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Summary

Many bacteria resist invasive DNA by incorporating sequences into CRISPR loci, which enable 

sequence-specific degradation. CRISPR systems have been well-studied from isolate genomes, but 

culture-independent metagenomics provides a new window into their diversity. We profiled 

CRISPR loci and cas genes in the body-wide human microbiome using 2,355 metagenomes, 

yielding functional and taxonomic profiles for 2.9 million spacers by aligning the spacer content to 

each sample’s metagenome and corresponding gene families. Spacer and repeat profiles agree 

qualitatively with those from isolate genomes but expand their diversity by approximately 13-fold, 

with the highest spacer load present in the oral microbiome. The taxonomy of spacer sequences 

parallels that of their source community, with functional targets enriched for viral elements. When 
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coupled with cas gene systems, CRISPR–Cas subtypes are highly site- and taxon-specific. Our 

analysis provides a comprehensive collection of natural CRISPR–cas loci and targets in the human 

microbiome.

eTOC

In this study, Münch et al. carried out a taxonomic and functional characterisation of CRISPR 

systems in 2,355 human microbiomes. Together with quantification of cas gene abundance, this 

informs the potential roles of CRISPR/Cas systems and their targets, as well as evolutionary 

properties and principles of bacteria-virus relationships.
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Introduction

Bacteriophages are one of the most abundant entities in our biosphere. To prevent infection 

by bacteriophages, 40% (Godde and Bickerton, 2006; Kunin et al., 2007) of sequenced 

bacterial species and most archaea possess Clustered Regularly Interspaced Short 

Palindromic Repeats (CRISPR), which together with CRISPR-associated (cas) genes form a 
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defense system against foreign DNA (van der Oost et al., 2009). Such CRISPR loci are 

mosaics of a short repeat unit and multiple unique spacer sequences, which they acquire 

continuously as part of their defense strategy. Upon phage exposure, genomic fragments of 

24–48 nucleotides in length are incorporated proximal to the leader end of the CRISPR array 

as spacers (Kunin et al., 2007). These spacer regions are transcribed and processed into 

CRISPR RNAs (crRNAs), which together with cas gene products such as the DNA 

exonuclease Cas9 recognise and subsequently cleave complementary nucleic acid 

sequences, called protospacers (Hatoum-Aslan and Marraffini, 2014), thus providing 

microbes with a molecular “immune” system (Horvath and Barrangou, 2010).

While this general mechanism of CRISPR inference has been extensively studied(Brouns et 

al., 2008; Karginov and Hannon, 2010), both the spacers and repeats captured by diverse 

microbes, and the diversity of associated cas genes suggest a largely unexplored range of 

CRISPR systems (Crawley et al., 2018). Independently of the spacer/repeat systems, 

associated genes comprise up to 65 different proteins, which can be classified into dozens of 

families (Makarova et al., 2011a). Two of these, Cas1 and Cas2, are highly conserved, while 

others vary greatly between organisms (Deveau et al., 2010; Horvath and Barrangou, 2010). 

All known active CRISPR–Cas systems contain Cas1 and Cas2, which coordinate spacer 

integration into the repeat cassette (Makarova et al., 2011a, 2020), while the other proteins 

cluster into three system types. The type I system includes Cas3 and the RAMP superfamily 

(encompasses Cas5 and Cas6), while the bacterial type II system includes Cas9 and the type 

III Cas10, which occurs in bacteria and archaea (Makarova et al., 2011a). Subsystems are 

classified based on these proteins, e.g. Cas12 for type V and Cas13 for type VI (Makarova et 

al., 2020). Thus, one potential driver of CRISPR subtype differentiation is in the architecture 

of captured sequences’ associated protein machinery, which might differ both in its 

phylogeny and in its potential ecological associations (e.g. among human body habitats).

In addition to the functions carried out by cas gene products, the adaptive memory itself is 

stored in the form of spacer sequences (surrounded by repeats), and has been studied as a 

record of microbes’ encounters with foreign DNA and RNA (Gogleva et al., 2014; Horvath 

et al., 2009; Shmakov et al., 2017; Stern et al., 2012; Vatanen et al., 2019). Such studies have 

confirmed, for example, that a large fraction of protospacers were found on phage and 

prophage genomes, which is in line with a main CRISPR function directed at defense 

against viral and mobile genetic elements (MGE). However, self-targeting spacers were 

found in ~18% of CRISPR-encoding organisms, which implies that the CRISPR–Cas system 

may also have a regulatory role (Stern et al., 2010) or cause detrimental “autoimmune” 

reactions, due to accidental incorporation of self sequences. Furthermore, anti-CRISPR 

systems could be chromosomally encoded to limit self-targeting effects (Rauch et al., 2017; 

Wimmer and Beisel, 2019). However, no potential targets can be identified for a large 

fraction of spacer sequences using current databases, leaving the question of the function 

and origin of the CRISPR “dark matter” (Shmakov et al., 2017).

Previous studies of microbial cas gene diversity and their accompanying CRISPR arrays and 

spacer sequences are mostly based on genomic isolates (Grissa et al., 2007; Makarova et al., 

2015). These may not provide an accurate view of this important regulatory system’s 

distribution in microbial communities, particularly those of the human microbiome, due to 
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their restriction to cultivable organisms. Furthermore, spacers may be lost during cultivation 

(Lopez-Sanchez et al., 2012) or assembly (Skennerton et al., 2013), thus potentially altering 

the observed CRISPR locus configuration. Cultivation-independent approaches, such as 

metagenomics (Quince et al., 2017), allow for a more comprehensive characterisation of 

microbial CRISPR systems across the range of taxa from a particular ecosystem as well as 

their phage counterparts, although this presents its own methodological challenges (Burstein 

et al., 2016; Sun et al., 2016).

Previous metagenomic studies of CRISPR locus distribution in the human microbiome 

focused mostly on streptococci in the oral environment (Naidu et al., 2014; Pride et al., 

2011, 2012), finding that CRISPR spacers, like viruses, are even more subject-specific than 

the bacterial composition of the microbiome. Another study recovered 3,545 unique 

CRISPR spacers from gut metagenomic assemblies (Gogleva et al., 2014); here, spacers 

with matches in their paired metagenomes tended to occur at a proximal location in the 

CRISPR cassettes, indicating relatively recent acquisition. Since this spacer collection relied 

on metagenomic assemblies, it can easily miss many CRISPR arrays, since their repetitive 

structure is difficult to assemble de novo (Skennerton et al., 2013). In part to overcome this 

limitation, another study used targeted assembly instead to uncover 7,815 total CRISPR 

spacers. This collection again confirmed the site- and subject-specificity of spacer 

sequences, but was conversely limited to the set of 150 pre-selected CRISPR loci (Rho et al., 

2012) and thus not intended to survey total CRISPR diversity. In addition to these challenges 

in characterising community spacer diversity, it can also be difficult to identify the targets of 

these spacers, since most studies rely on external databases to search for putative 

protospacers. Shotgun metagenomics in principle provides the opportunity to identify 

CRISPR elements comprehensively, while also searching the same samples for potential 

target sequences from community intrinsic viruses or mobile genetic elements.

To address these gaps, we present here a comprehensive taxonomic and functional 

characterisation of natural CRISPR–Cas systems in the human microbiome including 

spacers, repeats, cas genes, and their putative targets. We identified over 2.9 million unique 

CRISPR spacers, of which 98.63% are not present in data repositories (corresponding to a 

13-fold increase compared to CRISPRCasdb) (Pourcel et al., 2020), with virus-associated 

proteins as one of the most targeted functional groups. We further quantified over 9,038 cas 
gene variants distributed across all 13 members (cas1-13) of the family, carried by a variety 

of subject- and site-specific taxa. Our CRISPR–Cas system and protospacer collection thus 

provides a map of potential microbe-phage interactions in the human microbiome and 

represents a useful resource for further in-depth studies of the functions and taxa associated 

with this intricate biological system.

Results

Quality of HMP-derived CRISPR cassettes and length-dependent sequence regularities

To first focus on CRISPR spacer and repeat sequences in the human microbiome, we 

screened all 2,355 metagenomes from the HMP1-II using Crass (Skennerton et al., 2013) 

(Supplementary Datasets S1-S2). We also determined the presence and abundances of Cas 

proteins for all samples using the HMP Unified Metabolic Analysis Network (HUMAnN2) 
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(Franzosa et al., 2018) (Table S3) and examined their taxonomic provenance and co-

occurrence across samples and body sites, detailed later.

We confirmed the validity of the spacer and repeat sets by four kinds of quality controls: (i) 

using comparisons of the nucleotide composition to CRISPR loci published in 

CRISPRCasdb, (ii) by kmer-based analysis of the repeat stability within and between 

samples, (iii) by quantification of singleton spacers, and (iv) direct sequence comparison 

using global alignments (STAR Methods). Interestingly, analysis of the nucleotide 

distribution per relative position in the spacer sequence uncovered several general trends. 

