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Abstract

Purpose of Review—The aim of this review is to summarize current conceptual models of 

cognitive reserve (CR) and related concepts and to discuss evidence for these concepts within the 

context of aging and Alzheimer’s disease.

Recent Findings—Evidence to date supports the notion that higher levels of CR, as measured 

by proxy variables reflective of lifetime experiences, are associated with better cognitive 

performance, and with a reduced risk of incident mild cognitive impairment/dementia. However, 

the impact of CR on longitudinal cognitive trajectories is unclear and may be influenced by a 

number of factors. Although there is promising evidence that some proxy measures of CR may 

influence structural brain measures, more research is needed.

Summary—The protective effects of CR may provide an important mechanism for preserving 

cognitive function and cognitive well-being with age, in part because it can be enhanced 

throughout the lifespan. However, more research on the mechanisms by which CR is protective is 

needed.
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Introduction

As the population aged 65 years and older increases, the prevalence of dementia is expected 

to increase as well [1]. Although Alzheimer’s disease (AD) is the most common cause of 

dementia and cognitive decline among older individuals [2•], other types of neuropathology 

are frequently seen [3-6] and make variable contributions to cognitive decline [2•]. 

According to recent estimates, only about 50% of inter-individual variability in cognitive 

decline, on average, can be explained by current measures of the most common age-related 

neuropathologies [2•, 7], suggesting that other factors may also impact cognitive trajectories 

in non-demented individuals. In light of this, and the lack of effective treatments for 
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dementia, research is increasingly focusing on identifying factors that may delay the onset of 

cognitive impairment or impact cognitive outcomes. One such factor is the concept of 

cognitive reserve (CR), a theoretical construct used to describe individual differences in 

susceptibility to cognitive, functional, or clinical decline due to aging or brain disease [8•].

Defining Cognitive Reserve

The concept of cognitive reserve grew out of the observation that there can be discrepancies 

between the amount of neuropathology present in the brain and the degree of cognitive or 

functional impairment among individuals [9, 10]. Although there has been much research on 

cognitive reserve and related concepts, the term has been defined and used in different ways 

across studies, research teams, and consensus papers.

Cognitive Reserve, Brain Reserve, and Brain Maintenance

A recent whitepaper published by 31 members of the Reserve, Resilience, and Protective 

Factors Professional Interest Area, established with the support of the Alzheimer’s 

Association, defines CR as “adaptability that helps to explain differential susceptibility of 

cognitive abilities or day-to-day function to brain aging, pathology, or insult.” [8•] This 

framework postulates that lifetime experiences, in combination or interaction with genetic 

factors, enable cognitive processes to be resilient by influencing the efficiency, capacity, or 

flexibility of brain networks, which allow individuals to better cope with brain disease or 

aging. These experiences include educational and occupational attainment, general cognitive 

ability or intelligence, and engagement in activities that are cognitively, socially, and 

physically stimulating. This framework differentiates cognitive reserve (defined above) from 

the concept of brain reserve, which refers to the structural characteristics of the brain at a 

given point in time (e.g., premorbid brain volume, white matter integrity) and may protect 

against age and disease-related brain changes by impacting the threshold at which cognitive 

or functional decline emerge. The related concept of brain maintenance refers to the process 

of maintaining or perhaps enhancing the brain through lifetime experiences and their 

interaction with genetic factors [11]. It encompasses the reduced development of age- or 

disease-related brain changes (e.g., reduced atrophy over time or preservation of task-related 

networks) and reduced pathology accumulation over time (e.g., fewer white matter 

hyperintensities (WMH)). These three processes collectively are thought to operate 

throughout the lifespan and provide individuals with “resilience” to brain aging, disease, or 

insult.

Resistance and Resilience

Another conceptual framework specifically proposed for the study of preclinical 

Alzheimer’s disease suggests two general mechanisms: resistance and resilience [12•]. The 

concept of brain resistance refers to “the brain processes underlying the ability to better 

resist pathology” and is measured by absent or lower than expected AD pathology levels. 

