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Abstract 

Background:  Variants that regulate transcription, such as expression quantitative trait loci (eQTL), have shown 
enrichment in genome-wide association studies (GWAS) for mammalian complex traits. However, no study has 
reported eQTL in sheep, although it is an important agricultural species for which many GWAS of complex meat 
traits have been conducted. Using RNA sequence data produced from liver and muscle from 149 sheep and imputed 
whole-genome single nucleotide polymorphisms (SNPs), our aim was to dissect the genetic architecture of the 
transcriptome by associating sheep genotypes with three major molecular phenotypes including gene expression 
(geQTL), exon expression (eeQTL) and RNA splicing (sQTL). We also examined these three types of eQTL for their 
enrichment in GWAS of multi-meat traits and fatty acid profiles.

Results:  Whereas a relatively small number of molecular phenotypes were significantly heritable (h2 > 0, P < 0.05), 
their mean heritability ranged from 0.67 to 0.73 for liver and from 0.71 to 0.77 for muscle. Association analysis 
between molecular phenotypes and SNPs within ± 1 Mb identified many significant cis-eQTL (false discovery rate, 
FDR < 0.01). The median distance between the eQTL and transcription start sites (TSS) ranged from 68 to 153 kb across 
the three eQTL types. The number of common variants between geQTL, eeQTL and sQTL within each tissue, and the 
number of common variants between liver and muscle within each eQTL type were all significantly (P < 0.05) larger 
than expected by chance. The identified eQTL were significantly (P < 0.05) enriched in GWAS hits associated with 56 
carcass traits and fatty acid profiles. For example, several geQTL in muscle mapped to the FAM184B gene, hundreds 
of sQTL in liver and muscle mapped to the CAST gene, and hundreds of sQTL in liver mapped to the C6 gene. These 
three genes are associated with body composition or fatty acid profiles.

Conclusions:  We detected a large number of significant eQTL and found that the overlap of variants between eQTL 
types and tissues was prevalent. Many eQTL were also QTL for meat traits. Our study fills a gap in the knowledge on 
the regulatory variants and their role in complex traits for the sheep model.
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Background
Gene expression varies between tissues and individu-
als [1, 2], and their phenotypes can be shaped by gene 
expression [3]. Gene and exon expression levels can 
be directly quantified by counting the RNA sequence 
(RNA-seq) reads that map to the gene and its exons [4, 
5]. RNA-splicing can be estimated by isoform ratios, 
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exon inclusion levels [6] and intron excision ratios [7]. 
There are statistical challenges to estimate isoform abun-
dance [8] and technical effects [7] to estimate exon inclu-
sion levels when using conventional short-read data. 
Therefore, calculating the excised intron ratios could be 
an accurate method to quantify RNA-splicing, because 
excised introns are inferred directly from short reads that 
span exon–exon junctions [9]. Thus, the three types of 
molecular phenotypes, i.e. gene expression, exon expres-
sion and intron excision ratio, can be accurately quanti-
fied via RNA-seq.

Different DNA mutations among individuals can 
result in varied molecular phenotypes in a population. 
A mutation that regulates nearby (± 1  Mb) molecular 
phenotypes from RNA-seq data (i.e. gene expression, 
exon expression and intron excision ratio) is defined as 
a cis expression quantitative trait locus or eQTL(eQTL 
are defined here as gene expression QTL (geQTL), exon 
expression QTL (eeQTL), and splicing QTL (sQTL)). In 
beef cattle, geQTL have been investigated in liver and 
muscle [10–12]. Some of the geQTL that have been iden-
tified in humans, cattle, and pigs overlap with (or colocal-
ize at) single nucleotide polymorphisms (SNPs) that are 
linked with diseases and complex traits [3, 13–16]. For 
example, ten QTL linked with pork meat quality co-local-
ized with 12 eQTL in the longissimus dorsi muscle [16]. 
Therefore, eQTL analysis may improve our knowledge on 
the genetic architecture of complex traits. In dairy cat-
tle, Xiang et al. [12] showed that eeQTL overlapped with 
geQTL and sQTL. Consequently, the combined analysis 
of geQTL, eeQTL and sQTL may increase the chance to 
identify loci that regulate gene expression [12, 17]. How-
ever, to our knowledge, eQTL have not been analyzed in 
sheep, although it is one of the major farm species for 
human consumption.

Sheep and lamb meat consumption continues to grow 
worldwide due to the animal’s adaptability to be farmed 
in different climatic conditions and to its unique culi-
nary value [18]. Meat production and quality traits are 
polygenic and are influenced by many QTL, each mak-
ing a small contribution to a trait [19, 20]. The poly-
genicity of sheep meat traits is supported by recent 
genome-wide association studies (GWAS) with SNPs 
[21–27]. In particular, Bolormaa et  al. [28] used high-
density SNPs (~ 500 K) to identify pleiotropic SNPs that 
are associated with 56 carcass composition traits, and 
Rovadoscki et  al. [29] used 50  K SNPs to identify SNPs 
that are linked with fatty acid profiles [29]. The results 
from GWAS have laid the foundation for studying sheep 
meat characteristics that are regulated by genetic vari-
ants. However, the biological mechanisms that underlie 
how these QTL affect meat traits are not well known. In 

this study, we use eQTL data to begin to explore these 
mechanisms.

Using imputed whole-genome SNPs and RNA-seq 
data, our aim was to quantify the heritability of three 
molecular phenotypes and identify cis eQTL in sheep 
liver and muscle. Then, we investigated if the same SNPs 
were significantly associated with multiple eQTL pheno-
types and/or if the eQTL were significant in both tissues. 
We also investigated if eQTL were enriched in GWAS 
QTL of multiple sheep meat traits [28, 29]. Our results 
contribute to a better understanding of how genomic dif-
ferences in sheep lead to variation in complex meat traits.

Methods
An overview of the analysis is shown in Additional file 1: 
Figure S1.