These included a symmetric pattern at the spacer centre, with a peak of C/G at the first 

quarter and third quarter of sequence length, and an overrepresentation of thymine at the 

beginning and guanine at the spacer end (Fig. 1B). The mean GC content of spacer sequence 

was highly similar between HMP and CRISPRCasdb spacers (47% GC and 48% GC, 

respectively). On repeat sequences, a consistent inverse-symmetric pattern to the relative 

sequence center was found on both datasets (Fig. S1B).

To compare HMP and CRISPRCasdb-derived spacer composition, we binned the relative 

nucleotide abundance per relative position and compared the mean values of each bin; these 

were generally well-correlated (Pearson’s ρ: A = 0.67, C = 0.67, G = 0.74, T = 0.74, Fig. 

S3A). To more deeply assess the similarity of the two data sets, we stratified the 

compositional profiles by spacer length and calculated mean position-wise relative 

nucleotide frequencies binned by spacer length (Fig. 2C). This showed that especially longer 

spacers (> 34 nt) were differentially enriched for A/T nucleotides, and that this overall 

reduction of G/C content was dependent on spacer length. Again, overall nucleotide 

frequencies of HMP and CRISPRCasdb spacers were strongly correlated (Pearson’s ρ: A = 

0.66; C = 0.68; G = 0.70, T = 0.70, Fig. S3B).

We quantified similarity in repeat structure among pairs of HMP samples as the Bray-Curtis 

distance over their respective repeat 5-mer profiles. Individuals’ longitudinal samples tended 

to be stable over time, and spacers found in technical replicates were highly similar (both 

relative to samples drawn from different individuals; Fig. 2D). More specifically, stability 

was highest (BC distances were smaller) for technical replicates (mean BC = 0.24 ± 0.14) 

and significantly greater than longitudinal stability within individuals (mean BC = 0.28 ± 

0.10, P < 10−6, two-sided Wilcoxon rank sum test). Stability was lowest for randomly 

chosen sample pairs and markedly lower than samples taken from the same individual (mean 

BC = 0.41 ± 0.18, P < 10−13).

Similarly, the co-occurrence of most repeats across samples further supported the validity of 

the CRISPR collection. Overall, the number of singleton repeats, defined here as repeat 

clusters of size one across the whole HMP1-II repeat set, was reasonably low (3.8% of all 

repeats) with an average 6% of singleton repeats per sample (Fig. 1E). This is expected, as 

valid CRISPR repeats should co-occur in multiple samples with similar taxonomic profiles, 

since they tend to be species-specific. Most singleton clusters were found in the less deeply 

sampled and less diverse urogenital and skin body sites (where 18% and 17% of all clusters 

were singletons, respectively), while singleton clusters in the gut and oral body sites were 

comparatively less common (7% and 4% of clusters, respectively).
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CRISPR spacer loads and sequences differ across human body habitats

On average, we identified 43.1 ± 44.1 (mean ± s.d.) spacer sequences per million reads 

(CPM) (2,361 ± 2,808 spacer sequences per metagenomic sample) and 4.7 ± 5.0 CPM (in 

total 225 ± 222) repeat sequences across all body areas (Fig. 2A). These exclude outliers 

with unusual lengths compared to a collection of CRISPR loci from genome sequenced 

isolates (Grissa et al., 2007), which exceeded the inner fence of the CRISPRdb spacer length 

distribution (STAR Methods). The average length of all spacers (regardless of cassette host 

or spacer target) after this filtering was 32.7 ± 2.9 nt, slightly lower and significantly 

different from that of spacer from CRISPRCasdb (35.7 ± 4.7, P < 10−10, Wilcoxon rank sum 

test, Fig. 2B). The average length of repeat sequences (cluster representatives) was 34.1 ± 

4.9, significantly longer than repeats from CRISPRCasdb with 31.8 ± 5.1 (P < 10−15, 

Wilcoxon rank sum test). Assuming that the spacer length distribution is unimodal, 31 nt 

spacers were underrepresented in the HMP1-II (Fig. 1A, Fig. S1A). However, this was also 

true for CRISPRCasdb content, where spacers of length 30 (n = 16,992) and 32 (n = 54,038) 

are much more frequent than 31 nt spacers (n = 2,314).

To account for possible redundancy of the spacer and repeat sets, we clustered predicted 

spacers using CD-HIT (Li and Godzik, 2006) and used the representative sequences reported 

by CD-HIT for downstream analysis. Of 965,495 spacer clusters with 80% identity, 33% 

(316,572) were only observed in one HMP sample, and no cluster was found across all HMP 

samples (Fig. S2). The mean (± s.d.) number of clusters per sample was 1,879 ± 2,185, with 

most found in oral body sites (2,881 ± 2,433 clusters). Each HMP sample included on 

average 33 highly prevalent clusters defined as appearing in at least 100 samples. The most 

prevalent cluster had 563 spacer instances, distributed across 300 samples, with the cluster 

centroid spacer sequence of 

GCACTTGTTGAAGCTGATGTACTTGCTGACGTGCTTGCACTT. The prevalence of 

these clusters was driven mainly by their distribution in the oral microbiome, which was 

highly sampled by the HMP; of the ten most prevalent clusters, half of cluster centroid 

sequences mapped uniquely to Streptococcus pneumoniae, itself highly prevalent in the oral 

cavity and occasionally other body sites. The remaining prevalent sequences had no blastn 

matches to nr/nt (default parameters, October 2019), thus likely driven by other microbes in 

the oral sites.

In addition to their sequence compositions, spacer loads also differed significantly across 

body areas and sites (P < 10−15, Kruskal-Wallis test, Table S2). Several oral sites - 

supragingival plaque (93.0 ± 49.8, n = 360 samples), subgingival plaque (79.0 ± 59.7, n = 

19), and tongue dorsum (68.0 ± 32.7, n = 389) - had two- to three-fold higher spacer load 

than other oral sites, such as buccal mucosa (29.7 ± 30; n = 340), hard palate (33.8, n = 1) 

and keratinised gingiva (12.3 ± 9.7; n = 14, Fig. 2A). Gut, skin, and urogenital body areas 

had significantly fewer CRISPR spacers than oral sites (Dunn’s test FDR corrected q < 

10−62, 10−90, 10−8, respectively, Table S2). Since these site-dependent differences in spacer 

load were not correlated with differences in species diversity or sequencing depth, factors 

such as the difference in prevalence of biofilm-forming microbes or exposure to viruses 

might explain the observed spacer load differences.

Münch et al. Page 6

Cell Host Microbe. Author manuscript; available in PMC 2022 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The high spacer load of the three oral body sites from the two plaque and tongue 

microbiotas correlates with Archaeal and Bacterial species richness (number of species with 

relative abundance exceeding 1%) normalised by the sample’s sequencing depth 

(Spearman’s ρ = 0.45, P < 10−104), and load was even higher for samples from the 

subgingival plaque (Spearman’s ρ = 0.89, Fig. 2C). This suggests that the CRISPR system is 

more active on these oral communities (i.e. due to longer repeat cassettes) and that most 

spacers are species-specific, and particular CRISPR-containing microbes are exclusively 

present in these three body sites. To investigate this further, we searched for uniquely 

enriched taxa in the three oral sites. One species enriched in supragingival plaque (relative 

abundance = 14%) and subgingival plaque (relative abundance = 10%) is Corynebacterium 
matruchotii, but the relative abundance of this species did not correlate with spacer load. The 

abundance of further taxa such as Veillonellaceae, Rothia and Rothia dentocariosa, which 

were enriched in the three body sites, also had no correlation and are therefore not 

explanatory for the high spacer load in these communities, maybe due to the absence of 

CRISPR–Cas system in these strains.

Diverse taxonomic origins of CRISPR spacers

To characterise the taxonomic affiliations, we mapped the HMP spacers and repeat 

sequences to sample-specific assemblies (Human Microbiome Project Consortium, 2012). 

Spacers without matches were aligned to the UniRef90 database using DIAMOND 

(Buchfink et al., 2015) (STAR Methods) to identify putative, unassembled targets. Since 

spacers acquired in the past can be retained for variable lengths of time, complementary 

protospacer sequences need not necessarily be present in a particular present-day sample. A 

taxonomic annotation of the global spacer collection was assigned using the provided last 

common ancestor (LCA) of all species that contributed a sequence to the UniRef cluster 

(Suzek et al., 2007).