Brain resilience is defined as the ability to cope with AD pathology and is measured by 

better-than-expected cognitive performance, brain structure, or function given some level of 

AD pathology. As such, the notion of brain resistance is similar to the concept of brain 
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maintenance in the Stern et al. whitepaper [8•], while brain resilience overlaps with the 

notion of cognitive reserve.

Scaffolding Theory of Aging and Cognition

According to the Scaffolding Theory of Aging and Cognition (STAC) [13], an individual’s 

level of cognitive functioning in adulthood is determined by biological aging, genetic 

factors, and life experiences, via their effects on the brain, as well as by “compensatory 

scaffolding,” which refers to neural processes that reduce the negative impact of brain aging 

on brain function and cognition. Similar to the Stern et al. [8•] model, it is postulated that 

certain life experiences (like education or physical activity) and genetic factors can enhance 

aspects of brain function and structure (which is similar to promoting brain reserve and brain 

maintenance), and can enhance the capacity for compensatory scaffolding (which is similar 

to promoting cognitive reserve), while other factors (like smoking, obesity, and genetics) 

have negative effects on brain health. The model further postulates that some of the brain 

mechanisms that support compensatory scaffolding in aging are the same as those used 

among younger adults under conditions of cognitive and behavioral challenge.

Maintenance, Reserve, and Compensation

Another recent consensus paper published by Cabeza and colleagues [14•] differentiates 

between reserve, maintenance, and compensation. In this framework, reserve refers to the 

improvement of brain anatomic or physiological processes involved in cognition (such as the 

efficiency or capacity of neural processes) above current levels; thereby attenuating the 

effects of age- or disease-related brain changes, while maintenance refers to the preservation 

of these processes over time through ongoing cellular, molecular, and systems-level repair 

and plasticity. It is hypothesized that both reserve and maintenance can be influenced by 

genetic and environmental factors, like education, exercise, or intelligence. The concept of 

compensation is defined as the recruitment of neural processes in response to high cognitive 

demand that enhances cognitive performance. Compensation may be evident in response to 

age- or disease-related brain changes and, by definition, leads to improved cognitive 

performance. Although compensation, as defined in this way, appears similar to the concept 

of cognitive reserve in the Stern et al. [8•] framework, it is viewed as a set of distinct process 

(i.e., upregulation, selection, and reorganization) that may be differentially related to 

measures of reserve or age- and disease-related brain changes.

Residual Approach

Another approach to CR, referred to here as the “residual approach,” defines cognitive 

reserve (or resilience) as the variance in cognition that is not explained by known (i.e., 

measured) brain variables and demographics [15]. Using this approach, one or more 

measures of brain structure, function, or pathology, in conjunction with demographic 

variables, are used as predictors in a model with a cognitive outcome (such as a memory 

score), and cognitive reserve is measured as the model residual (i.e., unexplained variance). 

With this approach, the measure of cognitive reserve is, by definition, dependent on the 

variables in the model and will necessarily differ across studies (for examples, see [15-17, 
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18•]). Using this residual framework, brain reserve (or brain resilience) has been defined as 

the residual variance in brain structure not explained by measures of AD pathology [16] or 

age [18•].

Defining Cognitive Reserve: Common Themes

Despite the different terminology and approaches to measuring reserve, all models seem to 

agree that certain lifetime experiences, in combination or interaction with genetic factors, 

can positively or negatively impact (a) brain health (broadly defined; including but not 

limited to structure, function, vasculature, metabolism, neurochemical transmission, and 

onset of or rate of pathology accumulation) and (b) the ability of the brain to cope with 

aging and pathology. The models also appear to agree that as pathology levels or age-related 

brain changes increase, the ability of the brain to cope with these changes decreases (i.e., 

level of cognitive reserve [19, 20•], brain resilience [12•], ability for compensatory 

scaffolding [13], and amount of residual variance [15]). For the sake of consistency, we will 

use the terms “cognitive reserve,” “brain reserve,” and “brain maintenance,” as defined in 

the Stern et al. whitepaper, throughout the remainder of this article; however, it is important 

to note that the evidence discussed has similar implications for the related frameworks 

reviewed above.

