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Abstract
Key message  The Bavarian MAGIC Wheat population, comprising 394 F6:8 recombinant inbred lines was pheno-
typed for Puccinia triticina resistance in multi-years’ field trials at three locations and in a controlled environment 
seedling test. Simple intervall mapping revealed 19 QTL, corresponding to 11 distinct chromosomal regions.
Abstract  The biotrophic rust fungus Puccinia triticina is one of the most important wheat pathogens with the potential 
to cause yield losses up to 70%. Growing resistant cultivars is the most cost-effective and environmentally friendly way 
to encounter this problem. The emergence of leaf rust races being virulent against common resistance genes increases the 
demand for wheat varieties with novel resistances. In the past decade, the use of complex experimental populations, like 
multiparent advanced generation intercross (MAGIC) populations, has risen and offers great advantages for mapping resist-
ances. The genetic diversity of multiple parents, which has been recombined over several generations, leads to a broad phe-
notypic diversity, suitable for high-resolution mapping of quantitative traits. In this study, interval mapping was performed 
to map quantitative trait loci (QTL) for leaf rust resistance in the Bavarian MAGIC Wheat population, comprising 394 F6:8 
recombinant inbred lines (RILs). Phenotypic evaluation of the RILs for adult plant resistance was carried out in field trials 
at three locations and two years, as well as in a controlled-environment seedling inoculation test. In total, interval mapping 
revealed 19 QTL, which corresponded to 11 distinct chromosomal regions controlling leaf rust resistance. Six of these 
regions may represent putative new QTL. Due to the elite parental material, RILs identified to be resistant to leaf rust can 
be easily introduced in breeding programs.

Introduction

With approximately 219 million hectares worldwide and 
30% of global major cereal crop production in 2017, wheat 
(Triticum spp.) belongs to the most important crops for 
human nutrition (Braun et al. 2010; FAO 2019). Leaf rust, 
caused by the obligate biotrophic fungus Puccinia triticina 
Eriks., is nowadays the most destructive and prevalent rust 
pathogen in wheat (Kolmer 2005). Due to its adaptation to 
a wide range of different environments, leaf rust occurs in 
many wheat-producing areas of the temperate zone, caus-
ing yield losses up to 70% (Aktar-Uz-Zaman et al. 2017; 
Herrera-Foessel et al. 2006; Marasas et al. 2004). Although 
the application of fungicides helps to avoid yield losses, 
the deployment of resistant cultivars is the most effective, 
economic, and environmentally friendly approach to man-
age this disease. For wheat leaf rust, both qualitative and 
quantitative resistances are known. Seedling/qualitative 
resistance is monogenically inherited and only effective 
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against a subset of races. Thus, it mainly follows the gene-
for-gene concept, in which resistance depends on a specific 
genetic interaction between host-resistance genes and aviru-
lence genes of the pathogen (Flor 1956, 1971). These major 
genes confer vertical resistance and tend to be expressed 
from seedling to adult plant stages. Genotypes carrying such 
resistances show a hypersensitive response or programmed 
cell death (Bolton et al. 2008). In contrast, quantitative 
resistance is based on minor genes encoding various resist-
ance responses, which are not restricted to specific pathogen 
races. Quantitative resistances are effective at later growth 
stages and are therefore referred to as field resistance or 
adult plant resistance (APR, Krattinger and Keller 2016). 
To date, more than 80 resistance genes to leaf rust (Lr genes) 
have been identified in bread wheat, durum wheat, and dip-
loid wheat species (Gill et al. 2019). While most of them 
show race-specific resistance at the seedling stage, genes like 
Lr12, Lr13, Lr22a/b, Lr34, Lr35, Lr37, Lr46, Lr67, Lr68, 
and Lr77 confer resistance at the adult plant stage (Dakouri 
et al. 2013; McIntosh et al. 2013, 2017).

The identification of such resistance genes as well as of 
quantitative trait loci (QTL) has been mainly based on bipa-
rental crosses (Huang et al. 2012). The weakness of such 
populations is the narrow genetic variation and the fact that 
genetic recombination is limited, which leads to a lower map 
resolution (Bandillo et al. 2013). Nowadays, high-throughput 
marker systems are available and genetic marker information 
is no longer limiting (Bayer et al. 2017; Chen et al. 2014; Cui 
et al. 2017; He et al. 2014; Mammadov et al. 2012), but the 
genetic variation present in respective populations (Asimit 
and Zeggini 2010; Gibson 2012). Thus, complex experimen-
tal populations such as nested association mapping (NAM, 
Yu et al. 2008) and multiparent advanced generation inter-
cross (MAGIC) populations have been developed to detect 
QTL with a better reliability (Cavanagh et al. 2008). First 
multiparental intermated populations were exploited in 
mice (Churchill et al. 2004) and Drosophila melanogaster 
(King et al. 2012). In plants, MAGIC populations were 
first developed and described in studies regarding Arabi-
dopsis thaliana (Cavanagh et al. 2008; Kover et al. 2009). 
These experimental designs involved multiple intercrosses 
of inbred founders for several generations to combine the 
genetic variation of all parental lines in the resulting progeny 
(Huang et al. 2012). MAGIC populations have been widely 
used to conduct QTL mapping in several crop species, 
such as rice (Bandillo et al. 2013), maize (Dell’Acqua et al. 
2015), tomato (Pascual et al. 2015), faba bean (Sallam and 
Martsch 2015), sorghum (Ongom and Ejeta 2018), barley 
(Sannemann et al. 2015), and wheat (Gardner et al. 2016; 
Huang et al. 2012; Mackay et al. 2014; Milner et al. 2016; 
Sannemann et al. 2018). There are two clear advantages of 
using multiparental populations. First, based on the choice 
of founders, more traits of interest from each founder can 

be analyzed. Second, due to the higher genetic variability 
and recombination rate, QTL detection can be performed 
with increased precision and resolution (Bandillo et al. 2013; 
Cavanagh et al. 2008).

The Bavarian MAGIC Wheat population (BMWpop) is 
one of only two German MAGIC wheat populations, which 
are mainly based on adapted German elite cultivars. It cap-
tures 71.7% of the allelic diversity available in the German 
wheat breeding gene pool (Stadlmeier et al. 2018). These 
populations provide the potential to carry out genetic stud-
ies of important economical traits, such as plant height and 
resistance to powdery mildew (Sannemann et  al. 2018; 
Stadlmeier et al. 2018). In addition, Stadlmeier et al. (2019) 
detected six, seven and nine QTL for resistance to impor-
tant fungal pathogens, i.e., Blumeria graminis, Zymoseptoria 
tritici, and Pyrenophora tritici-repentis, respectively. The 
objectives of the current study were to (1) phenotype the 
BMW population for quantitative and qualitative leaf rust 
resistance in multi-environment field trials and an exten-
sive seedling test and (2) genetically map QTL in order 
to develop closely linked molecular markers suitable for 
marker-assisted selection (MAS).