To characterize the extent to which CRISPR utilization (i.e. spacer carriage) agrees or 

deviates from the ecological background taxonomic profile, we first focused on the whole 

spacer set, which is dominated by the taxonomic annotation of the spacer hosts (i.e. CRISPR 

cassettes), followed by an analysis of spacer targets outside cassettes, for which we use the 

distance of matches to direct repeats for filtering. Alpha diversities (Shannon Index) of 

LCA-derived taxonomic annotation of all observed spacers (i.e. all hosts and targets) to 

those from assemblies’ annotations were significantly correlated (Spearman’s ρ = 0.67 and 

0.78 at the order and genus level, respectively).

Subsequent analysis also identified a correlation of the spacer and general microbiota 

taxonomic compositions, based on MetaPhlAn estimates for the latter and direct spacer 

assignments for the former (Spearman’s ρ = 0.53 and 0.58, at the order and genus level, Fig. 

S4), with diversity again consistently higher (mean ± s.d.) on the spacer profile (2.23 ± 0.91) 

on order level and 2.75 ± 1.12 on genus level (versus 1.28 ± 0.67 and 1.70 ± 0.74, 

respectively). As with assemblies above, the taxonomic profiles of CRISPR spacers and 

microbiota were very similar, though more diverse for spacers, especially in the gut 

microbiota (Fig. 3A). This trend was also observed at other taxonomic levels (Fig. S5), 

suggesting that overall spacers sample microbiome taxa randomly and no specific taxa 
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dominate spacers in the studied body sites. The strongest exceptions from this trend of high 

similarity were seen on gut samples, where e.g. the relative proportion of spacer sequences 

associated to the Bacteroidia class 38% ± 22% (mean ± s.d) lower than the relative 

abundance of Bacteroidia in the general microbiota (74% ± 19%). The same trend was also 

observed for samples taken from the oral sites, where the mean abundance of Bacteroidia 

was higher in the general microbiota (10% ± 9%) than on spacers (5% ± 6%). Bacteroidia 

load in the general microbiota was below 1% on all other (skin and vaginal) body sites (Fig. 

3A).

Relatedly, the gut and oral body areas tended to carry taxonomically distinct spacer sets 

from other body sites even at the order level (Fig. 3B, Fig. S6A for other ranks), which was 

less evident for overall microbiome taxonomic profiles (Fig. S6B, in which e.g. skin samples 

are not particularly similar). A PERMANOVA analysis indicated that 21% of the taxonomic 

spacer variance at the genus level was explained by body site (classes: 29%; orders: 27%; 

families: 23%), which was lower than the variance explained by body site among the 

microbiota as a whole (genera: 46%; classes: 50%; orders: 50% families: 42%). This is 

likely due to the particularly diverse CRISPR sampling of the well-sequenced oral and gut 

communities in this population, in contrast to the more balanced sampling of all taxa in the 

body-wide microbiome overall.

The previous sections all describe taxonomic annotation of the total observed spacer set 

(regardless of cassette host or spacer target). We next sought to identify potential targets 

using the mapping information of the CRISPR repeats (STAR Methods). In detail, we 

quantified spacer density per taxon by filtering out spacers with less than 500 nt distance to 

the next repeat for well-assembled taxa of each sample’s metagenome. This allowed us to 

focus on putative spacer targets (i.e. matches to viral content, or protospacers present in 

bacterial chromosomes, e.g. due to regulatory functions of the CRISPR system) by filtering 

out matches of spacers to the CRISPR cassette itself (i.e. the spacer host). Overall, mean 

protospacer density was 1.46 spacers per Mb. The body sites with the highest spacer density 

were mid vagina (3.94 Mb−1), hard palate (3.56 Mb−1), and supragingival plaque (2.37Mb
−1), while the lowest spacer densities were seen on body sites such as stool (0.53 Mb−1), 

saliva (0.75 Mb−1), and throat (0.77 Mb−1). Genera with high spacer density were body site 

specific, the genus with the highest spacer load being Fusobacterium for tongue (87.3 Mb−1) 

and supra- and subgingival plaque (19.1 Mb−1, 8.62 Mb−1, respectively) while Prevotella 
(5.95 Mb−1) showed the highest spacer density in stool.

Spacers targets encode proteins involved in methylation processes and membrane activity 
and phage proteins

To further characterize the functions of the CRISPR system within the human microbiota, 

we used the same mapping approach as for taxonomic analyses, but now focusing on spacers 

with homology to UniRef90 annotations within each sample’s assembly or the UniRef90 

database itself (Franzosa et al., 2018), resulting in 1,816,735 spacers with an associated 

UniRef90 term (best hit). Since spacer matches to CRISPR cassettes are on the non-coding 

regions of the genome, we used the full spacer set for subsequent analysis. We identified 

Gene Ontology (GO) terms (Ashburner et al., 2000) that were specifically enriched among 
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spacer annotations relative to the gene families present in each corresponding sample. 

Specifically, we calculated the ratio of spacer annotation abundance for each UniRef90 

family, per sample, to that of the sample’s HUMAnN2 estimate of that family. We then 

ranked these ratios and tested for gene set enrichment (Fisher’s exact test). We found that 

enriched GO terms using both the assembly-based (Table S3, Fig. 4A) and direct mapping 

approach were generally consistent (Table S4, Fig. S7). As anticipated, assembly-based 

mapping demonstrated more recent events (Fig. 4A, Fig. S8), which we focused on 

subsequently.

As expected, many such significantly enriched GO terms (FDR corrected q < 0.05) for genes 

targeted by spacers were virus-related, such as viral capsid (- assembly GO:0019069), virion 

assembly (GO:0019068) (Fig. 4A, Table S3), or had phage-related functions, such as N-

acetylmuramoyl-L-alanine amidase (GO:0008745) (Regamey and Karamata, 1998). To 

estimate the fraction of spacers involved in phage-related activity, we categorised UniRef90 

groupings based on phage and virus search terms (“virus”, “phage”, or “viral”, see STAR 

Methods). These estimates are likely conservative, as viral processes are often unannotated 

or use less specific terms, such as DNA maintenance, DNA integration, or DNA transfer, 

which are challenging to distinguish from non-viral forms of DNA integration, such as 

conjugation. 7.3% of annotated spacers matched to 982 viral-term associated UniRef90 

groups (Table S5). These groups accumulated slightly more spacer hits per gene than non-

viral-associated UniRef groups (0.07 vs. 0.06 spacer hits per annotated gene). Spacer density 

varied by anatomic location, and was high for some oral sites, e.g. 0.48 for throat, and lower 

within stool (0.03). A large portion of spacers without assembly matches and matches to the 

UniRef90 database (32.8% of spacer matches with annotation) could be mapped to 2,283 

unique, virus-associated UniRef90 groups, further demonstrating the prevalence of viral 

targeting for the CRISPR systems in the human microbiome. This difference may be 

attributable to spacer-related resistance against the matching phage, which could result in a 

low proportion of assembly-based phage matches due to low abundance of these viruses.

Several other bacterial processes are known to be specifically involved in phage invasion or 

replication, and these were often also enriched in our results. We identified significantly 

enriched GO terms associated with methyltransferase activity (GO:0009007, Table S3) and 

methylation (GO:0006306, Fig. 4A, Fig. S8). DNA methylation sites within bacteria are 

associated with restriction-modification systems (RMSs) (Rocha et al., 2001), a widely 

distributed defense mechanism that provides protection against incominging DNA such as 

phages (Vasu and Nagaraja, 2013). Phages may acquire protection against RMSs by phage-

encoded self-methylation (Shapiro, 2012; Warren, 1980), but methylation is also involved in 

regulatory functions by modulating or interfering with DNA-binding proteins (Reisenauer et 

al., 1999; Sánchez-Romero et al., 2015) or influencing the expression of virulence genes 

(Heithoff et al., 1999). This enrichment may indicate that either CRISPR acts to target 

phages that adapted to the RMS, or that the system interacts directly with epigenetic 

regulation. We found a similar result for conjugation-related functions, such as 

unidirectional conjugation and DNA integration (Fig. 4A): 66 individual conjugation-

associated UniRef90s were assigned 0.3% of all annotated spacers matched to the assembly 

(Table S6). These conjugation and horizontal gene transfer (HGT) related functions are also 
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known mechanisms of action of the CRISPR–Cas system (Marraffini and Sontheimer, 

2008).

UniRef90 groups with descriptions containing “transferase” accounted for 11.4% of all 

functionally annotated spacers, with an average load of 0.08 spacers per annotated open 

reading frame (ORF, Table S7). One such transferase is represented by the UniRef90 group 

“Prenyltransferase/squalene oxidase,” which has a high spacer load on tongue samples 

(3,653 spacers on 61 ORFs) and supragingival plaque (9,037 spacers on 156 ORFs). Genes 

for membrane-associated proteins appeared to be a common target of CRISPR, with 2% of 

all annotated spacers directed against such ORFs, especially in supragingival plaque, tongue, 

and stool sites (Fig. 4). We also found that the “LPXTG-motif cell wall anchor domain” was 

targeted by 0.9% of all spacers and highly prevalent: found in 14 of 16 anatomical locations. 