Theoretical Predictions for the Effects of Cognitive Reserve

From a theoretical standpoint, a higher level of CR is thought to impact cognitive and 

clinical outcomes in multiple ways. Stern’s [19] hypothetical model of CR, for example, 

hypothesizes that the adaptability provided by higher levels of CR are associated with (1) a 

higher level of cognitive performance prior to the onset of cognitive decline, as well as (2) a 

delay in the onset of disease-related cognitive decline. However, because individuals with 

high levels of CR are thought to be able to compensate for, and therefore sustain, greater 

amounts of neuropathology, higher levels of CR are also hypothesized to be associated with 

(3) a faster rate of cognitive decline once neuropathology reaches a level severe enough to 

impact cognitive functioning. This hypothetical model was originally developed to explain 

reserve-related differences in cognitive trajectories as a function of the accumulation of AD 

neuropathology, though it might also account for differences in cognitive trajectories due to 

the accumulation of other pathologies or other age-related brain changes.

Evidence for Cognitive Reserve

Because cognitive reserve is a theoretical construct, it cannot be directly observed. It is 

therefore most commonly measured using proxy variables that are descriptive of lifetime 

experiences, including measures reflective of: educational and occupational attainment, 

intelligence, level of engagement in lifestyle or leisure activities (e.g., socially, physically, 

and cognitively stimulating activities); socioeconomic status (SES); and early life 

experiences (including perinatal and postnatal factors, childhood intelligence, and early life 

SES). These variables are not mutually exclusive, often overlap, and may continue to be 

enhanced throughout the lifespan (for a life course model of CR, see [21]). For example, 

individuals who grow up in wealthier families are more likely to obtain higher levels of 
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education, which may lead to higher occupational attainment, greater income, and greater 

access to leisure activities. Examining the relative contributions of different CR proxies to 

risk of cognitive impairment is an active area of research [22-25]. Of note, the literature 

reviewed below is focused on measures of CR as it relates to aging and AD dementia. 

However, the concept of CR is applicable to other neurodegenerative diseases [26-29], 

psychiatric conditions [30-33], traumatic brain injury [34-36], and post-operative delirium 

[37•, 38, 39], among others.

Epidemiological and Longitudinal Cohort Studies: Cognitive Reserve 

Proxies and Risk of Mild Cognitive Impairment and Dementia

Epidemiological and longitudinal cohort studies are uniquely positioned to evaluate the 

impact of CR on longitudinal cognitive and clinical trajectories, including future risk of 

dementia; therefore, the below evidence for CR focuses primarily on data from longitudinal 

studies. The most commonly used proxy variable of CR is years of education and there is 

considerable evidence that more education is associated with a lower risk of incident mild 

cognitive impairment (MCI) [40] and dementia [41-44], though not all studies have found 

these relationships (for reviews and meta-analysis, see [45, 46]); results may also depend on 

how education is operationalized [47•]. Although easy to measure, years of education do not 

capture the quality of learning. Additionally, years of education is a static variable that is 

unlikely to change after early adulthood and thus does not capture lifelong learning and 

individual differences in the level of engagement in other types of stimulating activities. For 

these reasons, it has been suggested that literacy, reading ability, or vocabulary may be better 

proxy measures of reserve [48, 49]. Consistent with this proposal, measures of literacy, 

reading, or vocabulary tend to show stronger associations with risk of MCI or dementia than 

years of education [48-52].

Higher occupational attainment or work complexity have also been associated with reduced 

dementia risk ([53-60], but see [61]), with some data suggesting that certain types of work-

related cognitive activity are more protective than others, including information processing 

and pattern detection [60]. Similarly, older age at retirement was found to be associated with 

a reduced risk of dementia [62], suggesting that lifelong cognitive engagement is beneficial. 