Material and methods

Plant material

The study is based on the multiparental BMW population 
comprising elite wheat cultivars (Stadlmeier et al. 2018). It 
consists of 394 diverse F6:8 recombinant inbred lines (RILs), 
which were derived from a simplified eight founder MAGIC 
mating design with additional eight-way intercrosses. The 
founders ‘Event’, ‘BAYB4535′, ‘Potenzial’, ‘Bussard’, 
‘Firl3565’, ‘Format’, ‘Julius’ and ‘Ambition’ originated from 
German and Danish wheat breeders and were selected on 
the criteria of (1) variation for agronomic, quality and dis-
ease resistance traits, (2) originating from different breeding 
programs, and (3) being important cultivars in the respective 
baking quality group. More detailed information about the 
development and the genetics of the BMW population is 
provided by Stadlmeier et al. (2018).

Phenotypic assessment of leaf rust resistance 
in field

Five field trials were performed, each using a randomized 
incomplete block design with two replications at three loca-
tions in Germany: Quedlinburg (QLB, 51° 46′ 21.45″ N 
11° 8′ 34.8″ E) in Saxony-Anhalt, Soellingen (SOE, 52° 5′ 
45.506″ N 10° 55′ 41.711″ E) and Lenglern (LEN, 51° 35′ 
47.53″ N 9° 51′ 39.118″ E) in Lower Saxony. The 394 RILs, 
the eight founders, and the susceptible standard ‘Schamane’ 
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were evaluated in double rows under natural disease epi-
demics in SOE (2017 and 2018) and LEN (2018). In QLB 
entries were sown 2016/2017 and 2017/2018 in double rows 
of 1 m length with 30 plants per row and spacing of 0.2 m 
between rows. Additional infection stripes of susceptible 
varieties were arranged in regular intervals of every third 
plot. Growth regulator Medax® Top (BASF Agricultural 
Solutions, Germany, 1 L ha−1) was applied twice (BBCH31, 
BBCH37) to reduce plant height and lodging. No selective 
fungicides were used. To ensure uniform infestation, the 
infection stripes were artificially inoculated at the begin-
ning of flowering using the highly virulent Puccinia trit-
icina isolate 77WxR (Tab. S1). For this, a spore suspension 
of 10 mg uredospores in 100 ml Isopar M (ExxonMobil 
Chemical Company, USA) was applied in a total amount of 
10 ml suspension per m2, using a hand-held spinning disc 
sprayer (Bromyard, U.K.). Phenotyping of the trials was car-
ried out by scoring the average percentage of infected leaf 
area of the second and third youngest leaves in the two rows 
at two (SOE17, SOE18, LEN18), three (QLB18), and four 
(QLB17) subsequent dates according to Moll et al. (2010), 
starting at the time of clearly visible disease symptoms on 
the infection stripe or the susceptible standard, respectively. 
A time period of 1 to 2 weeks was chosen between the 
scorings.

Phenotypic assessment of leaf rust resistance 
in seedlings

All RILs, the parental lines, and the susceptible standard 
‘Borenos’ were evaluated for resistance at seedling stage 
in a detached leaf assay (Douchkov et  al. 2012). Seed-
lings were grown in 77-cell trays with mixed potting soil 
(Gebr. Patzer GmbH Co KG, Sinntal, Germany) using a 
randomized complete block design with five replications. 
Water agar (7 g L−1) containing 45 mg L−1 benzimidazole 
(Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany), 
used to delay senescence of leaf segments, was dispensed 
in 4 × 10 mL aliquots into nonsterile four-well polystyrene 
plates (8 × 12 x 1 cm, Greiner Bio-One GmbH, Fricken-
hausen, Germany). Ten days after sowing, when the sec-
ond leaf was developed, 2.5-cm sections were cut from the 
middle of the primary leaves and placed into the plates, 
keeping the randomization. White polytetrafluoroethylene 
frames (eMachineShop, Mahwah, USA) were used to fix the 
leaves. Inoculation was performed by an infection tower with 
three seconds swirling duration and three minutes of set-
tling time (Melching 1967). Due to space restrictions, plates 
were divided into two infection groups per replication. Each 
group was inoculated with leaf rust isolate 77WxR using 
a mixture of 30 mg uredospores and white clay (1:1 w/w, 
VWR International GmbH, Darmstadt, Germany) after 
application of a 0.01% Tween 20 (Sigma-Aldrich) solution 

to support adhesion. For 24 h, the plates were covered by 
wet cotton paper to support spore germination in the dark 
and at high humidity. Inoculated leaf segments were subse-
quently incubated in greenhouse at night/day temperatures 
of 16 °C/18 °C with additional lighting (16 h/8 h day/night) 
for ten days. Quantitative scoring was conducted using a 
high-throughput phenotyping platform (Douchkov et al. 
2012). Digital images with a resolution of 20 Megapixel 
and four wavelengths between 315 and 750 nm (UV, blue, 
green, and red) were taken automatically from every plate. 
Subsequently, the leaf area was calculated and compared to 
the area of uredospore pustules for analyzing the percentage 
of infected leaf area (Pi) using the software HawkSpex® 
(Fraunhofer IFF, Magdeburg, Germany). Additionally, all 
entries were visually evaluated for infection type (IT) using 
a 0−4 scale (McIntosh et al. 1995). To generate metric data, 
original IT data were converted to a 0 – 10 linear disease 
scale, modified according to Zhang et al. (2014) as follows: 
0, 0;, − 1,1, + 1, − 2, 2, 2 + , − 3, 3, + 3 were coded as 0, 0.5, 
1, 2, 3, 4, 5, 6, 7, 8 and 9, respectively. IT − 4 and 4 were 
coded as 10 and in case of special annotation code “C” for 
chlorosis, 0.5 was added to the linear scale.