The “KxYKxGKxW signal domain” accounted for 0.3% of all spacers, with a high spacer 

load in keratinised gingiva and hard palate samples. A high spacer load (28 spacers per 

ORF) was similarly found for the “histone regulatory homologue binding (HIRA B) motif 

family” at all major oral sites.

With growing appreciation for the CRISPR system in non-defense-related functions (Westra 

et al., 2014), we focused subsequently on matches to spacer sequences outside of CRISPR 

arrays (based on the next CRISPR repeat match to the assembly) and removed ORFs with 

viral-associated sequences on the same contig, to identify putative spacer targets on 

chromosomally encoded genes. We then searched for enriched functions based on Fisher’s 

exact test of spacer counts and annotated ORFs at the contig level (Fig. 4B). This revealed 

that ORFs targeted by CRISPR associated with methylation activity such as the R-M system 

(q < 10−4) and DNA methylation (q < 0.003) appear on bacterial chromosomes rather than 

on viral contigs, highlighting its potential role in regulatory function. Further 

chromosomally enriched GO terms included membrane and cell-wall related functions, cell 

wall (GO:0005618, q < 10−89), cell adhesion (GO:0007155, q < 10−24) and extracellular 

region (GO:0005576, q < 10−33), more general functions such as pathogenesis 

(GO:0009405, q < 10−6), as well as general cell cycle-related functions such as DNA 

replication (GO:0006260, q < 10−14), recombination (GO:0006310, q = 0.009), and 

integration (GO:0015074, q < 10−4). However, since the annotation of phage and prophages 

remains challenging and they can easily be interspersed with putative bacterial chromosomal 

sequences, both in reference genomes and in metagenomic assemblies, these results should 

be interpreted with caution.

Variation in cas gene dominance across body sites

We next compared the CRISPR system repeats and spacers identified above to the Cas 

systems carried in corresponding communities and taxa. Three distinct subtypes are known 

among CRISPR–Cas systems on the basis of co-occurrence of cas genes (Haft et al., 2005), 

while ecological drivers and associations with these subsystems remain largely unexplored 

(CRISPR still needs microbiologists, 2018). To screen for cas genes associated with 

CRISPR subtypes and their prevalence and abundance in the human microbiome, we 

profiled the abundance of the ten main cas genes in HMP1-II samples using HUMAnN2 

(Franzosa et al., 2018). From this, we generated a collection of 9038 cas gene family 
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UniRef90 entries (Supplementary Dataset 3). Gene abundances were determined as gene 

length and sequencing depth normalised copies per million (CPM) reads, and the species-

resolved functional profiling of HUMAnN 2 was used to assign taxa to cas genes.

Cas genes occurred widely across HMP samples. In 2,365 out of 2,388 samples, we detected 

at least one of the cas1-13 genes (Fig. S9A). Samples without cas genes mostly came from 

anterior nares (n = 12), posterior fornix (n = 5), and stool (n = 3), the former likely due to 

their relatively low sequencing coverage. 24% (583) samples included all ten Cas proteins. 

On average, 7.3 cas genes were found per sample, associated with a wide range of microbes. 

The most prevalent cas genes were cas2 and cas1, which were found in 98% of all samples, 

while UniRef90 groups associated to cas11-13 are not found in any sample. Taken together 

all samples and all taxons, cas1 (137 ± 91 CPM; mean ± s.d.) cas2 (145 ± 97 CPM) is the 

most abundant cas gene followed by the CRISPR associated genes cas3 (29 ± 32 CPM), 
cas4 (26 ± 28 CPM), and cas5 (25 ± 29 CPM). cas10, a signature gene for the CRISPR 

subtype III (Makarova et al., 2015), was the least prevalent (prevalence of 28%) and least 

abundant (0.24 ± 1 CPM) (Fig. S9A); it was predominantly found in some oral sites and in 

some gut and skin samples. cas10, cas7 and cas8 were notably also represented by the 

fewest available UniRef90 reference sequences (41, 96, and 96 respectively of 9,038 total), 

potentially contributing to the former’s lower prevalence (if additional variants within the 

family remain to be annotated).

The overall relative abundance and gene load of cas genes differed between body sites, with 

the highest levels occurring in several vaginal sites, mainly due to increased cas9 abundance 

(as carried by ecologically dominant lactobacilli within these communities), while skin 

samples had the lowest cas abundances (Fig. S9A, Fig. S9B). These trends were not a 

straightforward function of community diversity, however, since vaginal and skin 

communities are less diverse than oral or gut communities. The overall mean cas gene load 

among oral body sites was 3.4 times higher than for the remaining body sites, most 

profoundly for cas7 (15-fold increase to 4 CPM on oral sites), cas10 (11-fold increase to 0.4 

CPM), and cas8 (7-fold increase to 4 CPM). Three body sites, namely anterior nares, stool, 

and left retroauricular crease, showed comparably low cas loads dominated by cas2 and an 

absence of cas9 and cas10 (Fig. S9B).

The taxa contributing to cas abundances were body-site specific, sometimes corresponding 

to the site’s abundant taxa, in other cases showing unique enrichments (Fig. 5). This high 

body-site specificity of the former is driven by a joint association between taxa and CRISPR 

systems. This could be indicative of ecologically driven mechanisms - like any other taxon - 

or ecology-specific molecular function - since the body sites are associated with different 

environmental factors such as aerobicity, nutrient availability, and viral load, among others. 

In the oral cavity, for example, Corynebacterium matruchotii is common. It is not the most 

abundant organism per se, but the top contributor of cas1-3. Conversely, this was true of 

Neisseria subflava in saliva samples. Overall, cas1 and cas2 occurred in similar taxa in oral 

and vaginal sites, and most cas-containing taxa had both proteins, such as B. vulgatus (cas1, 
cas2, cas4) and Cutibacterium (formerly Propionibacterium) acnes, a Gram-positive skin 

bacterium mostly carrying cas1, cas2, and cas5. One of the main contributing taxa for cas3 
within the oral area (across all sites) was Haemophilus haemolyticus, a gram-negative 
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bacterium found as a commensal in the respiratory tract (Pickering et al., 2016). This had a 

high load of cas3, but also cas1–5 at lower levels. Within the urogenital body area, 

Lactobacillus species were the major contributors, where the samples divided into two main 

clades based on Cas1/2 gene abundance dominated by L. crispatus or L. iners. In addition to 

these two Cas genes, some vaginal samples show high cas9 abundances contributed by L. 
jensenii. This can be explained since this species belonging to the type II-C (Makarova et al., 

2015) which includes cas1–2 and cas9, which we confirmed by screening of the cas 
annotation of the genome. The cas6 system was mainly found in Streptococcus infantis for 

oral samples and Fusobacterium periodonticum in tongue dorsum samples. Rothia aeria 
contributed nearly all cas7 genes on non-saliva oral samples, while cas8 was present nearly 

solely in Neisseria sicca genomes.

The pronounced co-occurrences of cas genes indicate that, as expected, multiple cas genes 

are generally present to provide a functional CRISPR–Cas system (Fig. S9B). 37 of the non-

identical cas-cas pairs (87%) exhibited significant correlations (Fig. S10). The lowest co-

occurrence to other cas genes was found for cas9, which only correlates with cas1 and cas2. 

As expected, cas1 and cas2 abundances were highly correlated across the population 

(Pearson’s ρ = 0.87, P < 10−16, Fig. S9A, Fig. S10), since they are considered as essential 

for a functional CRISPR system. However, this correlation was weaker for skin samples (ρ = 

0.47), which show a reduced Cas2 load. We also saw a substantial, body site specific co-

occurrence of Cas4 and Cas5 on the oral samples (ρ = 0.88), which is not present in the gut 

(ρ = 0.07) and weaker for skin and vaginal samples (ρ = 0.43 and 0.20, respectively). This 

might be explained by the oral predominance of CRISPR subtypes that requires both cas4 
and cas5, which is the case for the subtypes I-A, I-B and I-C (Makarova et al., 2015). Cas4 
is a nuclease present in the majority of CRISPR–Cas systems and is involved in the spacer 

acquisition. In some systems, cas4 is fused to cas1, suggesting a common function, however, 

other functions of cas4 such as involvement in programmed cell death have been proposed 

(Makarova et al., 2011b). While many of these variants may be due to technical limitations 

in the detection of species-specific cas genes within metagenomes, others may suggest 

additional Cas system architectures employed by members of the human microbiome.