Sample collection and RNA extraction
In total, 149 crossbred wether lambs (ewes: Merino × 
Border Leicester and Maternal/Coopworth Composites, 
nine sires: Polled Dorset and White Suffolk) between 7 
and 8  months old were randomly selected for RNA-seq 
analysis from 436 male lambs that were balanced across 
dam and lamb nutritional treatments, birth types, breeds 
and sires [30]. Lambs were slaughtered in their experi-
mental blocks on three slaughter dates [30]. Liver and 
longissimus dorsi muscle were sampled within 10  min 
from slaughter at the abattoir and were flash-frozen in 
liquid nitrogen and stored at − 80°C until use. Frozen 
liver and muscle tissues were ground using the Geno/
Grinder® 2010 (SPEX™, Metuchen, NJ, US). Ground tis-
sue was homogenized in Trizol® (Life Technologies™) 
and RNA extracted using the Trizol® plus RNA extrac-
tion kit (Life Technologies™) according to the manu-
facturer’s instructions. RNA quality and integrity were 
evaluated by the 2100 Bioanalyzer (Agilent Technolo-
gies, Waldbronn, Germany). All samples with an RNA 
integrity number larger than 7 and a 28S/18S ratio higher 
than 1.0 were used for library preparation using the Sure-
Select Strand Specific RNA Library Prep Kit (Agilent 
Technologies).

RNA‑seq and data quality control
Libraries were randomly pooled and sequenced on a 
HiSeq2000 genome analyzer (Illumina Inc) in a paired 
end 100 cycle run to produce 20 million paired-reads per 
library. CASAVA v1.8 (Illumina Inc) was used to call fastq 
files. QuadTrim (https​://bitbu​cket.org/arobi​nson/quadt​
rim) was used to trim adapter and low-quality bases (qual-
ity score < 20) from each end of the reads, and then to 
discard low-quality reads (failed chastity filter, or mean 
quality score < 20, or Ns > 3, or final length < 50). Finally, 

https://bitbucket.org/arobinson/quadtrim
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only paired-reads that passed the quality control criteria 
were kept for downstream analysis.

Quantification of molecular phenotypes
Clean paired-reads were aligned to the sheep reference 
genome Oar_v3.1 (ftp://ftp.ensembl.org/pub/release-91/
fasta/ovis_aries/dna/) using STAR [31] along with the 
annotation file (Ovis_aries.Oar_v3.1.91.gtf.gz, contain-
ing 27,054 genes). The parameters used for alignment are 
documented in Additional file  2: Table  S1. Parameters 
were chosen to maximize uniquely mapped reads [32]. 
Each Sequence Alignment Map (SAM) file was sorted 
and transformed into a Binary Alignment Map (BAM) 
file by SAMtools [33]. The proportion of reads that were 
uniquely mapped was summarized from STAR alignment 
results (see Additional file 4: Table S2). Gene saturation 
was assessed as the number of detected genes per per-
cent of total reads at increasing read depths, with reads 
sampled from each BAM file. Saturation of splice junc-
tions and 3′/5′ bias were investigated using RseQC [34].

Read counts of each gene and each exon were cal-
culated by FeatureCounts [5]. In each tissue, genes and 
exons with a count per million (CPM) higher than 1 in 
more than 30 individuals (> 20%) were retained, and 
log10(x + 1) transformed. Intron excision ratios were 
quantified by LeafCutter [7] as the change in intron usage 
in the intron cluster of which it is a member, where sev-
eral intron clusters are often inferred within a gene. 
Intron excision ratios higher than 0 in at least 30 animals 
(> 20%) and mean ratio values higher than 0.01 across all 
individuals were retained and log10(x + 1) transformed, 
intron-wise quantile normalized and individual-wise 
Z-score standardized [12].

Estimation of the heritability of molecular phenotypes
In total, 13,243 genes, 63,872 exons and 91,699 intron 
excision events in liver and 12,989 genes, 60,230 exons 
and 87,257 intron excision events in muscle were used 
to estimate heritabilities. Each molecular phenotype was 
adjusted for fixed effects, including slaughter day, feed 
lot pen number and replicate, dam breed, sire breed, 
birth type and dam gestational body condition score, 
using the lm() function in R (https​://www.r-proje​ct.org/). 
Heritabilities ( h2 ) of molecular phenotypes, which are 
defined here as the proportion of the phenotypic vari-
ance explained by all the SNPs, were estimated using 
the ASReml® software [35] by fitting the following linear 
mixed model:

 

where y is an n × 1 vector of the molecular phenotypes 
of all individuals ( n = 149), 1n is a vector of 1s, µ is the 

y = 1nµ+ a + e,

overall mean, a is an n × 1 vector of additive genetic 
effects, following a normal distribution N ∼

(

0,Gσ 2
a

)

 , 
where G is the genomic relationship matrix (GRM) [36] 
calculated from the ~ 500 K SNP panel for 149 individu-
als, σ 2

a  is additive genetic variance, e is a n × 1 vector 
of random residuals, following a normal distribution 
N ∼

(

0, Iσ 2
e

)

 . The heritability of molecular phenotypes 
was calculated as:

The differences in heritability between the three molec-
ular phenotypes within a tissue were tested by the wilcox.
test() function in R.

Imputed whole‑genome SNPs
All 149 individuals were genotyped with the high-density 
Ovine SNP Beadchip (HD, ~ 500  K SNP) and imputed 
to whole-genome sequence genotypes as part of a study 
by Bolormaa et al. [37]. Briefly, 935 animals with whole-
genome sequence variants (117 pure Merino, 726 Euro-
pean breeds, 92 other breeds) were selected as the 
reference population (https​://www.ebi.ac.uk/eva/?eva-
study​=PRJEB​31241​) to impute the target population 
(~ 47,000). Both reference and target population HD gen-
otypes were phased using the Eagle software with default 
parameters and the target population genotypes were 
imputed to whole-genome sequence using the Minmac3 
software with default parameters [38, 39]. Finally, SNPs 
with an R2 (imputation quality index reported from Mini-
mac3) lower than 0.4 were removed to reduce the impact 
of poorly imputed SNPs. On average, the empirical impu-
tation accuracy across all target breeds was 0.97. Imputed 
variants in the 149 individuals with a minor allele fre-
quency (MAF) lower than 0.05 were removed to avoid 
spurious associations in the subsequent analyses.