Data analysis

The multiple scorings of the percentage of infected leaf area 
in field trials were taken to calculate the area under the dis-
ease progress curve (AUDPC) and the average ordinate (AO, 
Moll et al. 1996) for each RIL using the following equations:

where yi is the disease level at the ith observation, ti is the 
time at the ith observation, N is the total number of obser-
vations and T is the total observation time from the first to 
the last scoring date in days. Out of percentage of infected 
leaf area, AUDPC, and AO, only AO values were used for 
subsequent statistical analysis. Different year–location com-
binations of all trials were referred to as “environment”.

Analyses of all phenotypic data were carried out using 
proc mixed of the software package SAS 9.4 (SAS Institute 
Inc., NY, USA). In order to apply a mixed linear model, 
a log10 data transformation of the AO, IT, and Pi values 
was performed. The factors genotype, environment, and the 
genotype × environment interaction of field data were set as 
fix effects, while the design effects of replication and block 
were set as random. To obtain variance components for cal-
culation of the broad sense heritability, all model parameters 
were set as random. Heritability was estimated on a progeny 
mean basis according to Hallauer et al. (2010).

For analyzing IT and Pi scores from seedling test the 
model:

AUDPC =

Ni−1
∑

i=1

(yi + yi+1)

2
∗
(

ti+1 − ti
)

and AO =
AUDPC

T
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was used, where yijk is the trait observation, µ is the overall 
mean, gi is the fixed effect of the genotype, rj is the fixed 
effect of the replication, lk is the random effect of the infec-
tion group nested in the replication and eijk is the random 
residual error. Variance components were obtained by fitting 
the genotype as random to calculate the repeatability as the 
ratio of the genotypic variance and the sum of the genotypic 
and the residual error variance divided by the number of rep-
lications. For each trait, least-square means (lsmeans) were 
calculated and used for subsequent QTL analysis.

QTL mapping

The BMW population and the parental lines were genotyped 
using the 15 K + 5 K Infinium® iSelect® array containing 
17,267 single nucleotide polymorphism (SNP) markers 
(TraitGenetics, Germany). The preparation of genotypic 
data and the construction of the linkage map used for QTL 
mapping were described in detail by Stadlmeier et al. (2018). 
QTL mapping was performed using the R (× 32 3.2.5) pack-
age mpMap V2.0.2 (Huang and George 2011; R Core Team 
2017). To conduct simple interval mapping (SIM), founder 
probabilities were calculated using the function ‘mpprob’. 
These give information about the probability of each locus 
that the observed genotype was inherited from one of the 
eight founders and are based on multipoint haplotype prob-
abilities (Broman et al. 2003). To determine the parental 
origin of an allele, the threshold was set to 0.7. For SIM, 
a genome-wide significant threshold of α < 0.05 was cal-
culated for each trait. The thresholds were obtained from 
permutation of phenotypic data with 1000 simulation runs 
(Churchill and Doerge 1994). QTL detection was performed 
using the function ‘mpIM’, implemented in the mpMap 
package (Huang and George 2011). Phenotypic variance 
explained by individual QTL and additive QTL effects were 
estimated separately using the categorical allele informa-
tion of the founders. QTL support intervals were determined 
using the function ‘supportinterval’ of the mpMap package. 
A QTL support interval was defined as the map interval sur-
rounding a QTL peak at a − log10(p) drop of one unit (Huang 
and George 2011).

In order to compare QTL identified in the present study 
with previously described QTL, overlapping QTL based on 
the support interval was merged together. Databases of the 
Triticeae Toolbox (https​://triti​ceaet​oolbo​x.org/wheat​/genot​
yping​/marke​r_selec​tion.php), GrainGenes (https​://wheat​
.pw.usda.gov/GG3/), as well as CerealsDB (https​://www.
cerea​lsdb.uk.net/cerea​lgeno​mics/Cerea​lsDB/axiom​_downl​
oad.php) were used to obtain marker information. Physical 
positions were received by nucleotide BLAST (BLAST-
n) of the marker sequences against the reference sequence 

yijk = � + gi + rj + lk
(

rj
)

+ eijk
RefSeq v1.0 using the database of 10 + Genome Project 
(https​://webbl​ast.ipk-gater​slebe​n.de/wheat​_ten_genom​es/). 
BLAST hits were considered significant if the percent iden-
tity was greater than 95%, and only the best hit was taken if 
multiple BLAST hits were detected (Gao et al. 2016). The 
start and end positions of peak marker sequences preceded 
by the chromosome name were taken to the URGI database 
to obtain functional gene annotations available from IWGSC 
(https​://wheat​-urgi.versa​illes​.inra.fr/Seq-Repos​itory​/Annot​
ation​s). Sequences of the closest related species, Triticum 
urartu (A-genome donor) and Aegilops tauschii (D-genome 
donor), were considered for the detection of orthologous 
genes.

Results

Phenotypic assessment

Leaf rust severity of field trials clearly varied between years 
and location, displaying in QLB  2017, SOE  2018, and 
LEN 2018 the lowest infestations of leaf rust (Fig. S1). Pear-
son correlation coefficient between the different environ-
ments ranged from 0.26 to 0.74 (P < 0.001). Nevertheless, 
after mixed model adjustment, a broad sense heritability 
(h2) of 0.83 was estimated (Table 1). The mean phenotypic 
distribution of AOs was slightly right-skewed and indicated 
a broad variability within the population (Fig. 1a), ranging 
between 0.2 and 34.8% (mean 13.5%) leaf area diseased. 
However, single maximal AO scores up to 63.8% were 
observed within the population (Table 1). The average per-
formance of parental lines was evenly distributed, resulting 
in a nonsignificant difference (p < 0.05) from the progeny 
mean. Founders ‘BAYP4535′ and ‘Bussard’ were identified 
as the most resistant (4.5%) and most susceptible (22.9%) 
parental line to leaf rust, respectively. The analysis of vari-
ance showed significant differences concerning genotype, 
environment, and the interaction between genotype and envi-
ronment (Table 2).