Discussion

This study provides a large scale assessment of CRISPR spacers and repeats from across the 

human microbiome, incorporating 2,355 metagenomes from 17 different body sites in the 

HMP1-II population. By identifying CRISPR cassettes in communities and taxa for which 

no published reference genome exists, this extended the set of CRISPR spacers identified 

within the human microbiome by an order of magnitude. Using this resource, we (i) 

estimated the CRISPR activity on different body sites, identifying the oral plaque and tongue 

as ecologies with high activity compared to gut and urogenital sites; (ii) characterised the 

nucleotide-sequence properties of spacer and repeat sequences, identifying a hitherto-

unknown palindromic nucleotide distribution pattern and an association of GC content to 

spacer length; (iii) uncovered the functional potential of the human-associated CRISPR 

spacers, including proteins by which they target bacteriophages. Beyond CRISPR targets 

likely to be phage-derived, we highlighted potential CRISPR interference to genes involved 
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in bacterial methylation activity, suggesting an as-yet-unknown connection of the CRISPR 

and R-M defense systems.

A variety of biochemical and ecological factors appear to influence CRISPR distributions 

across the human body. Host-microbe interactions are especially prevalent on mucosal 

surfaces, where commensal microbial communities are maintained via nutrient absorption 

and controlled by the host through a variety of immune strategies (Aymeric and Sansonetti, 

2015; Turner, 2009). The spacer load on mucosal surfaces (buccal mucosa, hard palate, 

keratinised gingiva, palatine tonsils, saliva, throat, tongue dorsum, gut, vaginal) is nearly one 

magnitude higher than on non-mucosal surfaces (skin) but highest on mucosal-adjacent 

surfaces (supragingival and subgingival plaque). Though environmental factors such as 

aerobicity correlate with CRISPR-incidence (Weissman et al., 2019) across taxa, HMP-1-II 

derived spacer load was not directly associated to the oxygen exposure of the body site 

(median spacer load for high-O2 sites = 2.71 CPM; 46.96 CPM for mid-O2 sites and 18.19 

CPM for low-O2 sites). Instead, functions of the CRISPR system beyond phage targeting, 

such as control of genes involved in commensalism and virulence (Sampson and Weiss, 

2013) and regulation of inter-microbial interactions within the host (Sampson et al., 2013), 

could explain the difference in spacer load between these surfaces. However, genetic 

experiments (likely in vitro) would be needed to control for potential confounders such as 

nutrient and oxygen availability and spatial differences such as biofilm formation and viral 

load.

Overall, the highest spacer load itself was in the oral cavity, particularly in dental plaque 

(Fig. 2A). This environment is a common entry point for microorganisms to the human host 

(Edlund et al., 2015) and is densely populated by viruses including bacteriophages (Naidu et 

al., 2014; Wang et al., 2016) that can persist over time (Abeles et al., 2014). Some of these 

properties are also true in the gut, but host physiology and immunity exert a much greater 

control over the live viruses that reach the colon, unlike the oral cavity. We hypothesised 

increased viral abundance coupled with longer exposure durations would lead to selection 

for spacer maintenance over many bacterial generations (Weinberger et al., 2012). The 

differences of spacer load are partially attributable to increasing species richness (Fig. 2C), 

also true in the oral cavity relative to the gut, suggesting that sites with a high spacer load 

harbour more distinct species with a CRISPR system. A link between biofilm formation and 

CRISPR activity (Cady and O’Toole, 2011; Zegans et al., 2009) also seems plausible, since 

samples of the supra and subgingival dental plaque originate from perhaps the most 

structurally-organised biofilms (Marsh, 2006) and show the highest spacer densities. These 

biofilms are known to facilitate the action of bacteriophages due high density of bacteria 

(Harper et al., 2014), which in turn would cause evolutionary pressure on bacteria to survive 

these phage attacks via adaptation and upregulation of the CRISPR system (Patterson et al., 

2016). Additionally, since HGT is facilitated in these biofilms (Madsen et al., 2012), inter-

bacterial spread of the CRISPR system might contribute to the high spacer loads observed, 

or might provide an additional evolutionary pressure to tightly regulate other forms of 

potentially invasive DNA.

In terms of sequence structure, the lengths of the HMP1-II derived CRISPR elements were 

generally similar to previously reported sequence sizes (21–72 nt for spacers and ~23 to ~48 
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for repeats) (Horvath and Barrangou, 2010; Kunin et al., 2007). Averages differed slightly 

across body sites, with larger repeat sizes present in stool, palatine tonsils, and throat, 

potentially reflecting differences in phage load or genome maintenance strategies among the 

dominant bacteria in these environments (Fig. 2B). Three distinct repeat length classes of 

small (~24 nt), medium (~29 nt), and large (~36 nt) sizes have been previously reported 

(Grissa et al., 2007), where longer repeat sequences are found in the genomes of e.g. 

Bacteroides fragilis and smaller repeat group is present in archaea (Grissa et al., 2007). Our 

results mimic these findings, including B. fragilis and other Bacteroides spp. abundant in gut 

(Huang et al., 2011) and archaeal species rare in human-associated communities (Horz, 

2015). To ensure that this difference in spacers and repeat sizes was not due to the read-

based CRISPR detection method, we recovered spacers using an alternative method based 

on assemblies (MinCED, https://github.com/ctSkennerton/minced) and confirmed that the 

resulting spacer length and size distributions were not significantly different from those 

recovered by Crass (Fig. S12B). We identified some interactions between sequence and 

composition, with smaller spacers having higher C/G content, suggesting different DNA 

targets (or, again, genome maintenance strategies) by size class. Viruses are often rich in 

A/T base pairs, and increasing length would result in more selectivity towards specific viral 

strains, while shorter G/C rich classes could target non-viral sequences for other types of 

regulation. Interestingly, the unexpectedly low number of 31 nt spacer sequences observed 

here (Fig. S1), which was also the case in published genomes, has neither a clear 

biochemical nor evolutionary driver to date.

The beginning and ends of CRISPR spacers were also found to be A/T-enriched here, which 

we again confirmed with spacers derived from sequenced genomes (Fig. 1B). This could 

arise from multiple synergistic sources. Structurally, such palindromic sequences arise when 

repeats contribute to the stability of RNA secondary structures (Mojica et al., 2000). In 

previous RNA stability studies of CRISPR repeats and spacers, only the former (repeats) 

showed elevated folding stability, but not the latter (spacers) (Kunin et al., 2007). Another 

property associated with these end sequences might be cleavage or integration efficiency, 

which has been found previously for AT-motifs at the end of spacer sequences in E. coli 
(Yosef et al., 2013). The AT enrichment that we observe throughout spacer sequences, with 

additional enrichments at both beginnings and ends, could thus be due to a combination of 

effects driven by both RNA secondary structural stability and efficiency of spacer 

acquisition.

Functionally, spacer-targeted GO terms were most associated with viral processes, bacterial 

transduction, and conjugation, as expected (Fig. 3). However, overall HGT rates by body site 

(Liu et al., 2012) were not correlated with the observed spacer loads in the HMP1-II results. 

This could be due to a variety of reasons, particularly the extremely different measurement 

strategies for the two effects, or possibly biological confounding from the large number of 

targeted non-viral sequences with diverse functions outside of transduction and conjugation. 

Purely natural competence from extracellular DNA was also not a complete explanation, 

since we compared the number of CRISPR spacers in a collection of 13,337 complete 

genomes with the presence of competence-conferring protein family (PF03772) and did not 

find a significant association (Fig. S11). Among other functional enrichments, a third group 

of pathways were associated with methylation processes and the R-M system, indicating that 
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CRISPR could act as a second-stage defence against phages that acquire R-M functions, or 

that CRISPR regulates R-M or interacts with its downstream regulation. Intriguingly, this is 

in line with the finding that R-M and CRISPR activity might be functionally coupled 

(Dupuis et al., 2013; Makarova et al., 2013).

Finally, in addition to CRISPR repeat and spacer sequences themselves, the ecology of 

CRISPR systems overall is driven in large part by their associated cas genes, which have 

been grouped into five subtypes (I-V) with differential function and phylogeny that is not yet 

fully clear (Makarova et al., 2015, 2020). These differ in which combination of cas genes are 

carried by their associated host microbes, e.g. type I often including all of cas1-8 vs. type II 

including only cas1-2, cas4, and cas9. In part, subtypes differ in their intended targets, where 

the type II and III systems are associated with self-regulation in addition to phage defense. 

In particular, the type III system, which is thought to facilitate transcriptional regulation 

(Ledford, 2017), is the least prevalent system found in the HMP1-II set. The type II system, 

enriched in host-associated bacteria and potentially associated with virulence regulation 

(Sampson et al., 2013), was highly abundant in the vaginal microbiome and present to a 

lesser degree in the oral cavity. In our dataset, the canonical type I system was most 

prevalent and present on all body sites. Overall, though, we did not tend to see strong 

differentiation among cas subtypes in vivo, and it would be of interest to more closely study 

cas gene co-segregation within different microbes in a high-throughput, culture-independent 

manner.