Cis eQTL detection
Molecular phenotypes were tested for association with 
all the SNPs within ± 1 Mb of each molecular feature (to 
reduce computational burden). In total, 12,373 genes, 
56,233 exons, and 79,146 intron excision events in liver 
and 12,151 genes, 53,660 exons and 76,824 intron exci-
sion events in muscle located on autosomes were used 
for eQTL mapping. Association testing between each 
molecular phenotype and SNPs was implemented one 
SNP at a time using the Wombat software [40] by fitting 
the following linear mixed model:

 

h
2
=

σ 2
a

σ 2
a + σ 2

e

.

y = 1nµ+ Zβ + a + e,

https://www.r-project.org/
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where y is a n × 1 vector of the molecular phenotypes of 
all individuals ( n = 149 in the current study), Z is a n × 1 
vector of SNP genotypes coded as 0, 1 or 2, β is marker 
effect, a is a n × 1 vector of polygenic effects, following 
a normal distribution N ∼

(

0,Gσ 2
a

)

 , e is a n × 1 vec-
tor of random residuals, following a normal distribution 
N ∼

(

0, Iσ 2
e

)

 . For each molecular phenotype, variance 
components estimated from ASreml® were regarded as 
prior information for Wombat to implement association 
testing. When a SNP was significantly associated with 
multiple molecular phenotypes, only the most significant 
one was retained. Finally, SNPs with a false discovery rate 
(FDR) lower than 0.01 were regarded as significant cis 
eQTL.

Transcription start site (TSS) coordinates of all genes 
were obtained from Ensembl via BioMart (http://www.
ensem​bl.org). The absolute distance between a cis eQTL 
and the TSS of the eQTL anchored gene was calculated. 
The eQTL functional catalogues were determined using 
the NGS-SNP pipeline [41] with the Variant Effect Pre-
dictor software [42].

Relationships between eQTL type and their effect 
across tissues
It is possible that the three eQTL types are not independ-
ent. geQTL are associated with a change in total gene 
expression, which can affect all the isoforms or only one 
of them. In addition, eeQTL are associated with a change 
in exon expression, which can affect all the exons in a 
gene, and therefore total gene expression, or only one 
exon and therefore a single isoform. Thus, it is likely that 
some geQTL are also eeQTL or sQTL or both. For this 
reason, we tested the overlap between the three eQTL 
types, i.e. we tested whether a single variant was sig-
nificantly associated with two molecular phenotypes. In 
addition, it is possible that the same eQTL has an effect 
in both tissue types. Thus, we tested the overlap between 
tissues for each eQTL type, i.e. we tested whether a sin-
gle variant was significantly associated with a particular 
molecular phenotype in both tissues.

The significance (p-values) of overlaps between two 
sets (e.g. set A and set B ) were calculated with the hyper-
geometric enrichment test R function phyper, which 
requires the number of elements in the background 
set W ( N , A ⊆ W,B ⊆ W ), the number of elements 
in set A ( n ), the number of elements in set B ( M ), and 
the number of elements in the intersection of A and B 
( m, A ∩ B ). Equivalently, one can use the newGeneOver-
lap and testGeneOverlap functions in the GeneOverlap 
R package [43]. When testing for significance of overlaps 
between different eQTL types within and across tissues, 
N  is the number of SNPs used for eQTL identification 
( N  = 20,824,844 in this study). For overlaps of geQTL 

between different tissues, N  is the number of expressed 
genes in both liver and muscle. Similarly, to test the over-
lap of eeQTL and sQTL between tissues, N  is the num-
ber of expressed exons and intron excision events in both 
liver and muscle, respectively.

Enrichment of eQTL in GWAS hit regions
Because the GWAS of Bolormaa et  al. [28] and Rova-
doscki et  al. [25] included many detailed post-slaughter 
phenotypes in sheep, we used their results to investigate 
the overlap with the eQTL identified in our study. How-
ever, based on the difference in SNP densities in these 
studies (Bolormaa et  al. [28] (~ 500  K) and Rovadoscki 
et  al. [29]) (~ 50  K) and in our analysis (~ 20 million), 
it was unlikely that eQTL would overlap exactly with 
GWAS SNPs. Thus, we investigated the overlap of eQTL 
in a defined interval of 25 kb up- and down-stream of sig-
nificant (FDR < 0.01) pleiotropic SNPs (all 932 significant 
pleiotropic SNPs from the multi-trait meta-analysis in 
Bolormaa et al. [28] and significant regions in Rovadoscki 
et  al. [29]). The OvineSNP50 BeadChip mean gap size 
between probes was 50.9 kb (median = 42.6 kb), thus the 
use of 25-kb intervals should capture most of the eQTL in 
these regions. The hypergeometric test (Eq. 1) was used 
to investigate whether identified eQTL were significantly 
enriched in GWAS hit regions, where N is the number 
of all SNPs used in the eQTL analysis ( N = 20,824,844 
in this study); n is the number of significant eQTL; M is 
the number of SNPs in the current study that are located 
in GWAS hit regions and m is the number of significant 
eQTL in M.

Results
Data quality
In total, 20,824,844 SNPs passed quality control and 
were used for eQTL association testing. The distribu-
tion of these SNPs is shown in Additional file  3: Figure 
S2A. After filtering the low-quality raw reads, 8379 mil-
lion clean read pairs from 298 samples were retained, i.e. 
an average of 27.76 million read pairs per sample (see 
Additional file 4: Table S2). Roughly, 7107 million clean 
read pairs were uniquely mapped to the sheep genome, 
i.e. an average of 23.85 million read pairs per sample 
(see Additional file 4: Table S2). The gene body plots of 
all expressed genes indicated little 5′ bias (see Additional 
file 3: Figure S2B). In the RNA-seq technology, saturation 
is reached when an increment in the number of reads 
does not result in the detection of additional expressed 
genes or in the calling of more features, e.g., splice junc-
tions [44]. Our gene saturation analysis showed that the 
number of detected genes increased with increasing per-
cent of total reads and that, when the percent of reads 
reached 75% of the total reads, few additional genes were 

http://www.ensembl.org
http://www.ensembl.org
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detected [see Additional file  3: Figure S2C]. This result 
indicates that most of the expressed genes were detected 
by the RNA-seq study. The splice junction saturation 
analysis revealed that when the percent of reads reached 
100%, the number of all detected splice junctions (includ-
ing annotated and novel splice junctions) did not reach 
an asymptote (see Additional file 3: Figure S2D). Almost 
all annotated splice junctions were rediscovered (see 
Additional file 3: Figure S2E), but novel splice junctions 
did not reach an asymptote (see Additional file 3: Figure 
S2F). This result suggests that some novel splice junc-
tions were still missing at this level of coverage.