Scoring qualitative resistance in seedling test was per-
formed twice—using an image analysis software to obtain 
the Pi and visually by assessing the IT (1–10). For both 
traits, phenotypic data revealed a large variability (Fig. 1b 
and c). The average IT ranged from 0.1 to 9.2 (mean 3.8). 
For Pi, the disease severity was on average between 0 and 
28.3% (mean 8.5%). Phenotypic distributions of IT and Pi 
were slightly bimodal, with 131 and 185 RILs showing IT 
values smaller 2 (few areas with restricted sporulation) and 
Pi values below 5%, respectively. Maximal scores of 10 
(IT) and 57.7% (Pi) were observed (Table 1). The popu-
lation means of IT and Pi were not significantly different 
from the means of parental lines. According to the results 
of field trials, ‘BAYP4535’ and ‘Ambition’ were the most 

https://triticeaetoolbox.org/wheat/genotyping/marker_selection.php
https://triticeaetoolbox.org/wheat/genotyping/marker_selection.php
https://wheat.pw.usda.gov/GG3/
https://wheat.pw.usda.gov/GG3/
https://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/axiom_download.php
https://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/axiom_download.php
https://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/axiom_download.php
https://webblast.ipk-gatersleben.de/wheat_ten_genomes/
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations
https://wheat-urgi.versailles.inra.fr/Seq-Repository/Annotations
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resistant and susceptible founders, respectively, in the 
seedling inoculation test. Pearson correlation displayed a 
high correlation coefficient between both traits (r = 0.91; 
Fig S2 C). The qualitative traits IT and Pi and the quantita-
tive scoring of AO showed weak correlations of r = 0.27 
and r = 0.24 (Fig S2 A and B). For both traits, a significant 
genotype effect was observed, while for Pi also a signifi-
cance of replication was found. Repeatability of both traits 
was high with rep(IT) = 0.93 and rep(Pi) = 0.91 (Table 1). 
From the parental lines, only ‘BAYB4535 showed all stage 
resistance, whereas cv. ‘Event’, Format’, ‘Julius’, ‘Potenzial’ 
only showed resistance at seedling and ‘Firl3565’ at adult 
plant stage, respectively. In total, 68 genotypes in the popu-
lation expressed all stage resistance, 92 genotypes showed 

resistance only at seedling stage and 44 genotypes were 
observed showing APR.

QTL mapping

Overall, SIM revealed 19 QTL located on chromosomes 1A, 
4A, 4D, 5A, 6B, 7A, and 7D. Hence, five QTL were detected 
based on field data and seven QTL for seedling resistance, 
each for IT and Pi values (Table 3, Tab. S2).

The phenotypic variance (R2) explained by the individual 
QTL detected in field trials ranged between 8 and 50%, with 
support intervals (SI) from 4 to 33 cM. The two strong-
est QTL, explaining 31% and 50% of R2, were located on 
chromosome 4A with peak markers at 133 cM and 172 cM. 

Fig. 1   Averaged phenotypic distribution of resistance to Puccinia triticina for field trials (A) and seedling test (B, C). Performance of each 
parental line is shown as vertical dashed line

Table 1   Descriptive statistics 
and heritability / repeatability 
for field trials (AO) and 
seedling test (IT and Pi)

a  Average ordinate (AO), infection type (IT), infected leaf area (Pi)
b  Minimum
c  Maximum
d  Standard error
e  Coefficient of variance
f  Broad-sense heritability (h2)
g  Repeatability (rep)

Traita Mean founders Mean population Minb Maxc SE±
d CVe h2/rep

AO [%] 13.70 13.50 0 63.75 0.17 0.83 0.83f

IT [1–10] 3.32 3.84 0 10.00 0.06 0.96 0.93g

Pi [%] 8.06 8.47 0 57.73 0.18 0.72 0.91g
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The largest allelic effects of these QTL were contributed by 
‘BAYP4535’, reducing disease severity by 3.1% and 4.0%, 
respectively. Another QTL detected on chromosome 7D 
(at 18 cM) explained 28% of the phenotypic variance with 
‘BAYP4535′ as the most resistant founder, reducing infected 
leaf area by 3.2%. Remaining QTL on chromosomes 6B (at 
22 cM) and 7A (at 368 cM) accounted for 8% and 7% of leaf 
rust variation. For these QTL, cv. ‘Format’ contributed the 
largest allelic effect reducing infected leaf area by 1.3% and 
1.4%, respectively.

For IT, phenotypic variance explained by the seven QTL 
ranged from 1 to 28% with SIs ranging between 2 and 53 cM 
(Table 3). QTL on chromosomes 4A and 7D accounted 
for the highest R2 i.e. 28% and 17% with peak markers at 
170 cM and 22 cM. The largest allelic effect of both QTL 
was contributed by ‘BAYP4535′, reducing disease severity 
by 2.6 and 1.8 scores, respectively. On chromosome 1A, one 
QTL was detected at 28 cM, explaining 11% of the pheno-
typic variance. A maximum effect of -1.0 score was detected 
for cv. ‘Potenzial’. Furthermore, two QTL were detected on 
chromosome 5A with 8% (at 112 cM) and 7% (at 139 cM) 

Table 2   Analysis of variance of log10-transformed data for leaf rust 
severity evaluated in field trials (AO) and seedling test (IT and Pi)

Significance level at P < 0.05
a  Average ordinate (AO), infection type (IT), infected leaf area (Pi)
b  Degrees of freedom

Traita/factor DFb F value P value

AO
Genotype 402 18.98  < 0.0001
Environment 4 16.05 0.0049
Genotype × environment 1605 2.39  < 0.0001
IT
Genotype 402 17.69  < 0.0001
Replication 4 0.94 0.5196
Pi
Genotype 402 16.63  < 0.0001
Replication 4 6.66 0.0426

Table 3   QTL for resistance to Puccinia triticina in the BMW population detected in field trials and seedling tests

a  Chromosomal position of QTL
b  Position of peak marker based on Stadlmeier et al. (2018)
c  Support interval
d  Proportion of phenotypic variance explained by a single QTL
f  Number of single environments in which QTL was detected
g  Additive effects ( ±) of the founders Event (A), BAYP4535 (B), Ambition (C), Firl3565 (D), Format (E), Potenzial (F), Bussard (G) and Julius 
(H) relative to the population mean. Shown values are back-transformed to the original trait scale
Founder effects were reported as not available (na) if none of the RILs reached the probability threshold of 0.7

Trait Chr.a Pos.[cM]b SI [cM]c P value R2d No. Env.f Eff (A)g Eff (B)g Eff (C)g Eff (D)g Eff (E)g Eff (F)g Eff G)g Eff (H)g

AO 4A 133 125–151 2.00E-22 0.31 4 − 0.17 − 3.12  + 0.93 − 1.21  + 0.90  + 0.88  + 0.86  + 0,83
4A 172 170–174 2.52E-58 0.50 4  + 0.94 − 3.96 − 0.13 − 0.44  + 2.04 − 0.18  + 1.94 − 0,23
6B 22 10–30 1.49E-05 0.08 1  + 0.16 − 1.23  + 1.70  + 1.25 − 1.32 − 0.89 − 1.16  + 1.47
7A 368 346–379 1.52E-05 0.07 1 − 0.16 − 1.26  + 1.10 − 1.39 − 1.42  + 1.22  + 0.94  + 0.89
7D 18 15–19 3.68E-32 0.28 4 na − 3.16 na na  + 1.44  + 0.94  + 0.18  + 0.58