As evidenced by this study, certain properties of CRISPR cassettes are more or less difficult 

to examine from metagenomic sequencing. While individual Cas proteins are relatively easy 

to detect and differentiate, the repetitive nature of CRISPR spacers and repeats is 

challenging to handle in metagenomes. The read-based detection approach employed in this 

study is not affected by the need to de novo assemble repetitive elements. However, as a 

consequence, recovered CRISPR cassettes cannot be seen as discrete CRISPR loci and can 

originate from multiple organisms that share the same repeat. This could in turn inflate the 

number of spacers due to isolated sequencing errors, and the exact spacer sequence can be 

erroneous if many spacers start or end with a shared subsequence. For a CRISPR locus to 

even be detected by read-based analysis requires the presence of at least some sequences that 

share sufficient homology across the length of a read and of a repeat, and thus such 

approaches fail to detect small CRISPR cassettes and cassettes from low abundance 

organisms. Conversely, other short repeats with sequence characteristics similar to CRISPR 

cassettes could inflate the overall spacer set by contributing false positives. Since many of 

these drawbacks are intrinsic to the interaction between short read sequencing and any type 

of underlying repetitive elements, they might best be reduced in the future through the use of 

culturomics, or by long read or linked read sequencing techniques.

Despite potential limitations, the spacer and repeat set described in this study is, to our 

knowledge, the largest and most comprehensive assessment of CRISPR carriage and ecology 

in the human microbiome. Together with our quantification of cas gene abundances, this 

informs both the potential functional roles of CRISPR–Cas systems and their targets in the 

human microbiome, as well as evolutionary properties and general principles of bacteria-

virus relationships in and on human hosts. These data could also aid in the identification of 
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viral sequences associated with human microbiome, which remains technically challenging 

for additional reasons (Edwards and Rohwer, 2005), and for the development of 

bioinformatic CRISPR detection methodology. Ultimately, these resources may be further 

translational for optimisation of phage-based treatments (Fischetti et al., 2006; Nobrega et 

al., 2015) or plasmid vectors, which must avoid similarity to prevalent natural spacer 

sequences within the microbiome in order to be effective for therapy.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources should be directed to and 

will be fulfilled by the Lead Contact, Curtis Huttenhower chuttenh@hsph.harvard.edu.

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The Human Microbiome Project (HMP) metagenomes 

analyzed in this work are available via http://hmpdacc.org. The CRISPR reads and spacer 

datasets (Supplementary Datasets S1 - S3) and the UniRef90 profiles (Supplementary 
Datasets S4 - S6) are available via http://huttenhower.sph.harvard.edu/crispr2020.

METHOD DETAILS

CRISPR identification from metagenomes—We processed all 2,355 shotgun 

metagenomic samples of the expanded Human Microbiome Project (HMP1-II), which has 

been described in depth (Human Microbiome Project Consortium, 2012; Lloyd-Price et al., 

2017). Briefly, the cohort comprises 2,103 unique metagenomes and 252 technical replicates 

from 256 individuals obtained from 15 to 18 distinct body sites. From reads, we extracted 

spacer and repeats as well as CRISPR associated reads using Crass version 0.3.12 

(Skennerton et al., 2013) with the parameters, which yielded 5,613,734 spacers and 479,632 

repeats sequences (Supplementary Dataset 1–2) associated to 78,523,306 individual reads. 

These Crass parameters use a higher length threshold of 100 nt, since longer spacers above 

50 nt (the default settings) have been reported (Pourcel et al., 2020). We further increased 

the kmerCount parameter to 23, which controls how similar direct repeats must be to define 

a cluster, to improve sensitivity in the highly complex human microbiome samples. We have 

chosen Crass over other tools such as MetaCRAST (Moller and Liang, 2017) since the latter 

require the presence of a database containing known repeat clusters to search for. We expect 

that current databases such as the database provided by MetaCRAST (6456 DR repeat 

clusters) is not covering the true diversity in complex communities and would therefore 

oversample for known repeats. On the other hand, tools such as Minced are optimized for 

longer sequences and find less spacers compared to Crass on HMP metagenomes, probably 

due to the fact that repeats are challenging to assemble de novo.

We compared the number of recovered spacers and spacer lengths of this read-based method 

(Crass) to MinCED (https://github.com/ctSkennerton/minced), a method optimized for 

longer sequences (such assembled contigs), using ten randomly selected samples of different 

body sites (IDs SRS063621, SRS146746, SRS893278, SRS043239, SRS044366, 
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SRS016575, SRS148979, SRS077751, SRS143290, SRS019120). Crass, the method used in 

our study, showed a higher number of spacers detected when comparing with MinCED (Fig. 

S12B). The set of spacers recovered by MinCED showed similar length-distributions as we 

have reported in the manuscript using Crass, including the absence of 31-nt long spacer 

sequences. The non-normality of spacer length distributions was thus not explained by a 

Crass specific length bias.

Unusually long or short spacer sequences (potential false positives) were filtered out using a 

fixed distance from the interquartile range (Q3 – Q1) (inter-fence) from a spacer length 

distribution of public available CRISPR dataset. For the spacer dataset, the lower limit was 

calculated to be 27 nt and the upper limit to be 43 nt in length. Any observation outside 

these fences was considered a potential outlier and was removed from the analysis. The 

lower limit is defined as Q1 – (1.5 * IQR) while the upper limit is defined as Q3 + (1.5 * 

IQR). In total, 10.3% of spacer sequences were removed using this method (5,033,299 

sequences after filtering). These outliers were especially prevalent in samples taken from the 

anterior nares and left and right retroauricular creases.

We created clusters as 95%, 90% and 80% similarity using CD-HIT v. 4.7 (Li and Godzik, 

2006) with default settings resulting in sets of 1,859,558, 1,656,661, and 732,293 cluster 

representatives, respectively. For most sequence comparisons (such as in Fig. 2) we use the 

80% identify cutoff based on an evaluation of different cutoff thresholds (Figure S12A). We 

downloaded all spacer and repeat sequences marked as ‘convincing’ from CRISPRCasdb 

(Pourcel et al., 2020) (Accessed August 2020). Spacer and repeats were clustered at 90% 

and 80% similarity using the same method, to create a bowtie2 database using these 

sequences. To quantify similarity of our dataset to CRISPRCasdb, we mapped all 479,632 

HMP1-II derived repeat sequences to the bowtie database of CRISPRCasdb repeat 

sequences (allowing 1 mismatch in SEED alignment) using the --local parameter. Kruskal-

Wallis tests were used to compare spacer and repeat counts with Dunn’s post-hoc test and 

the Benjamini-Hochberg multiple hypothesis test correction procedure using the R package 

“FSA”. Heatmaps were created using the R Complex heatmaps package (Gu et al., 2016). 

We quantified the mean GC content using the GC and s2c functions of the seqinr R library 

on filtered spacers sequences (the same mean GC content seems not be affected by the 

filtering).

We quantified the correlation between the raw (non-sequencing-depth corrected) species 

count based on MetaPhlAn2 (Truong et al., 2015) estimates of species exceeding 1% RA, 

and the number of spacers per million reads stratified by body site (Fig. 2C). The reason to 

choose non-sequencing-depth corrected species counts was that most samples in HMP1-II 

are sequenced to sufficient depth to detect most species and re-normalizing would introduce 

more bias than it removes. Anterior nares is potentially the only boddy site with both high 

diversity and (often) insufficient high sequencing depth to saturate detection.

We quantified the median spacer load as related to aerobicity by grouping samples based on 

the aerobicity of their body sites into three classes based on the O2 exposure (Segata et al., 

2011). Skin samples were in the high-O2 exposure class, oral and vaginal samples in the 

mid-O2 exposure class, and gut on the low-O2 exposure class. We similarly quantified 
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differences in spacer load between mucosal and non-mucosal body sites by grouping body 

sites, where the oral cavity, gut, and vaginal sites were classified as sources of mucosal 

communities and skin as non-mucosal (Segata et al., 2011).

