar 

represents statistically significant activations from Z = 3.1 to Z = 8.6. Axial slices show 

activation at Z = −20, 0, 20, and 40.
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Fig. 5. 
fMRI activation to PND. Green activations represent regions in which PND was 

significantly negatively correlated with fMRI activation. That is, as PND increased 

activation decreased. There were no significant positive correlations between PND and fMRI 

activation. The color bar represents statistically significant activations from Z = −3.1 to Z = 

−8.6. Axial slices show activation at slices Z = −20, 0, 20, and 40.
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Table 1

Participant demographic and neuropsychological testing scores.

Demographic information

N 91

Age (Years) 47.40 (17.45)

Gender (M/F) 37/54

Education (Years) 16.9 (2.5)

Correlation of age with cognitive assessments Education 0.24*

MMSE −0.19

Depression (GDS) −0.13

Speed RT (choice) 0.56***

Digit Symbol RT 0.69***

Digit Span Forward −0.20

Digit Span Backward −0.26*

Stroop Effect 0.33***

Verbal Working Memory −0.40***

Immediate Recall −0.27*

Delayed Recall −0.26*

Category Fluency −0.30**

Phonemic Fluency −.11

WAIS Vocabulary 0.07

Author Recognition 0.47***

Values provided are means, with standard deviation in parentheses.

*
p < .05,

**
p < .01,

***
p < .001.
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