IT 1A 28 0–34 1.55E-06 0.11 na  + 0.76 − 0.27 na − 0.75 − 0.98 − 0.67  + 1.88
4A 170 168–174 8.79E-23 0.28 0.00 − 2.57 − 1.32  + 1.59  + 1.15 − 1.10  + 1.58  + 1.12
4D 69 59–86 2.57E-05 0.01 na  + 0.01 na na  + 1.16 na na -1.98
5A 112 102–152 1.56E-05 0.08 − 0.99  + 0.21  + 0.63  + 0.06 − 2.06  + 0.67  + 0.87  + 0.60
5A 139 99–152 3.31E-05 0.05 − 0.26  + 0.78  + 1.29 − 1.29 − 1.44  + 1.12 − 1.29  + 1.07
6B 249 248–250 2.18E-55 0.01 − 0.5 na na na na na na  + 0.5
7D 22 15–30 6.14E-12 0.17 na − 1.84 na na  + 0.61  + 0.61  + 0.02  + 0.61

Pi 1A 26 0–34 8.11E-06 0.12 na  + 0.60  + 1.64 na − 1.35 − 1.59 − 1.27  + 1.98
4A 171 168–174 1.11E-16 0.21  + 0.33 − 4.14 − 1.33  + 1.67  + 1.47 − 0.88  + 1.47  + 1.42
4D 72 59–86 4.27E-06 0.09 na − 0.06 na na  + 1.6 na na − 1.54
6B 249 247–250 1.76E-91  < .01 − 0.52 na na na na na na  + 0.53
7A 65 54–87 7.02E-06 0.05 na  + 1.05  + 2.15 − 0.95 − 0.13 − 0.73 − 1.41  + 0.03
7A 99 94–111 6.12E-06 0.08 − 0.97  + 1.38  + 0.81  + 0.08  + 0.21  + 0.23 − 2.38  + 0.65
7D 22 15–30 5.64E-09 0.14 na − 2.78 na na  + 1.11  + 1.11 − 0.27  + 0.85
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of the explained variance. SIs of these QTL ranged from 102 
to 152 cM and from 99 to 152 cM, respectively. For both, 
‘Format’ contributed the highest allelic effect (− 2.1 and 
− 1.4 scores). QTL located on chromosomes 4D (69 cM) 
and 6B (249 cM) explained only 1% of the phenotypic vari-
ance, each. By analyzing each environment separately, the 
two QTL on chromosomes 4A were also detected in LEN18, 
QLB17, QLB18 and SOE18, as well as LEN18, QLB18, 
SOE17 and SOE18, respectively. The QTL on chromosome 
6B and 7D was detected in one (SOE18) and four (LEN18, 
QLB17, QLB18, SOE18) environments.

SIM of Pi values also revealed seven individual QTL with 
R2 ranging from less than 1% to 21%. The support inter-
vals varied between 2 and 34 cM. QTL regions on chromo-
somes 1A, 4A, 4D, 6B and 7D overlapped with QTL regions 
detected for IT (Table 3). Nevertheless, smaller R2 of 21% 
(4A), 14% (7D) and < 1% (6B), as well as larger R2 of 12% 
(1A) and 9% (4D) were calculated for individual QTL. The 
maximal reducing effect of the QTL on chromosomes 1A, 
4A, 4D, and 6B ranged between 0.5% and 4.1%, while for 
7D, only the founder ‘BAYP4535′ showed a reducing allelic 
effect of 2.8%. Additionally, two QTL were detected on 
chromosome 7A at 65 cM and 99 cM, accounting for 5% and 
8% of the phenotypic variance. SI ranged from 54 to 87 cM 
and from 94 to 111 cM, respectively. Founders ‘Firl3565′ 
and ‘Bussard’ contributed the largest allelic effect, reducing 
the disease severity by 0.9% and 2.4%.

Based on support intervals of 19 QTL, detected in total 
for the different traits, 11 main QTL were identified (Fig. S3, 
Table 4). In silico annotations of peak markers revealed 
seven genes with known functions partly involved in resist-
ance. Hence, marker CAP8_c2448_355 on chromosome 1A 
referred to a DnaJ domain. A Protein kinase domain and a 
NB-ARC domain were identified for peak markers of QLr.
jki-4A.1 and QLr.jki-4A.2 on chromosome 4A. Marker AX-
95126745 on chromosome 4D and RAC875_c31670_389 on 
chromosome 5A referred to a cation/calcium exchanger 4 
and ankyrin repeats, respectively. For peak markers of QLr.
jki-7A.1 and QLr.jki-7A.1 on chromosome 7A, a pyridoxal-
phosphate dependent enzyme and a sugar efflux transporter 
were annotated, respectively.

Discussion

Continuous evolution of leaf rust results in the emergence 
of new pathotypes virulent against single major resistance 
genes commonly present in cultivars. Many of these race 
specific Lr genes have been broken down in the past (Kolmer 
2005; Serfling et al. 2013). Detection of effective leaf rust 
resistances is of essential importance to avoid rust epidem-
ics. Therefore, experimental populations such as MAGIC 
populations provide powerful tools to discover, characterize, 

and deploy QTL for complex traits including resistances 
(Cavanagh et al. 2008). Out of 80 designated Lr genes, it 
was reported, that only Lr1, Lr3, Lr10, Lr13, Lr14a, Lr17b, 
Lr20, Lr24, Lr26, Lr34, and Lr37 were used individually or 
in combination in European varieties (Goyeau et al. 2006; 
Goyeau and Lannou 2011; Serfling et al. 2013). The BMW 
population emerged from crosses of eight elite parental 
lines originating from Germany and Denmark. Neverthe-
less, Stadlmeier et al. (2018) were able to show the potential 
of the BMW population to detect new QTL for resistance to 
powdery mildew, septoria tritici blotch, as well as tan spot, 
and in general the usefulness for further gene mapping stud-
ies (Stadlmeier et al. 2018, 2019).