Heritability of molecular phenotypes
Molecular phenotypes with a heritability ( h2) higher than 
0 (Z test, P < 0.05) were considered heritable. In liver, 
the mean heritabilities across the 290 gene expression 
(2.19%), 7014 exon expression (10.98%) and 2389 intron 
excision ratios (2.61%) of heritable molecular pheno-
types were 0.73, 0.67 and 0.71, respectively (Table 1), and 
in muscle, the mean heritabilities across the 487 of gene 
expression (3.75%), 12,599 exon expression (20.92%) and 
4198 intron excision ratios (4.81%) of heritable molecular 
phenotypes were 0.77, 0.73 and 0.71, respectively. Both 
in liver and muscle, the level of heritable exon expression 
was higher than that of gene expression and intron exci-
sion ratio.

In liver, 640,976 (FDR < 0.01) geQTL, 376,181 eeQTL 
and 678,657 sQTL were identified (Table  2) and (see 
Additional file 5: Figure S3A). The geQTL, eeQTL and 
sQTL in liver were associated with 3631, 2265 and 
2633 genes, respectively (Table  2). In muscle, 356,380 
geQTL, 223,900 eeQTL and 383,044 sQTL were iden-
tified (Table 2) and (see Additional file 5: Figure S3A). 
The geQTL, eeQTL and sQTL in muscle were associ-
ated with 2396, 1564 and 2047 genes, respectively 

(Table  2). The number of significant eQTL was larger 
than the number of tagged genes, which indicated that 
many SNPs were in high linkage disequilibrium (LD) or 
that there were multiple variants associated with the 
same gene (Table 2).

In liver, the median distances between the geQTL, 
eeQTL, and sQTL and TSS were 153, 76 and 116  kb, 
respectively (Fig. 1a), and in muscle, they were 123, 68 
and 99 kb, respectively (Fig. 1b). Both in liver and mus-
cle, eeQTL were closer to TSS than geQTL or sQTL.

Compared to the total number of SNPs in the 
genome, a decreased proportion of intergenic SNPs and 
an increased proportion of intronic, missense, synony-
mous, gene-end, UTR and splicing SNPs were found for 
the three eQTL types (Table 3). Whereas we expected 
sQTL to be enriched in the annotated “Splice” category, 
followed by eeQTL, and geQTL [12], we found that that 
all three eQTL types shared a similar proportion of 
‘Splice’ variants both in liver and muscle. However, the 
absolute numbers of ‘Splice’ sQTL, eeQTL and geQTL 
are in the expected order.

Table 1  Summarized information for molecular phenotype heritability

Details include the total number of molecular phenotypes (total number), the number of molecular phenotypes that were heritable (number of heritable phenotypes, 
heritability > 0, P < 0.05), the ratio of heritable molecular phenotypes to total number (heritable ratio) and the mean heritability of the heritable molecular phenotypes 
(mean heritability) and standard deviations

Molecular phenotype Total number Number of heritable 
phenotypes

Heritable ratio Mean heritability 
(standard 
deviation)

Liver gene expression 13,243 290 0.0219 0.73 (0.14)

Liver exon expression 63,872 7014 0.1098 0.67 (0.13)

Liver intron excision 91,699 2389 0.0261 0.72 (0.14)

Muscle gene expression 12,989 487 0.0375 0.77 (0.12)

Muscle exon expression 60,230 12,599 0.2092 0.73 (0.13)

Muscle intron excision 87,257 4198 0.0481 0.71 (0.13)

Table 2  Summary of  detected expression quantitative 
trait loci (eQTL), including  gene expression QTL, (geQTL), 
exon expression QTL, (eeQTL), and  splicing QTL, (sQTL) 
including  number of  QTL detected, number of  genes 
in  which those QTL were located and  number of  eQTL 
per gene

Tissue Cis eQTL 
type

eQTL 
number

Gene 
number

eQTL per gene

Liver geQTL 640,976 3631 176.53

eeQTL 376,181 2265 166.08

sQTL 678,657 2633 257.75

Muscle geQTL 356,380 2396 148.74

eeQTL 223,900 1564 143.16

sQTL 383,044 2047 187.12
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Relationship between eQTL types and their effect 
across tissues
The amount of overlap of SNPs between the three eQTL 
types within each tissue was significantly (P < 0.05) larger 
than expected by chance (Fig. 2). The largest number of 
shared SNPs was observed between geQTL and eeQTL 
(Fig. 2), followed by that between geQTL and sQTL, and 
between eeQTL and sQTL.

A significant (P < 0.05) overlap of geQTL, eeQTL and 
sQTL between liver and muscle was observed (see Addi-
tional file 6: Figure S4a). The largest number of overlap-
ping SNPs between liver and muscle was observed for 
sQTL, followed by eeQTL, and geQTL (see Additional 
file  6: Figure S4a). Genes, exons and intron excision 
events tagged by eQTL were shared at a significant level 

between liver and muscle (see Additional file  6: Figure 
S4B). Interestingly, when eQTL were significant in both 
liver and muscle, their effect (t-value) was usually in the 
same direction (see Additional file  6: Figure S4c), with 
eeQTL being the most consistent.

We used the results from two published GWAS [28] 
and [25] for meat traits to evaluate the significant regions 
and eQTL in our study. First, 1130 pleiotropic SNP 
regions (from a multi-trait meta-analysis, FDR < 0.01) 
[28] were used to assess the overlap between these and 
eQTL. A summary of the results is shown in Fig. 3 and 
the detailed results are documented in Additional file 7: 
Table  S3. All three types of eQTL in liver and muscle 
were significantly enriched in GWAS hit regions (P < 0.05, 
Fig.  3). In total, 43.45% (491/1130), 26.99% (305/1130) 
and 52.12% (589/1130) of the GWAS hit regions iden-
tified by Bolormaa et  al. [28] were covered by geQTL, 
eeQTL and sQTL in liver, respectively, and 43.98% 
(497/1130), 26.02% (294/1130) and 30.62% (346/1130) of 
the GWAS hit regions were covered by geQTL, eeQTL 
and sQTL in muscle, respectively.