Related to occupational complexity, measures of SES, such as greater household income and 

wealth, have been linked to lower dementia risk [63•, 64-66].

Reduced MCI and dementia risk has furthermore been associated with greater level of 

engagement in cognitively, socially, and physically stimulating leisure activities, such as 

reading, playing games, going to museums and concerts, volunteering, or playing music 

([67-71], but see [72]). As reviewed by Fratiglioni et al. [73], all three lifestyle components 

(social, cognitive, and physical) appear to have beneficial effects on dementia risk. Notably, 

most activities are not one-dimensional and may be beneficial through multiple pathways: 

social interactions can be cognitively stimulating and physical group activities can have 

social and/or cognitive components (e.g., aerobics classes, tai-chi). Some studies have 

therefore suggested that the variety or number of activities is more important than a specific 

kind of activity [74].
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Early life experiences and abilities have also been related to risk of late-life cognitive 

impairment (for a review, see [75]), and these associations may be independent of adult 

educational and occupational attainment [54, 76•]. For example, higher childhood school 

grades [54, 76•], higher scores on cognitive ability tests at age 11 [77, 78], greater childhood 

SES [79], and greater complexity of writing at age 22 [80] are associated with a reduced risk 

of dementia, while early life hardship, such as the death of parent, are associated with 

greater prevalence of AD dementia [81, 82]. Prenatal factors, such as small birth weight and 

head circumference, may also be related to dementia risk [83•]. The evidence regarding the 

association between bilingualism and late-life cognitive decline has been mixed, with a 

recent meta-analysis concluding that bilingualism does not protect from cognitive decline 

and dementia ([84•], also see [85]).

Taken together, there is strong evidence that higher scores on CR proxy variables are 

associated with lower risk of MCI and dementia. Assuming that individuals with different 

levels of CR accumulate neuropathology at the same rate as they age, this provides indirect 

evidence that those with higher CR can withstand higher levels of neuropathology before 

becoming symptomatic or showing functional decline, consistent with the theoretical models 

of reserve reviewed above.

Epidemiological and Longitudinal Cohort Studies: Cognitive Reserve 

Proxies and Rate of Cognitive Decline

A large body of literature supports the association between higher levels of CR, as measured 

by proxy variables, and level of cognitive performance among middle-aged and older adults, 

including years of education [85-92], occupation, and SES [58, 65, 87, 88, 93•, 94, 95•, 96, 

97], and leisure activity engagement [23, 70, 71, 98, 99]. This is in line with the predictions 

of Stern’s model [19], according to which individuals with higher levels of CR continue to 

perform better than individuals with lower levels of CR as they age and neuropathology 

develops. The Stern model of CR also predicts that because individuals with higher CR can 

withstand more pathology before showing cognitive or function decline, they have a delayed 

onset of disease-related cognitive decline. Consistent with this prediction, several studies 

have shown that measures of CR are associated with a later onset of MCI [99, 100•] and 

dementia [101] or cognitive decline [102•, 103].

However, studies examining the effects of CR on longitudinal cognitive trajectories have 

been mixed. Whereas some have reported reduced rates of cognitive decline among 

individuals with higher levels of CR [48, 49, 65, 71, 94, 97, 104-106], others have found 

greater rates of cognitive decline among individuals with higher levels of CR at least on 

some tests [90, 91, 96, 100•, 102•, 107]. Others still have reported baseline differences in 

cognition by level of CR, but no difference in cognitive trajectories [58, 85, 86•, 87, 88, 92, 

95•, 108, 109].