QUANTIFICATION AND STATISTICAL ANALYSIS

Validation of spacer and repeat sequences—K-mer profiles were calculated from 

observed HMP repeats using a publicly available tool developed in-house (https://

github.com/algbioi/kmer_counting). Bray-Curtis (BC) similarity between all sample pairs 

was calculated using 5-mer data. We calculated mean stabilities (1-BC) for samples marked 

as technical replicates, taken from the same individual at two different time points and on 

randomly chosen pairs of two different individuals. We filtered out samples with only a 

small number of repeats (< 25 repeats per sample) to prevent a high k-mer similarity caused 

by undersampling rather than a biological effect. To quantify the cluster co-occurrence 

patterns across HMP samples, we used CD-HIT at 80% identity (see Fig. S12A for a 

comparison of the influence of the cluster threshold) and translated the CD-HIT output using 

the clstr2txt.pl tool, which was then analysed within R. We analysed the nucleotide 

frequency using the consensusMatrix function of the Biostrings R package. To account for 

different spacer length, we calculated the relative length by dividing each position by the 

total spacer length and taking all spacers into account that remained after filtering using the 

interfence criterion of a public CRISPR database (length of 28 nt to 42 nt). Confidence 

intervals were calculated by the geom_smooth function of ggplot2 using Local Polynomial 

Regression Fitting (loess) with standard parameters. Binnings were generated using the 

stats.bin function fields package with number of bins (N parameter) set to 100. Pearson’s 

correlation coefficients were calculated using the cor.test function in R.

Taxonomic analysis—We remapped the spacer content to the samples’ individual 

assemblies which contains both CRISPR cassettes and spacer targets (e.g. on contigs of vial 

origin) since current public available phage and viral databases are not covering the true 

viral diversity. Mapping was performed using the bowtie2-build command to create an index 

of the samples’ assembly, followed by bowtie2 for local alignment (--local option) with the 

parameters “-N 1 -a –very-sensitive”. This mapped 48% of all spacer sequences to sample-

specific assemblies, similar to the overall fraction of mapped HMP1-II reads (36–42%) 

(Lloyd-Price et al., 2017). This produces a BAM file for each mapping, which we processed 

in R using the scanBam function of the R library Rsamtools. We saved the unmapped 

fraction using the bowtie2 “--un” parameter for later mapping to a more global database. 

Taxonomic information for the metagenomic samples were generated using MetaPhlAn2 

(Truong et al., 2015) (available via http://hmpdacc.org). Using this mapping approach, we 

mapped 2,468,324 spacers to the assembly, for which we identified taxonomic information 

for 1,630,590. Since the samples’ individual assemblies provide UniRef90 annotations for 

ORFs, we determined the LCA of UniRef90 annotations if the spacer match overlapped with 

this ORF and parsed the LCA taxonomy for spacers with UniRef90 annotations using the R 

library taxonomizr by mapping the taxon UID to the phylogenetic tree using names.dmp and 

nodes.dmp annotation files. Since the taxonomy of both approaches agreed largely, we used 

the MetaPhlAn2 annotation for further analysis (Supplementary Dataset 3). FDR corrected 

p-values are denoted as q-values throughout the manuscript.
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We mapped the remaining spacers without a match to the samples’ assemblies to the human-

microbiota relevant subset of the UniRef90 database (Franzosa et al., 2018) database we 

used DIAMOND blastx using the uniref90_annotated.1.1 database with the parameters “-e 

5000000 --more-sensitive --threads 30 --max-target-seqs 1 --query-cover 80 --compress 1 --

id 8”. We filtered the mapping and retained matches with more than 80% percentage 

identity. We assigned taxonomic information to the UniRef90 groups using the LCA 

approach described before, resulting in 768,068 taxonomically annotated spacer sequences. 

We merged the set of annotated spacer sequences with the set generated using the bowtie2 

approach, resulting in overall 2,398,658 taxonomically annotated spacers.

We calculated the Shannon entropy using the diversity function of the vegan package. 

Phylogenetic trees (Fig. S5) were generated using the metacoder and taxa R package based 

on the taxonomy of the 2,398,658 spacer sequences. PCoA plots were generated in R using 

the ape package on Bray Curtis dissimilarity calculated using the vegan package. 

PERMANOVA tests were performed using the anova.cca function of the vegan package with 

default parameters. Alpha diversity were consistently higher for LCA-based spacer 

assignment (3.40 ± 1.18 for mean ± s.d. on order level and on 4.03 ± 1.48 genus level versus 

0.97 ± 0.60 and 1.31 ± 0.72), likely due to the substantially greater coverage possible by 

including unassembled targets. The two types of annotations together provided potential 

taxonomic assignments for 2,398,658 spacers (48%).

To quantify putative protospacer density, we matched the repeat set to the samples’ 

individual assemblies using bowtie2 similar to the spacer mapping. We filtered the bowtie2-

based spacer mapping based on the mapping locations of the repeats and excludes spacers 

within 500nt of a repeat match, since these are putative CRISPR regions, after which 

294,550 putative protospacers remained, of which 142,446 are taxonomically annotated 

based on the MetaPhlAn2 profile of the contigs. On a per-sample level, we filtered out 

genera with less than 10,000 genes to focus our analysis on well-assembled genera. We 

aggregated the number of spacer matches by contigs and stratified these by the genus 

annotation and sample ID. To calculate the mean density, we divided the sum of all spacer 

matches to contigs by the sum of the contig lengths. Mean densities per body site were 

calculated by averaging over the spacer density values for the individual samples.

Functional analysis—We mapped spacer and repeat sequences to the samples’ individual 

assemblies (contigs) generated by the HMP1 (Human Microbiome Project Consortium, 

2012; Lloyd-Price et al., 2017) using their IDBA-UD assembly protocol (Peng et al., 2012) 

on a per-sample basis. Annotations of the assemblies (position and putative function of 

ORFs) were generated in HMP1 (Lloyd-Price et al., 2017) using MetaGeneMark based on 

several sequence-based searches leading to functional annotation of 35–45% of genes. We 

aggregated the assembly annotations, leading to 1,071,685 unique associations of genes to 

UniRef90 tems, functioning as a background for our statistical test and stratified these 

background occurrences by the body site (Fig. 4A) or body area (Fig. 4B). From the spacers 

matched to the samples’ individual assemblies, we annotated 1,003,429 spacers with one 

Uniref90 term (best hit), resulting in 16,462 UniRef90 terms based on overlaps of the spacer 

match to the contig annotation (Supplementary Dataset 3). Based on the number of spacer 

hits per UniRef90 term and the UniRef90 occurrence on the assemblies, we create for each 
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body site a ranked list of Uniref90 terms based on the number of spacer matches per ORF 

found in the background were used to identify significantly enriched gene ontology (GO) 

terms using Fisher’s exact test for gene rank enrichment (Table S3).

Spacers without a match to the samples’ individual assemblies were mapped to a human-

microbiota relevant subset of the UniRef90 database (Franzosa et al., 2018), resulting in 

813,306 spacers with a UniRef90 annotation (in total 335,739 different UniRef90 terms). As 

a background, we use HUMMaN2 estimates of the assembly to these UniRef90 groups and 

generate ranked lists of UniRef90 spacer matches relative to the background for the GO 

enrichment analysis (Table S4).

We quantified conjugation-associated UniRef90 groups based on a non-case-sensitive text 

search on the terms “conjugation” or “integration” or “horizontal” or “conjugative”). Viral-

associated groups were defined by a non-case-sensitive grep match of “virus” or “phage” or 

“viral” and transferase-associated groups were identified by a grep match to “transferase”. 

Conjugation related functions were searched via a grep match of “conjugation” or 

“integration” or ”horizontal” or “conjugative”, embrane related functions via “cytoplasmic” 

or “cytoplasma” or “membrane”.

To identify autoimmune-related functions, we mapped the repeat set to the samples’ 

assemblies using the same methods as for the spacer set and annotated the spacer dataset 

based on the distance to the next repeat on the same contig, and filtered out spacers that 

occured within +−500 nucleotides near a repeat match. We further filtered out spacers that 

occured on a contig with ORFs annotated as “Phage” or “Bacteriophage” or “phage” or 

“virus” or “tail” or “head”. We quantified the spacer density based on the sum of spacers 

found on ORFs associated with the UniRef90 annotation and divided this by the overall 

number of ORFs associated with the UniRef90 group.

Analysis of complete genomic isolates—We screened all open reading frames 

(ORFs) of a collection of 13,337 quality-controlled complete genomes for protein family 

matches using HMMSEARCH of the HMMER 3.1b2 software (Eddy, 1998) against the 

PF03772 (“Competence protein”) from the PFAM database v. 31.0, using a E-value cutoff of 

1e-4. CRISPR loci and repeats were identified using CRISPR Recognition Tool (CRT) 

version 1.1 (Bland et al., 2007) with standard parameter setting. We calculated the Pearson 

correlation coefficient and the Spearman’s rank correlation coefficient using R 3.6.3.