In this study, phenotyping of 394 RILs from the BMW 
population resulted in a broad variability of resistance to 
Puccinia triticina. Despite an average correlation coefficient 
of 0.54 between the disease severities in five environments, 
a broad sense heritability of 0.83 was calculated which 
is in the range of previously published studies (Bemister 
et al. 2019; Gao et al. 2016; Zhang et al. 2017, 2019). This 
may hint to a quantitative inheritance due to QTL involved 
in slow rusting loci, which are characterized by relatively 
high heritabilities (Kolmer 1996). Phenotypic distribution 
for field trials was slightly right-skewed, while almost a bi-
modal distribution was observed for both IT and Pi values 
in seedling test. This may give hint that mostly horizon-
tal (quantitative) or vertical (qualitative) resistances were 
scored, respectively. Calculation of correlation between 
field data and seedling test results showed r values of 0.27 
(IT) and 0.24 (Pi), which are in accordance with correla-
tions reported by Gao et al. (2016). Different virulence/
avirulence patterns of leaf rust races may be an explanation 
for these low correlations (Gao et al. 2016). While a single 
highly aggressive race, with many virulence genes was used 
for artificial inoculation for seedling tests and field trials in 
QLB, field trials in SOE and LEN were conducted under 
natural infection pressure.

Overall, simple interval mapping detected 19 QTL, 
which corresponded to 11 distinct chromosomal regions 
(Table 4, Fig. S3). QTLs identified using the LSmeans 
over all environments were also identified by analyzing 
the single environments separately. Out of the 11 distinct 
chromosomal regions three QTL were detected at the adult 
plant stage. Six QTL conferred seedling resistance and two 
were active in both growth stages, indicating the presence 
of effective all-stage leaf rust resistance genes. In total, 
the regions were located on wheat chromosomes 1A, 4A, 
4D, 5A, 6B, 7A and 7D. Peak markers of QTL could be 
partially annotated to genes, known to be involved in quan-
titative resistances to leaf rust, e.g. sugar efflux transport-
ers, DnaJ domain belonging to heat shock protein family 
(Bekh-Ochir et al. 2013), a protein kinase domain, a NB-
ARC domain and a cation/calcium exchanger. Such genes 
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show an increased expression during defense reactions in 
wheat-leaf rust (Sharma et al. 2018) and wheat-stripe rust 
interactions (Wang et al. 2020) and as response to envi-
ronmental stresses.

In this study, QLr.jki-1A.1 on chromosome 1A is based 
on the evaluation of IT and Pi in seedling tests and is physi-
cally located in a region between 1.3 Mbp and 12.5 Mbp 
(Table 5). Pinto da Silva et al. (2018) reviewed 11 QTL 

Table 5   Comparison of physical positions of the QTL identified in the present study (bold) with those reported previously. Physical positions 
based on comparison of marker sequence data to the wheat reference genome (RefSeq1.0)

a  Recombinant inbred line population
b  marker information was not available or position could not be identified in the RefSeq v1.0
c  Doubled haploid population

QTL Marker interval Physical position [Mbp] Genetic material References

QLr.jki-1A.1 IAAV3919–Tdurum_con-
tig42479_3800

1.3–12.5 BMW population (RILa) Lr10?

QLr.ccsu-1A.1 Xbarc263–Xcdo426 11.8–nab Opata85 × W-7984 (RIL) Kumar et al. (2013)
QLr.cau-1AS gpw2246 7.7 Luke × AQ24788-83 (RIL) Du et al. (2015)
MTA IWA3182–IWA7191 7.1–13.7 Spring wheat collection Elbasyoni et al. (2017)
Lr10 12.6 Feuillet et al. (2003)
QLr.jki-4A.1 AX-95253498–TA006348.0950 618.6–649.9 BMW population (RIL)
MTA IWA2816 641.5 Hexaploid Wheat Landraces Kertho et al. (2015)
QLr.jki-4A.2 Tdurum_contig75819_1220–

Excalibur_c33542_113
712.9–na BMW Population (RIL)

4A_t2 BobWhite_c47168_289 726.2 Elite spring wheat lines Gao et al. (2016)
QLr.hebau-4AL BobWhite_c15697_675–Excali-

bur_c2827_580
598.7–726.4 Zhou8425B × Chinese Spring 

(RIL)
Zhang et al. (2017)

QLr.jki-4D.1 AX-94793903–AX-94838884 130.9–479.7 BMW population (RIL) Novel?
QLr.fcu-4DL Xgdm61–Xcfa2173 na TA4152-60 × ND495 (DHc) Chu et al. (2009)
QLr.hebau-4DL AX-110476142–AX-111092299 381.2–428.6 Pingyuan50 × Mingxian169 Zhang et al. (2019)
QLr.sfrs-4DL Xglk302b–Xpsr1101a na Forno × Oberkulmer (RIL) Messmer et al. (2000)
Lr67 Xgwm165–Xgwm192 412.7 RL6077 × Avocet (RIL) Herrera-Foessel et al. (2011)
QLr.jki-5A.1 AX-94732470–wsnp_Ex_

c49211_53875600
444.6–na BMW population Novel?

QLr.cim-5AC wPt-3187–wPt-7769 Na–464.7 Avocet-YrA × Kenya Kongoni 
(RIL)

Calvo-Salazar et al. (2015)

QLr.jki-6B.1 AX-94739546–TA003005.0339 19.3–34.3 BMW population Novel?
QLr.caas-6BS.1 Xcfd13–Xwmc487 34.2–36.5 Bainong64 × Jingshuang16 (DH) Ren et al. (2012)
QLr.wpt-6BS.2 wPt2175 nab Winter wheat accessions Gerard et al. (2018)
QLr.jki-6B.2 wsnp_Ex_c54772_57528275–

Excalibur_c29748_954
710.1–719.7 BMW population Lr3?

QLr.cim-6BL 277,143–1,234,305 714.3–na Bairds × Atred#1 (RIL) Lan et al. (2017)
6B_4 BobWhite_c43263_180–

BS00011795_51
718.9–720.6 Elite spring wheat lines Gao et al. (2016)

QLr.jki-7A.1 BobWhite_rep_c58252_112–
wsnp_BF473884A_Ta_1_3

54.9–71.1 BMW population Novel

QLr.jki-7A.2 RAC875_c75528_355–
BS00024786_51

79.6–na BMW population Novel?

QLr.stars-7AS1 wsnp_Ex_c41150_48040078 78.4 Winter wheat accessions Li et al. (2016)
MTA IWA7192 81.1 Spring wheat collection Elbasyoni et al. (2017)
Lr47 115 Helguera et al. (2000)
QLr.jki-7A.3 Tdurum_contig29240_206–

wsnp_CAP11_c298_250917
702.4–724.1 BMW Population Lr20?