Second, we used 27 significant regions linked with 
fatty acid profiles [29] to investigate their overlap with 
eQTL from our study. Generally, liver eQTL were more 
enriched in genomic regions linked with fatty acid pro-
file than muscle eQTL (Table 4). The identified geQTL 
in liver were significantly (P < 0.05) enriched in genomic 
regions that were associated with saturated fatty acids 
(SFA), polyunsaturated fatty acids (PUFA), the ratio of 
linoleic acid (ω6) to alpha-linolenic acid (ω3) and the 
ratio of PUFA to SFA, the identified eeQTL in liver were 
significantly (P < 0.05) enriched in genomic regions that 
are associated with PUFA, and the sQTL were signifi-
cantly (P < 0.05) enriched in genomic regions that are 
associated with SFA, monounsaturated fatty acids 

Fig. 1  Absolute distance between expression quantitative trait loci 
(eQTL, which include gene expression QTL, geQTL; exon expression 
QTL, eeQTL and splicing QTL, sQTL) and gene transcription start sites 
(TSS) in liver (a) and muscle (b)

Table 3  Proportional functional annotation of  expression quantitative trait loci (eQTL, including  gene expression 
QTL, geQTL; exon expression QTL, eeQTL and splicing QTL, sQTL) and all single nucleotide polymorphisms (SNPs) used 
for eQTL detection

All eQTL were annotated as intergenic, intronic, missense, synonymous, up or downstream (Gene_end), in untranslated regions (UTR, 3′ or 5′), having some splicing 
function (Splice) or other (all other categories)

Functional category All Liver Muscle

geQTL eeQTL sQTL geQTL eeQTL sQTL

Splice 0.0007 0.0016 0.0021 0.0019 0.0018 0.0026 0.0022

UTR​ 0.0022 0.0057 0.0076 0.0060 0.0069 0.0081 0.0072

Gene_end 0.0606 0.1219 0.1371 0.1226 0.1316 0.1477 0.1340

Synonymous_variant 0.0032 0.0075 0.0102 0.0085 0.0085 0.0124 0.0096

Missense_variant 0.0018 0.0047 0.0057 0.0052 0.0047 0.0060 0.0056

Intron_variant 0.3032 0.4327 0.4540 0.4434 0.4356 0.4700 0.4658

Intergenic 0.6271 0.4249 0.3822 0.4113 0.4095 0.3520 0.3746

Others 0.0010 0.0011 0.0010 0.0012 0.0015 0.0013 0.0011
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(MUFA), and ω6/ω3 ratios. In muscle, geQTL were sig-
nificantly (P < 0.05) enriched in genomic regions that 
are associated with SFA and MUFA. Both the identified 
eeQTL and sQTL in muscle were significantly (P < 0.05) 
enriched in genomic regions that are associated with 
SFA and PUFA.

Examples of QTL that may be eQTL
The FAM184B gene (family with sequence similarity 184 
member B; Chr6:37138667–37257756) is located in a 
candidate QTL region (close to Chr6:37.53 Mb) for meat 
traits in sheep, which was identified by using the 50 K [27] 
and HD SNPs chips [28]. Eight SNPs (Chr6:37070867, 

Fig. 2  Overlap between the three types of expression quantitative trait loci (eQTL, which include gene expression QTL, geQTL; exon expression 
QTL, eeQTL and splicing QTL, sQTL) in liver (a) and muscle (b). Table in the top right part shows pair-wise the number of common eQTL and 
P-values. The numbers in the bottom left part denote the number of significant eQTL for each type. Dots denote the eQTL types. Connection lines 
connecting the dots show eQTL types included in the comparison. The number above each bar shows the number of eQTL for each type (column 1 
to column 3) or shared (column 4 to column 7). UpSet Plot was plotted by UpSetR R package (https​://cran.r-proje​ct.org/web/packa​ges/UpSet​R/)

Fig. 3  Number of expression quantitative trait loci (eQTL, which include gene expression QTL, geQTL; exon expression QTL, eeQTL and splicing QTL, 
sQTL) that overlap with genome-wide association study (GWAS) hit regions linked with body composition [28]. The scale of red color represents the 
number of shared pleiotropic single nucleotide polymorphisms (SNPs) between eQTL and GWAS hit regions

https://cran.r-project.org/web/packages/UpSetR/
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Chr6:37077538, Chr6:37159948, Chr6:37176390, 
Chr6:37197080, Chr6:37203894, Chr6:37217780 and 
Chr6:37677064) that are located in close proximity to 
FAM184B and that have been identified as significant 
pleiotropic SNPs linked with meat traits [28], were also 
geQTL in muscle for FAM184B (Fig. 4) in our study.

The most significant SNP (Chr5:93437720) associ-
ated with tenderness [28] was located in the CAST 
gene (calpastatin; Chr5:93354399–93484087) (Fig.  5). 
We found 1985 sQTL in liver associated with three 
intron excision events in CAST (Chr5:93439378–
93444596 and Chr5: 93394527–93427992), and 1800 
sQTL in muscle associated with intron excision events 
(Chr5:93435918-93437744, Chr5:93439378–93444596 
and Chr5:93482729–93483763) in CAST. Some sQTL 
in liver and muscle were associated with the same intron 
excision region (Chr5:93439378–93444596), which was 
between exon 9 (Chr5:93439292–93439378) and exon 
11 (Chr5:93444596–93444694) of CAST (Fig. 5). A puta-
tive QTL region (Chr16:33207525–33550464) associ-
ated with alpha-linolenic acid (ω3) [29] included the 
C6 (complement C6, Chr16:33267815-33338265) gene. 
In total, 146 eeQTL and 128 sQTL in liver mapped 
to the C6 gene QTL region (Fig.  6). The 146 eeQTL 
were associated with the expression of two exons in 
the C6 gene (exon1, Chr16:33267815–33267879; and 
exon 18, Chr16:33338090–33338265). The 128 sQTL 
were associated with four intron excision regions 
(Chr16:33266238–33267815, Chr16:33266238–
33272429, Chr16:33266695–33272429 and Chr16: 

Table 4  Expression quantitative trait loci (eQTL, which include gene expression QTL (geQTL), exon expression QTL 
(eeQTL), and splicing QTL (sQTL)) enriched in genome-wide association study (GWAS) hit regions linked with fatty acid 
profiles [29]

The number in each cell denotes the number of eQTL located in genomic regions linked with a fatty acid trait

The number in parentheses denotes the P-value for overlap between the two datasets

Fatty acid Liver geQTL Liver eeQTL Liver sQTL Muscle geQTL Muscle eeQTL Muscle sQTL

Saturated fatty acid (SFA)

 Myristic acid (C14:0) 612 (1.2e−33) 229 (0.15) 707 (9e−51) 1255 (0e + 00) 1176 (0.00) 233 (0.15)

 Palmitic acid (C16:0) 406 (2.6e−26) 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 340 (1.2e−48)

 Stearic acid (C18:0) 296 (6.7e−03) 5 (1.00) 570 (5.4e−59) 997 (0.00) 43 (1.00) 150 (0.6)

 Total SFA 617 (5.8e−08) 3 (1.00) 1978 (0.00) 55 (1.00) 43 (1.00) 5 (1.00)