Inconsistencies in prior literature on the relationship between CR and longitudinal clinical 

and cognitive outcomes may be influenced by a variety of factors, including subject 

characteristics, methodological or analytical factors, and measurement issues. For example, 

a large number of prior studies have been conducted among individuals who were non-

Pettigrew and Soldan Page 6

Curr Neurol Neurosci Rep. Author manuscript; available in PMC 2021 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



demented at baseline and likely included individuals with normal cognition as well as 

individuals with MCI. However, these two clinical groups may have important baseline 
differences that might confound cognitive and clinical trajectories, including differences in 

levels of cognitive performance, differences in levels of baseline CR [110, 111], and 

differences in the amount of underlying neuropathology. Some prior studies that have 

accounted for clinical impairment (i.e., MCI or dementia) at baseline or follow-up have 

found that higher levels of CR is associated with greater rates of cognitive decline after 

clinical symptom onset [100•, 112-114], consistent with Stern’s model [19]. In contrast, 

level of CR appears to have less of an impact on rates of cognitive change in non-demented 

aging, and may instead affect cognitive outcomes by resulting in a higher level of cognitive 

performance (for a review, see [89], see also [99, 100•, 115]), allowing for an improved 

ability to tolerate the effects of gradually accumulating pathology. Prior results may also be 

influenced by baseline age or length of follow-up; studies conducted among middle-aged 

cohorts may require longer follow-up before changes become evident, and studies among 

older cohorts may be subject to survival effects. See Fig. 1a-c for an illustration of some of 

these issues.

Methodological limitations may also impact inconsistencies in the literature. As discussed 

elsewhere ([92, 115, 116], see also [117]), many early studies had statistical limitations that 

may have biased their results. Few studies [115, 118] have been powered to examine the 

effects of very low levels of CR, limiting the generalizability of findings to boarder 

populations. This may be due to methodological factors (e.g., baseline exclusion criteria) or 

subject characteristics (e.g., volunteer bias, resulting in samples that tend to be highly 

educated, and of higher SES). Additionally, measures used to index CR may also contribute 

to inconsistencies in prior research, given different studies collect and operationalize similar 

CR proxies in different ways (for a discussion, see [119]).

Lastly, epidemiologic research on CR has generally been limited by a lack of measures of 

underlying pathology or age-related brain changes. As such, these studies cannot directly 

examine whether and how measures of CR affect the association between age- and disease-

related brain changes and cognitive performance, nor do they provide insight regarding the 

mechanisms underlying CR. Thus, studies that have incorporated biomarkers, which are 

considered an indirect reflection of underlying neuropathology and/or brain aging, are of 

particular importance in clarifying CR-related processes.

Cross-sectional Biomarker Studies

The majority of studies on CR with biomarker measures have been cross-sectional. These 

studies have repeatedly shown that among non-demented groups, as well as among 

individuals with MCI or dementia, level of CR (as measured by proxy variables) modulates 

the relationship between cognition or clinical status and pathology, such as amyloid 

[120-122] and tau [123, 124], atrophy on magnetic resonance imaging (MRI) [22, 125, 126], 

WMH [127, 128], metabolism on fluorodeoxyglucose (FDG) positron emission tomography 

(PET) [120, 129, 130], and cerebral perfusion [131]. These findings suggest that the effects 

of age- and disease-related brain changes on cognition are reduced in individuals with higher 
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CR, although findings among cognitively normal individuals have been more mixed [122, 

124, 130, 132-134].

Cross-sectional studies have also provided a good deal of support for the idea that proxy 

measures of CR are related to measures of neural and brain reserve, including (but not 

limited to) neural efficiency and capacity [125, 135•, 136, 137•], structural measures such as 

brain volume and white matter integrity [125, 138-140], neurotransmission [141, 142], or 

cerebrovascular health [143]. As an example, fMRI studies have suggested individuals with 

high CR may compensate for age- or disease-related brain changes by utilizing different 

neural mechanisms in response to task demands [144, 145]. These types of studies provide 

insight into the neural mechanisms underlying CR [136, 137•, 145-147], and pathways by 

which brain reserve may be enhanced. However, evidence for a direct association between 

proxy measures of CR and level of disease-related pathology is inconclusive [134, 148-158].

Cross-sectional biomarker studies, however, are limited in that they do not allow for 

inferences about the direction of causality for the relationship between CR, brain integrity, 

and cognition. Additionally, they do not allow for an examination of the degree to which 

proxy measures of CR modulate cognitive decline and clinical impairment in the presence of 

neuropathologic and age-related brain changes, and whether they directly impact rates of 

change in biomarkers over time.