MTA IWA4175 717.1 Spring wheat accessions Turner et al. 2017
QLr.jki-7D.1 TA016282.1180–AX-94883448 na–29.4 BMW Population Novel
Lr34 47.4–51 Krattinger et al. (2009)
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described in hexaploid wheat located on chromosome 1A. 
Based on available physical marker positions, QLr.ccsu-
1A.1 and QLr.cau-1AS identified in two different studies, 
were found to correspond to the region of QLr.jki-1A.1 (Du 
et al. 2015; Kumar et al. 2013). While QLr.ccsu-1A.1 is only 
1.7 Mbp and 0.2 Mbp apart from our peak markers, the dis-
tance of the linked marker to QLr.cau-1AS is 2.4 Mbp and 
3.9 Mbp, respectively (Tables 4, 5). Additionally, Elbasy-
oni et al. (2017) detected several marker-trait associations 
(MTAs) covering a region from 7.2 Mbp to 13.7 Mbp, which 
includes the region of QLr.jki-1A.1. Furthermore, the resist-
ance gene Lr10, which is completely sequenced, is mapped 
at 12.6 Mbp, i.e. 2.5 Mbp and 1 Mbp apart from our peak 
marker (Table 4; Feuillet et al. 1997, 2003). Thus, and due to 
the fact that Lr10, Lr1, Lr3a and Lr20 are the most prevalent 
genes used worldwide, Lr10 is a promising candidate for the 
QTL aforementioned (Dakouri et al. 2013).

On chromosome 4A, two regions harboring leaf rust 
resistance were identified in this study (QLr.jki-4A.1, QLr.
jki-4A.2, Table 4). To date, there are two Lr genes, Lr28 
originating from Ae. speltoides and Lr30 from T. aestivum, 
and two QTL reported on chromosome 4A (Dyck and Ker-
ber 1971; McIntosh et al. 2013; Pinto da Silva et al. 2018). 
Kertho et al. (2015) found one MTA at 641.5 Mbp, using 
the leaf rust race MCDL. Therefore, the marker is physically 
located within the region of QLr.jki-4A.1, but 6.8 Mbp apart 
from our peak marker. Due to the specific virulence pattern 
of the MCDL race, which is avirulent to Lr30, the MCDL-
MTA might identify this Lr gene. However, to our knowl-
edge, no mapping information for Lr30 is available to allow 
a more precise comparison between Lr30, the MCDL-MTA 
and QLr.jki-4A.1 detected in this study. Another significant 
MTA (4A_t2, Gao et al. 2016) was detected in the region 
of QLr.jki-4A.2, only 309 bp apart from the peak marker 
for this QTL (Table 4). 4A_t2 was mapped approximately 
at the position of the marker linked to Lr28 (Bipinraj et al. 
2011). This may be a hint that QLr.jki-4A.2 also corresponds 
to Lr28, but further analyses have to be conducted. Further-
more, Zhang et al. (2017) reported a minor QTL for APR 
in Chinese Spring (QLr.hebau-4AL), which is physically 
located between 598.7 Mbp and 726.4 Mbp. This region 
includes both QTL on chromosome 4A detected in this study 
(Table 5).

In total, nine QTLs were detected on chromosome 4D so 
far, including the resistance gene Lr67/Yr46/Sr55 (Herrera-
Foessel et al. 2011; McIntosh et al. 2013; Pinto da Silva et al. 
2018). In this study, QLr.jki-4D.1 was detected for both IT 
and Pi in the seedling tests and mapped at the distal end of 
chromosome 4DL. Physically, it is located in a large interval 
from 130.9 Mbp to 479.7 Mbp (Table 5) with peak mark-
ers at 455.8 Mbp and 465 Mbp, respectively (Table 4). Chu 
et al. (2009) located a QTL (QLr.fcu-4DL) in douple-hap-
loid population ‘TA4152-60 × ND495′, mapped at a similar 

position as Lr67, around 412.7 Mbp (Herrera-Foessel et al. 
2011; Zhang et al. 2019). Another QTL on chromosome 
4DL (QLr.hebau-4D) was located between 381.2 Mbp and 
428.6 Mbp (Zhang et al. 2019). Considering the physical 
distances to our peak marker, it appears that QLr.jki-4D.1 is 
independent from QLr.fcu-4DL, QLr.hebau-4D, and Lr67 
(Table 5). A higher similarity may exist with another QTL 
(QLr.sfrs-4DL) detected by Messmer et al. (2000). This QTL 
resulted in an APR and was mapped in the Swiss RIL popu-
lation ‘Forno × Oberkulmer’ also at the distal end of chromo-
some 4DL. Since QLr.jki-4D.1 has only been detected at the 
seedling stage, QLr.sfrs-4DL also seems to be located in a 
different region and with the available data, it is not possible 
to further determine whether it corresponds to our regions.

On chromosome 5A one QTL (QLr.jki-5A.1) was detected 
in seedling tests for IT (Table 4). To our knowledge, on chro-
mosome 5A there is no designated Lr gene and only two 
QTL (QLr.cim-5AC, QLr.cimmyt-5A) are known (Calvo-
Salazar et al. 2015; Rosewarne et al. 2012). QLr.cimmyt-5A 
was mapped on the long arm of chromosome 5A, closely 
linked to Vrn-A1 at 587.0 Mbp (Rosewarne et al. 2012). QLr.
cim-5AC was located in the centromeric region of chromo-
some 5A and flanked by markers wPt-7769 and wPt-3187, 
of which the latter is located at 464.7 Mbp (Table 5). When 
comparing the physical positions of these three QTL, it is 
more likely that QLr.jki-5A.1 corresponds to QLr.cim-5AC 
or is a novel QTL.