Monounsaturated fatty acids (MUFA)

 Palmitoleic acid (C16:1) 764 (1.7e−13) 9 (1.00) 2031 (0.00) 947 (8.8e−178) 61 (1.00) 147 (1.00)

 Oleic acid (C18:1) 94 (1.00) 5 (1.00) 226 (1.00) 61 (1.00) 36 (1.00) 56 (1.00)

 Total MUFA 221 (1.00) 3 (1.00) 1505 (7.8e−152) 32 (1.00) 36 (1.00) 0 (1.00)

Polyunsaturated fatty acids (PUFA)

 Linoleic acid (C18:2, ω6) 396 (1.1e−51) 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00)

 alpha-Linolenic acid (C18:3, ω3) 1172 (2.1e−116) 696 (9.6e−71) 292 (1.00) 818 (4.6e−128) 329 (2.1e−18) 183 (1.00)

 Conjugated linoleic acid (CLA, c9t11) 277 (2e−17) 96 (0.45) 142 (0.99) 88 (0.58) 6 (1.00) 201 (3e−21)

 Total ω3 0 (1.00) 197 (1.5e−03) 127 (1.00) 0 (1.00) 0 (1.00) 65 (1.00)

 Total ω6 396 (1.6e−37) 0 (1.00) 0 (1.00) 0 (1.00) 6 (1.00) 0 (1.00)

 Total PUFA 396 (6.7e−10) 0 (1.00) 0 (1.00) 1 (1.00) 6 (1.00) 0 (1.00)

ω6/ω3 and PUFA/SFA ratios

 ω6/ω3 418 (1.00) 13 (1.00) 1481 (4.4e−128) 208 (1.00) 36 (1.00) 0 (1.00)

 PUFA/SFA 396 (3.6e−154) 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00) 0 (1.00)

 Total 6849 4610

Fig. 4  Gene expression quantitative trait loci (geQTL) in muscle 
associated with the FAM184B gene in red with the significant 
threshold denoted by the blue dotted line. Black dots are 
genome-wide association study (GWAS) for multi-traits [28]. Y-axis is 
the −log10P for both GWAS and geQTL. The vertical purple dotted 
lines denote the gene boundary
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33267879–33272429), for which, the closely located exon 
(C6: Chr16:33267815–33267879, exon1) was regulated 
by an eeQTL.

Discussion
Our study is the first that analyses the associations 
between sequence variants and cis molecular phenotype 
variation (± 1  Mb) at transcriptomic levels (including 
gene expression, exon expression and splicing) in sheep 
liver and muscle.

We estimated the heritability of global gene expression, 
exon expression, and intron excision events in sheep, 
using SNPs. Molecular phenotypes were considered her-
itable when they were significantly different from zero. In 
humans, the median SNP heritability of gene expression 

has been reported to range from 0.1 to 0.34 [45–51] for 
31 to 85% of the heritable molecular phenotypes across 
tissues (including lymphoblastoid cell lines, lympho-
cytes, blood and adipose tissue) [45–47, 49, 51]. In pig, 
the reported mean SNP heritabilities of molecular phe-
notypes range from 0.18 to 0.51 [16, 52]. In the current 
study, the number of heritable molecular phenotypes was 
smaller than in most previous publications. However, on 
average, the non-zero heritability estimates of molecular 
phenotypes are high, and our estimation of the heritabil-
ity of molecular phenotypes is higher than that reported 
in humans and pigs. In part this is due to our relatively 
small sample size, which will cause heritabilities to be 
overestimated. However, the transcriptome is also the 
first level at which DNA mutations have an impact, once 
properly captured, the molecular heritability is expected 
to be higher than the heritability of complex traits, which 
is impacted by DNA mutations via several omics-layers 
[53]. In addition, measuring gene expression based on 
RNA-seq data is quite precise, compared to gross meas-
urements of phenotypic traits (e.g., body weight). This 
can reduce the error variance in some molecular pheno-
types, which in part increases the signal-to-noise ratio in 
the estimation of molecular heritability.

We found that a relatively low proportion of molecular 
phenotypes reached a heritability that was significantly 
different from zero, which could be due to several rea-
sons. First, whereas our study is the largest sheep eQTL 
study to date, its sample size (i.e. 149 lambs) was modest, 
which can lead to large variance errors for the heritabil-
ity estimates. As such, many of the molecular phenotypes 
with a moderate heritability estimate would have not 
been deemed significant due to the large standard error. 

Fig. 5  Splicing quantitative trait loci (sQTL) in liver (a) and muscle (b) mapped to the CAST gene in red, with the significant threshold indicated as 
the blue dotted line. Black dots are genome-wide association study (GWAS) for multi-trait [28]. Y-axis is the −log10P value. Vertical purple dotted 
lines denote the CAST gene boundary

Fig. 6  Expression quantitative trait loci (eQTL) in red associated 
with the C6 gene in liver, the significant threshold is indicated by 
the blue dotted line.“geQTL, eeQTL, sQTL denote gene expression, 
exon expression and splicing QTL, respctively. Y-axis denotes the 
eQTL P-value. The vertical purple dotted lines denote the C6 gene 
boundary
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With a larger dataset, it is likely that the number of sig-
nificant molecular phenotypes would increase and the 
mean heritability estimates would decrease as more 
molecular phenotypes with a moderate heritability 
reached significance. Second, gene expression is transient 
and often time-point- and tissue-specific, and so lower 
expression levels may lead to lower heritability estimates. 
We studied only two tissues in 149 sheep, and it would 
be interesting to study the molecular heritability of other 
sheep tissues in the future. Third, our dataset allowed us 
to test only SNP or additive heritability of molecular phe-
notypes, although regulatory relationships between SNPs 
and adjacent genes can be largely non-additive. Future 
studies using much larger sample sizes should test for 
non-additive effects to recapture the ‘missing’ heritability 
in gene expression.