Longitudinal Biomarker Studies

Only a small number of longitudinal studies have examined the interaction between CR and 

AD biomarkers on longitudinal clinical and cognitive outcomes. As recently reviewed by 

Soldan et al. [20•], current evidence suggests that the protective effects of CR on the risk of 

progression from normal cognition to MCI do not appear to differ across the observed range 

of amyloid levels (as measured by cerebrospinal fluid (CSF) abeta); instead, CR and abeta 

have additive effects on the risk of progression to MCI [40, 154, 159]. There is some 

evidence that as biomarkers of neuronal injury (such as CSF total tau and atrophy on MRI 

scans) increase, the protective effect of CR on risk of progression to MCI decreases ([151, 

154]; but see [40, 153]). This may indicate that the processes that mediate the beneficial 

effects of CR are less effective as levels of neurodegeneration increase, or that these 

processes begin to break down with disease progression (for similar findings across the 

spectrum of AD, see [160•]). Studies among patients with MCI have furthermore shown that 

given similar levels of cortical thinning, those with more education remain dementia free for 

a longer period of time than those with less education [101]. There is also some evidence 

that higher levels of education buffer against the negative impact of WMH on risk of MCI 

and dementia [161]. In contrast, late-life leisure activities were not found to moderate the 

relationship between AD biomarkers and risk of progression to dementia [152] in a non-

demented cohort, but to our knowledge, this issue has not been examined among individuals 

with normal cognition at baseline.

Among cognitively normal or non-demented groups, the protective effects of CR on level of 

cognitive performance appears to be independent of baseline levels of AD biomarkers and 

cerebrovascular disease [100•, 162, 163]. However, the degree to which CR proxy measures 
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moderate the relationship between baseline biomarker levels and rates of cognitive decline 

remains unclear [100•, 162, 163] and may depend on the clinical status of individuals and 

level of pathology. Specifically, one study found that higher CR was associated with faster 

cognitive decline after symptom onset among those who eventually progressed to MCI or 

dementia, but did not modify cognitive trajectories among those who remained cognitively 

normal, independent of baseline biomarker levels [100•]. Similarly, a recent study of 

individuals across the spectrum of AD found that when atrophy rates were low, those with 

higher education showed the same or less cognitive decline over time compared to those 

with low education. By comparison, when atrophy rates were high (i.e., in the range of that 

seen among individuals with dementia), participants with high education showed greater 

cognitive decline than those with low education. These results, taken together, are broadly 

consistent with Stern’s hypothetical model of CR [19] and point to the importance of taking 

into account both baseline and follow-up diagnosis, as well as biomarker levels, when 

investigating CR.

Lastly, some studies have examined the relationship between CR proxy variables and rate of 

change in AD and other biomarkers. A number of studies have shown that among non-

demented middle-aged and older adults, greater physical activity is associated with less 

brain atrophy over time [164•, 165, 166, 167•], though findings have been mixed [155•, 168, 

169]. Greater physical fitness and social activities have also been associated with less change 

in white matter microstructure [167•, 170]. In contrast, studies examining associations 

between other proxy measures of CR (including cognitive activities, education, occupation, 

and literacy) among cognitively normal and non-demented participants, and rates of change 

in AD biomarkers or brain structural measures, have produced mixed results. While a small 

number of studies reported that higher levels of CR are associated with less change in CSF 

abeta [171] and hippocampal volume [172, 173•], other studies did not find associations 

between proxy measures of CR and rates of change in amyloid [154, 155•], medial temporal 

lobe atrophy [153, 155•, 171], FDG metabolism [155•], and CSF tau and p-tau [154]. 

Among participants with AD dementia, higher education has been linked to greater cortical 

thinning over time [174] and greater decreases in cerebral blood flow [175].