Quantification of cas genes—The presence or absence of CRISPR associated genes 

(cas) was quantified using HUMAnN2 0.9.9 (Franzosa et al., 2018) based on the 

quantification of a set of UniRef90 terms within the metagenomic samples (Supplementary 
Dataset 4, Table S1). We searched for UniRef90 groups that are annotated with Cas1–10 

(www.uniprot.org, accessed February 2019) and Cas11–13 (accessed March, 2020) (in total 

80 UniRef90 terms, with no term associated to Cas11) due to an recent update on the 

CRISPR subtype classification scheme (Makarova et al., 2020). Based on this we quantified 

gene-length and community-wise normalised abundance (in reads per kilobase, default 

settings of humann2_renorm_table script of HUMAnN2) of each cas gene. We created 

unstratified and stratified output using taxonomic information for the UniRef90 matches 
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(Supplementary Dataset 5, 6). Plots were created using the HUMAnN2 humann2_barplot 

script and in-house developed functionality present in the R library https://github.com/

philippmuench/PMtools with the humann2Barplot and makeHumann2Barplot scripts and 

num.bugs.explained.fraction parameter set to 0.35. Kruskal-Wallis tests were carried out to 

compare each feature’s community total to the associated body site, and per-site means were 

created using humann2_associate script with default settings. Body site and overall mean 

Cas CPM values were computed using the sum over the taxonomic stratified HUMAnN2 

table.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• 2.9 million CRISPR spacers from 2,355 body-wide human metagenomes are 

profiled

• Oral habitats show high CRISPR load compared to gut/urogenital sites

• Functional potential of CRISPR spacers suggests link to restriction-

modification system

• cas gene profiles accompany CRISPR subtype differentiation by body site
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Figure 1: High consistency and agreement of spacer sequences from HMP to public databases 
and presence of a length-specific GC bias.
A) Sequence lengths of spacers were largely consistent between the minimum of 28 

nucleotides and a tail permitted up to 43 nucleotides over different body areas. B) HMP 

spacers were highly similar to CRISPRCasdb spacers in position-wise nucleotide 

composition normalised by spacer length and showed a palindromic pattern in both datasets. 

C) Nucleotide composition stratified by spacer length showed a consistent pattern for HMP- 

and CRISPRCasdb-derived spacer sequences D) Stability of repeat sequences (as measured 

by Bray–Curtis dissimilarity of k-mer counts of repeat sequences) across (i) technical 

replicates, (ii) samples taken from the same individuals over time and (iii) between 

individuals randomly selected individuals, respectively. Samples containing fewer than 25 

repeats are not shown. E) HMP samples generally contain few CRISPR repeats that are 

sample-specific (singleton repeats). Histogram shows the proportion of singleton repeats 

among all repeats per sample for all samples.
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Figure 2: High body-site dependent differences in spacer loads (regardless of host or target) on 
the HMP1-II dataset.
A) Three oral associated body sites, supra- and subgingival plaque and tongue, have 

significantly increased CRISPR spacer counts (Wilcoxon rank sum test on spacer counts, P 
< 10−6) relative to other body sites, such as the urogenital and skin microbiota. Mean values 

(points for spacers and triangles for repeats) and SD (lines) of the read-depth normalised 

load per body site are shown for observed reads and repeat and for cluster representatives to 

account for repetitive sequences. B) The lengths of observed CRISPR spacer and repeat 

sequences are consistent between most body sites, especially between gut and oral samples, 

but different from the spacers and repeats present in CRISPRCasdb. Mean (points and 

triangles) and SD (line) sizes of the spacer and repeat sequences across body sites and within 

CRISPRCasdb (grey). C) Correlation of species richness (number of species exceeding 1% 

RA) and spacer load (cluster representatives, defined as the longest sequence within a cluster 

of > 80% of sequence identity) of selected samples.
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Figure 3: Body site dependence and a high overall high taxonomic agreement between all 
observed HMP1-II spacers and the general community.
A) Overview of the relative abundances of the seven most enriched taxa for the overall HMP 

microbiota (bottom) and for taxonomic assignments to HMP CRISPR spacers (top). B) 

PCoA of spacers per body area (based on BC dissimilarities on order level) show most 

variation to be driven by distinct stool communities and variation among oral samples. Point 

size indicates the number of spacer cluster (at 80% identity) per sample.
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Figure 4: Functional enrichments within predicted spacer targets.
A) Log fold enrichment of Gene Ontology (GO) terms for all spacer targets within sample 

assemblies per body site. Terms shown here achieved at least one FDR corrected q value < 

0.05 based on a Fisher test of enriched UniRef90 terms with respect to the overall contig 

annotation of the site (STAR Methods). Corresponding spacer targets by the global 

UniRef90 approach of remaining spacers are shown in Fig. S7) B) GO terms of spacers 

matching contigs outside of CRISPR-cassettes without any phage-related term on whole 

contigs, thus potentially within bacterial chromosomes. In both panels, a plus sign denotes 

an q value < 0.05 and GO groups cellular component (CC) and biological processes (BP) are 

shown (full version shown in Fig. S8.
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Figure 5: Difference and similarities of cas gene abundances across body sites stratified by 
contributing species.
The height of each set of stacked bars (y axis) indicates the total cas abundance within a 

single sample, normalised for gene length and sequencing depth on a log10 scale. The 

taxonomic stratifications are done using a linear linearly (proportionally) scale. Species, 

“other,” and “unclassified” stratifications are linearly (proportionally) scaled within the total 

bar height. Highlighted taxa account for at least 35% of overall species abundance for each 

cas gene. Order of samples (bars) is according to the global Bray Curtis dissimilarity of the 

full microbiota within the body areas. Body areas with less than 30 samples are not shown. 

The y axis scale can be negative to facilitate the visualization of small abundances.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Bacterial and Virus Strains

Biological Samples

Chemicals, Peptides, and Recombinant Proteins

Critical Commercial Assays

Deposited Data

Experimental Models: Cell Lines

Experimental Models: Organisms/Strains

Oligonucleotides

Recombinant DNA

Software and Algorithms

Crass 0.3.12 Skennerton et al., 2013 https://github.com/ctSkennerton/crass

R version 3.6.3 The R Project for Statistical Computing https://www.r-project.org/

MetaPhlAn 2 Truong et al., 2015 https://huttenhower.sph.harvard.edu/metaphlan

HMMER 3.1b2 Eddy, 1998 http://hmmer.org/

Bowtie 2 Langmeadet al., 2013 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

CRISPR Recognition Tool 1.1 Bland et al., 2007 http://www.room220.com/crt/

GNU parallel O. Tange, 2011 http://www.gnu.org/s/parallel

HUMAnN 2 Franzosa et al., 2018 https://huttenhower.sph.harvard.edu/humann

CD-HIT v. 4.7 Li and Godzik et al., 2006 http://cd-hit.org

Other

HMP1-II metagenomes available from the HMP DACC (http://
hmpdacc.org) and from SRA BioProjects 
PRJNA48479 and PRJNA275349

http://hmpdacc.org

CRISPRCasdb Pourcel et al., 2020 https://crisprcas.i2bc.paris-saclay.fr/

CRISPRdb Grissa et al., 2007 http://crisprdbcrispr.i2bc.paris-saclay.fr/

Accompanying dataset to the study 
“Natural CRISPR systems and targets 
in the human microbiome”

This study http://huttenhower.sph.harvard.edu/crispr2020 and 
https://data.mendeley.com/datasets/bsmmy8pwrt/1

UniProt Reference Clusters (UniRef) Baris E. Suzek https://www.uniprot.org/uniref/

Cell Host Microbe. Author manuscript; available in PMC 2022 January 13.

https://github.com/ctSkennerton/crass
https://www.r-project.org/
https://huttenhower.sph.harvard.edu/metaphlan
http://hmmer.org/
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://www.room220.com/crt/
http://www.gnu.org/s/parallel
https://huttenhower.sph.harvard.edu/humann
http://cd-hit.org
http://hmpdacc.org
http://hmpdacc.org
http://hmpdacc.org
https://crisprcas.i2bc.paris-saclay.fr/
http://crisprdbcrispr.i2bc.paris-saclay.fr/
http://huttenhower.sph.harvard.edu/crispr2020
https://data.mendeley.com/datasets/bsmmy8pwrt/1
https://www.uniprot.org/uniref/

	Summary
	eTOC
	Graphical Abstract
	Introduction
	Results
	Quality of HMP-derived CRISPR cassettes and length-dependent sequence regularities
	CRISPR spacer loads and sequences differ across human body habitats
	Diverse taxonomic origins of CRISPR spacers
	Spacers targets encode proteins involved in methylation processes and membrane activity and phage proteins
	Variation in cas gene dominance across body sites

	Discussion
	STAR Methods
	RESOURCE AVAILABILITY
	Lead Contact
	Materials Availability
	Data and Code Availability

	METHOD DETAILS
	CRISPR identification from metagenomes

	QUANTIFICATION AND STATISTICAL ANALYSIS
	Validation of spacer and repeat sequences
	Taxonomic analysis
	Functional analysis
	Analysis of complete genomic isolates
	Quantification of cas genes


	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	KEY RESOURCES TABLE