This study only considered cis eQTL to reduce the 
number of tests [54]. A larger number of tests for trans 
eQTL would have required a more stringent thresh-
old and likely would have reduced the power to detect 
cis eQTL. In addition, cis eQTL may be easier to detect 
because their effects are larger than those of trans eQTL 
[54]. The majority of the identified sheep eQTL were 
within 250  kb from TSS, which is consistent with the 
results from human studies [55]. The identified eeQTL 
in sheep were closer to TSS than the sQTL and geQTL, 
which disagrees with a study in cattle that reported that 
sQTL were closer to TSS than other types of eQTL [12] 
and that used a different and more stringent defini-
tion for sQTL. Indeed, they report only intron excision 
events that had an adjacent exon inclusion event, which 
is an exon usage phenotype, i.e. exon read count/gene 
read count [12]. In our study, all sQTL were intron exci-
sion events only. In human and cattle, sQTL have been 
reported to be enriched in intron variants [12, 55, 56] 
compared to all the SNPs detected. Consistently, in our 
study, eeQTL in liver and muscle had a higher proportion 
of intron SNPs than geQTL. However, in sheep liver and 
muscle, the identified sQTL did not have a higher pro-
portion of intron SNPs than eeQTL. This inconsistent 
result could be explained by differences in the definition 
of significant sQTL, in computational methods, and in 
sample sizes, tissues and species between these studies.

In humans, significant commonalities of sQTL between 
tissues and of geQTL between tissues were reported [57, 
58]. Recent studies have suggested that, in cattle, three 
types of eQTL (sQTL, eeQTL and geQTL) were shared 
between tissues [12] and that, in pig, geQTL were exten-
sively shared between liver and muscle [59]. Our results 
support the extensive sharing of all eQTL types between 
liver and muscle, but disagree with other studies [47, 60]. 
The ratio of eQTL overlap between tissues depends on 
the similarity of biological functions, with more similar 

tissues sharing more eQTL [61]. Our results support the 
significant overlap of eQTL between liver and muscle 
[see Additional file 5: Figure S3], which could be due to 
the similarity of biological functions that regulate meat 
traits between liver and muscle.

A recent eQTL study in humans, which detected 
geQTL, eeQTL, and sQTL from blood samples, showed 
significant enrichment for GWAS SNPs for disease or 
complex traits [62]. Similarly, we found that the three 
types of eQTL in sheep liver and muscle were signifi-
cantly enriched in GWAS hit regions that were previ-
ously identified by Bolormaa et  al. [28]. Whereas two 
published cattle studies showed a relatively limited over-
lap between eQTL and single-trait GWAS SNPs [11, 54], 
we found a relatively high overlap between eQTL and 
multi-trait QTL. Several reasons might have contributed 
to our results. First, the pleiotropic SNPs from multi-
trait GWAS (multi-trait meta-analysis) may be more 
informative than SNPs from single-trait GWAS [28, 63] 
and this is supported by the relatively few eQTL that we 
observed in several genomic regions linked with single 
traits (e.g. fatty acid profiles). In addition, we used GWAS 
hit regions instead of exact overlaps (SNP to SNP), which 
could increase the probability of overlap because eQTL 
may be in LD with QTL. This is in line with a cattle study 
published in 2019, which used eQTL SNPs to build func-
tional GRM that explained a large amount of the genetic 
variance in 34 complex traits [64]. Moreover, the rela-
tionship between the phenotypes included in the GWAS 
and the tissues used for the eQTL analysis may affect the 
overlap between GWAS and eQTL. For example, a recent 
study in cattle suggested that 10 of 163 SNPs associated 
with stature were identified as geQTL in white blood cells 
[13]. However, SNPs associated with milk production and 
fertility did not overlap with geQTL identified in white 
blood cells [54]. These results show that we still have a 
very limited understanding of how eQTL and trait QTL 
relate, and thus, future research in this area is required.

We highlight a few examples of QTL that may also be 
eQTL. In sheep, FAM184B was located in the most sig-
nificant GWAS region that is associated with body weight 
[27] and body composition traits [28]. In cattle, the 
expression level of FAM184B was suggested to be regu-
lated by cis eQTL [54]. In our study, five significant pleio-
tropic SNPs located near FAM184B [28] also affected the 
total expression level of FAM184B significantly and con-
firmed the previously reported association.

Our second example highlights CAST. In sheep, the 
most significant SNP (Chr5:93437720) associated with 
shear force (i.e. meat tenderness) was within the CAST 
gene [28]. Twenty-one isoforms of the human CAST 
gene are included in RefSeq (https​://www.ncbi.nlm.
nih.gov/gene/831#), and similarly, several isoforms of 

https://www.ncbi.nlm.nih.gov/gene/831
https://www.ncbi.nlm.nih.gov/gene/831


Page 11 of 14Yuan et al. Genet Sel Evol            (2021) 53:8 	

bovine CAST [65] are found in RefSeq (https​://www.
ncbi.nlm.nih.gov/gene/28103​9). This evidence lends 
support to our finding of an intron excised region (i.e. 
exon Chr5:93439378-93444596) detected in both sheep 
liver and muscle that indicates alternative splicing (skip-
ping exon 10), but this mechanism needs to be validated 
using molecular techniques. The expression level of exon 
10 in CAST was low and was removed from the associa-
tion analysis in our study, which provides additional sup-
port for this exon-skip alternative splicing. In humans, 
SNPs have been identified that regulate alternative splic-
ing in CAST [66]. We found that many sQTL in sheep 
liver and muscle mapped to this intron excised region 
(Chr5:93439378-93444596) within CAST, but unlike a 
study in cattle [11], we found no significant geQTL for 
CAST. Taken together, these results suggest that SNPs 
that are linked with tenderness (shear force) in sheep 
might regulate the expression of CAST by excluding the 
10th exon from the transcript, while not altering the total 
level of expression. Recent research in humans suggested 
that a splice variant (rs7724759) in CAST affected exon 
abundance instead of gene abundance [67], which sup-
ports our finding.

The ω 3 and ω 6 polyunsaturated fatty acid composition 
of sheep meat and lamb is important for human health 
[68] and depends on both the dietary intake of the animal 
and the cellular metabolism, which is often controlled by 
genetic polymorphisms [69]. One example of a gene that 
controls ω 3 and ω 6 metabolism in the cell is the C6 gene. 
This gene is located in a putative QTL region associated 
with alpha-linolenic acid (C18:3 ω 3) and total ω 3 [29]. 
C6 has been reported to be specifically highly expressed 
in sheep liver [70], which supports its potential role in 
the fatty acid profile of meat, because the liver plays an 
essential role in fatty acid synthesis. A protective effect 
of C6 deficiency on the development of diet-induced ath-
erosclerosis has been observed when C6-deficient rab-
bits were fed a cholesterol-rich diet for 14  weeks [71], 
which suggests that it might play a role in lipid metabo-
lism. In our study, the 143 significant sQTL in which the 
intron excision event had a flanking exon were identified 
as eeQTL, which supports the reliability of intron exci-
sion region detection. Since many significant liver sQTL 
for C6 were located in a QTL region that is linked with 
ω3 polyunsaturated fatty acid, it could be an eQTL for 
C6 splicing level. Therefore, we cautiously speculate that 
SNPs, which regulate the content of ω 3 polyunsaturated 
fatty acid in meat, may do so by regulating C6 alterna-
tive splicing in liver, which might affect cellular lipid 
metabolism.