Taken together, there is some evidence that greater physical activity levels may attenuate 

structural changes over time among non-demented groups, including atrophy and white 

matter microstructure. However, there is only weak evidence that other measures of CR 

directly affect the rate of change of AD biomarkers or brain structure and function. Notably, 

current studies are limited by relatively short intervals of longitudinal biomarker collection 

(2–4 years on average). More research is therefore needed to determine whether CR impacts 

structural and pathological brain markers over longer follow-up periods.

Summary/Conclusions

Despite differences in terminology, it seems clear that CR, as measured by proxy variables, 

has beneficial effects on late-life cognitive and clinical outcomes. CR proxy measures seem 

to be most strongly associated with a higher level of cognition, which might delay the onset 

of symptoms of cognitive impairment, and with reduced risk of MCI/dementia, even in the 

presence of pathology (see Fig. 1d). There is relatively little evidence currently, however, 
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that CR impacts the accumulation of disease-related pathology, although there is promising 

evidence that greater physical activity may be associated with less decline in structural brain 

measures among non-demented individuals. Additional longitudinal biomarker studies, with 

large samples and long follow-up intervals, are needed to determine the extent to which 

lifetime experiences directly impact brain reserve and maintenance. Such studies may help 

clarify the biological mechanisms underlying the beneficial effects of CR, since these 

mechanisms remain poorly understood.

To the extent that higher CR protects against the onset of disease-related clinical symptoms, 

or the onset of age-related cognitive decline, it provides an important mechanism for 

preserving cognitive function in old age, even if levels of pathology are rising. Broadly 

speaking, the current data suggests that initiatives that improve economic, social, and 

educational opportunities may have far reaching consequences for cognitive and brain health 

with age. For example, providing older adult communities with access to learning 

opportunities (such as mentoring projects, lifelong learning classes, local libraries), as well 

as policies that promote social connectedness and physical activity (such as green spaces, 

swimming pools, sidewalks, and bike lanes) may promote cognitive wellbeing. According to 

some estimates, delaying the onset of dementia by only 5 years would amount to a 50% 

decrease in dementia prevalence [176]. As such, interventions that increase level of CR may 

improve longevity and quality of life with age. Since most CR proxies reflect modifiable 

experiences that can be enhanced throughout the lifespan, current evidence further highlights 

the importance of lifelong engagement in cognitive, social, and physical activities.
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Fig. 1. 
Hypothetical models illustrating the possible associations between longitudinal cognitive 

trajectories and pathology as a function of CR (as measured by proxy variables), based on 

Stern’s Fig. 1 from [19]. Although the cognitive trajectories of the high and low CR 

participants are the same before and after onset of cognitive decline in (a–c) (as illustrated 

by black solid lines), the study results may differ, depending what part of the trajectory was 

observed (as illustrated by dashed blue horizontal lines, showing linear slopes of cognitive 

trajectories (a–c)). Conceptual model illustrating the lifespan impact of genetics, cognitive 

reserve, and age- and disease-related pathology on an individual’s risk of cognitive 

impairment as a function of age (d). Evidence to date suggests that CR proxy measures 

impact the level of cognition (as shown by the intercept effect in (a–c)), which might delay 

the onset of cognitive decline (as shown by the later cognitive trajectory change point among 

individuals with high CR (a–c)). Evidence also suggests that CR impacts risk of cognitive 

impairment (as shown by points A vs. C (d)). While protective factors (such as high levels of 

CR) may move the threshold of cognitive impairment to a later age (thereby reducing risk of 

cognitive impairment; point C (d)), risk factors (such as low levels of CR, age- and disease-

related brain changes, and other factors not discussed here (e.g., psychiatric conditions; poor 

health)) may move the threshold for cognitive impairment to a younger age (point A (d)). Of 
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note, genetics and lifestyle factors are hypothesized to act throughout the lifespan, whereas 

the impact of age- and disease-related pathology may not impact cognition until middle age 

or later. (Reprinted from: Stern, Y, Cognitive reserve. Neuropsychologia. 2009; 47:2015–

2028; with permission from Elsevier) [19]
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