As the first detailed analysis of sheep cis eQTL, our 
study has its limitations. Many factors affect the perfor-
mance of fine mapping, e.g., the local LD structure and 

sample size [72]. The strong LD between closely located 
SNPs results in multiple SNPs appearing as significantly 
linked with a molecular phenotype when analyzing one 
SNP at a time. We used 149 lambs from nine sires, which 
means that the local LD may be relatively strong and 
leads to broad eQTL peaks. In our study, the sample size 
was relatively small, which reduces the power to detect 
eQTL [54], whereas in the current human eQTL studies 
sample sizes reach tens of thousands of individuals [73].

Conclusions
A relatively small number of molecular phenotypes had 
a SNP heritability significantly different from zero, but 
many significant cis eQTL were detected. These were 
often associated with several eQTL types and were signif-
icant in both liver and muscle tissue. The identified eQTL 
were significantly enriched in previously reported GWAS 
regions for meat traits, for example several geQTL in 
muscle mapped to FAM184B, hundreds of sQTL in liver 
and muscle mapped to CAST, and hundreds of sQTL in 
liver mapped to C6.

Supplementary information
The online version contains supplementary material available at https​://doi.
org/10.1186/s1271​1-021-00602​-9.

 Additional file 1: Figure S1. Overview of the analysis. In total, 298 
RNA-seq data in liver and muscle from 149 crossbred male wether lambs 
were aligned to the sheep reference genome Oar_v3.1 (ftp://ftp.ensembl.
org/pub/release-91/fasta/ovis_aries/dna/) using STAR along with the 
annotation file (Ovis_aries.Oar_v3.1.91.gtf.gz, containing 27,054 genes). 
Gene and exon expression levels were quantified by counting the reads 
of the gene and exon using FeatureCount. RNA-splicing was estimated 
by calculating intron excision ratio using Leafcutter. Heritability (h2) of 
the three molecular phenotypes (gene expression, exon expression and 
intron excision ratio) were estimated using ASreml®. Wombat software 
was used to identify cis expression quantitative trait loci (eQTL, which 
include gene expression QTL (geQTL); exon expression QTL (eeQTL) and 
splicing QTL(sQTL)) within 1 Mb of the gene, exon or intron excision event. 
We investigated the overlap between eQTL and two genome-wide asso‑
ciation studies (GWAS), the characteristics of eQTL and the relationship 
between different tissues, and between different eQTL types. 

Additional file 2: Table S1. STAR parameters used for alignment. 

Additional file 3: Figure S2. Data information. a: Distribution of imputed 
whole-genome single nucleotide polymorphisms (SNPs) in the sheep 
genome. Horizontal axis is the size of the chromosome, vertical axis is the 
chromosome number (from chromosome 1 to 26), the color scale denotes 
the number of SNPs within 1 Mb-windows. b: 3′/5′ bias. The plots of cover‑
age for all expressed genes in liver (grey) and muscle (yellow) indicated 
little 5′ bias. Error bars represent the standard error of coverage for the 149 
samples. c: Gene saturation in liver (grey) and muscle (yellow). Gene and 
splice junction saturation is reached when an increment in the number 
of reads does not result in additional expressed genes being detected 
or in more features, e.g., splice junctions, called. Error bars represent the 
standard error for the number of detected genes. d: Saturation of total 
splice junctions in liver (grey) and muscle (yellow). Error bars represent the 
standard error for the detected splice junctions. e: Saturation of annotated 
splice junctions in liver (grey) and muscle (yellow). f: Saturation of novel 

https://www.ncbi.nlm.nih.gov/gene/281039
https://www.ncbi.nlm.nih.gov/gene/281039
https://doi.org/10.1186/s12711-021-00602-9
https://doi.org/10.1186/s12711-021-00602-9
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splice junctions in liver (grey) and muscle (yellow). Error bars represent the 
standard error for the detected splice junctions. 

Additional file 4: Table S2. RNA-seq library information. Mean, minimum, 
maximum and median values of the number of read pairs that pass trim‑
ming and filtering (clean reads), and are uniquely mapped reads, and the 
proportion of clean reads that map uniquely to the genome in liver and 
muscle samples. The distribution of the proportion of clean reads that are 
uniquely mapped in liver and muscle samples is also shown. 

Additional file 5: Figure S3. Circle Manhattan plot of expression quan‑
titative trait loci (eQTL, which include gene expression QTL (geQTL); exon 
expression QTL (eeQTL) and splicing QTL (sQTL)) in liver (a) and muscle (b). 
From inside to outside, the circle Manhattan plot denotes geQTL, eeQTL 
and sQTL, respectively. Red dash line in each Manhattan plot represents 
the threshold (FDR < 0.01). Circle Manhattan plots were plotted using the 
CMplot R package (https​://githu​b.com/YinLi​Lin/R-CMplo​t). 

Additional file 6: Figure S4. Overlap between liver and muscle for the 
three types of expression quantitative trait loci (eQTL, which include gene 
expression QTL (geQTL); exon expression QTL (eeQTL) and splicing QTL 
(sQTL)). a: Venn diagrams showing the expression quantitative trait loci 
detected in liver and in muscle, and in both. b: Gene expression, exon 
expression, and intron excision events with eQTL detected in liver and 
in muscle, and in both. c: Correlation of eQTL effects (t-value of eQTL) for 
which the eQTL were significant both in liver and muscle. 

Additional file 7: Table S3. Significant expression quantitative trait loci 
(eQTL, which include gene expression QTL (geQTL), exon expression QTL 
(eeQTL), and splicing QTL (sQTL)) in liver and muscle overlapping with 
genome-wide association study (GWAS) hit regions linked with body 
composition [28]. This file contains six columns. Column 1: tissue type, 
namely, muscle or liver; column 2, eQTL type, namely, geQTL, eeQTL or 
sQTL; column 3: eQTL ID; column 4: eQTL FDR-value; column 5: GWAS SNP 
ID; column 6: GWAS FDR-values.
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