On chromosome 6B, two QTL were identified (QLr.jki-
6B.1 and QLr.jki-6B.2) in the present study (Table 4). QLr.
jki-6B.1 was mapped on the short arm of chromosome 6B, 
at 19.3—34.3 Mbp (Table 5). Up to now, 5 QTL have been 
described on chromosome 6BS, but only QLr.caas-6BS.1, 
derived from the wheat cultivar Bainong 64, was physically 
localized in the region between 32 and 34 Mbp (Gerard et al. 
2018; Kankwatsa et al. 2017; Ren et al. 2012). Gerard et al. 
(2018) stated that another QTL (QLr.wpt-6BS.2) is geneti-
cally located in the same region as QLr.caas 6BS.1, whereas 
QLr.wpt-6BS.2 was mapped close to the centromere, a 
region clearly distinct from QLr.jki-6B.1 (Table 5). There-
fore, further studies are required to confirm whether our 
QTL is located closely to these known QTL. The second 
QTL QLr.jki-6B.2 was mapped at the distal end of chromo-
some 6BL, within a small interval encompassing 247 cM to 
250 cM (710 – 720 Mbp). Out of six QTL already detected 
on chromosome 6BL, two QTL (QLr.cim-6BL and 6B_4) 
were also located at the distal end of chromosome 6BL (Chu 
et al. 2009; Gao et al. 2016; Lan et al. 2017; Rosewarne et al. 
2012; William et al. 2006). The DArTseq markers 1234305 
and 2277143 flank QLr.cim-6BL detected by Lan et al. 
(2017). Marker 2277143 was converted into a diagnostic 
KASP marker, which is located at 714.3 Mbp, i.e. 1.6 Mbp 
distal from our peak marker of QLr.jki-6B.2 (Tables 4 , 5 ). 
The results of Lan et al. (2017) indicated uniqueness of QLr.
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cim-6BL, showing no relationship to other QTL on chromo-
some 6BL, as well as to Lr3a co-segregating with Xmwg798 
(Sacco et al. 1998). However, the second known QTL 6B_4 
was physically mapped between 718.9 Mbp and 720.6 Mbp, 
and appeared to be in high linkage disequilibrium with Lr3 
(Gao et al. 2016). Regarding the similar physical regions, 
QLr.jki-6B.2 may correspond to QLr.cim-6BL and 6B_4, but 
further research is needed to come to a closer understanding 
of the relationship between these QTL and Lr3.

On chromosome 7A, the major resistance genes Lr20, 
forming a disease-resistance gene cluster with Pm1, and 
Lr47, which was transferred from chromosome 7S of 
Ae. speltoides have been reported (Dubcovsky et al. 1998; 
Neu et  al. 2002). Additionally, three QTL on chromo-
some 7AL and several MTAs were detected (Pinto da Silva 
et al. 2018). In the present study, three QTL (QLr.jki-7A.1 
to QLr.jki-7A.3) were identified on chromosome 7A. The 
first two QTL were detected for Pi in the seedling test and 
their support intervals were separated from each other by a 
map distance of 7.1 cM on chromosome 7AS. QLr.jki-7A.1 
was physically mapped between 54.9 Mbp and 71.1 Mbp 
(Table 5). To our knowledge, no QTL have been reported 
in this region. Hence, QLr.jki-7A.1 might be a novel QTL. 
The second QTL (QLr.jki-7A.2) on chromosome 7AS was 
located between 93 and 111 cM. The peak marker was 
mapped at 84.8 Mbp (Table 4). To date, there are two MTAs 
from different studies detected in similar regions as QLr.
jki-7A.2 (Elbasyoni et al. 2017; Li et al. 2016). The first 
MTA (QLr.stars-7AS1), associated with marker IWA3760 
was mapped at 78.4 Mbp, hence, it appears that QLr.stars-
7AS1 does not correspond to QLr.jki-7A.2. The second 
MTA (IWA7192) was detected by Elbasyoni et al. (2017) at 
81.1 Mbp, and might be correspondent to the resistance gene 
Lr47. When comparing the physical position of a diagnos-
tic marker for Lr47 (around 115 Mbp), both IWA7192, and 
QLr.jki-7A.2 seem to be different from this Lr gene (Hel-
guera et al. 2000). Thus, QLr.jki-7A.2 is likely a novel locus 
involved in resistance to P. triticina.

The third QTL (QLr.jki-7A.3) determined in field trials 
during this study was mapped between 346 and 379 cM 
on chromosome 7AL. This translates to a large physi-
cal distance between 702.4 Mbp and 724.1 Mbp, with 
the peak marker at 712.3 Mbp (Tables 4, 5). Out of five 
known regions on chromosome 7AL involved in leaf rust 
resistance (Kankwatsa et al. 2017; Li et al. 2016; Lu et al. 
2017; Tsilo et al. 2014), only the MTA detected by Turner 
et al. (2017) may be localized within the region of QLr.
jki-7A.3. The associated marker IWA4175 was mapped 
at 717.1  Mbp, which is 4.8  Mbp apart from our peak 
marker. However, after Bonferroni correction, the marker 
was no longer significant (P < 0.1). The Lr gene Lr20 is 

genetically located in the distal part of chromosome 7AL 
(Neu et al. 2002), which may correspond to QLr.jki-7A.3. 
Based on the available data, investigations with diagnostic 
markers need to be conducted to gain further insights.

Finally, one QTL was detected on chromosome 7DS, 
based on phenotypic data from field trials and seedling 
test (Table 4). To date, out of 21 QTL reported on chro-
mosome 7D, 19 correspond to the resistance gene Lr34, 
which confers race non-specific, partial, and slow rust-
ing resistance to leaf rust (Lagudah et  al. 2009; Pinto 
da Silva et al. 2018). Lr34 has been physically located 
at 47.4 Mbp (Krattinger et al. 2009). Thus, QLr.jki-7D.1 
identified in our study does not correspond to the resist-
ance gene Lr34 and the 19 QTL reported (Table 5). The 
remaining two QTL QLr.cim-7DS and QLr.hebau-7DS on 
chromosome 7DS, which were detected in the two RIL 
populations ‘Avocet-YrA × Francolin#1′ and ‘Shanghai3/
Catbird × Naxos’, respectively, were located in different 
chromosome region (Lan et al. 2014; Zhou et al. 2014). 
Hence, QLr.jki-7D.1 seems to be a novel locus.

The objective of this study was to identify QTL for 
resistance to leaf rust, using the Bavarian MAGIC Wheat 
population. We identified 19 leaf rust resistance QTL that 
were confined to 11 distinct chromosomal regions. To date, 
more than 249 leaf rust resistance QTL and 200 MTAs 
were reported covering all 21 chromosomes of hexaploid 
wheat (Pinto da Silva et al. 2018). These regions were 
identified in several mapping populations using different 
genotyping methods. Because of the absence of informa-
tion on physical positions for many of these QTL, it is 
difficult to unequivocally determine the identity of newly 
described QTL. In the present study, six putatively new 
QTL were identified on chromosomes 4D, 5A, 6B, 7A and 
7D. SNP markers linked to these regions may be converted 
into KASP markers suitable for MAS in wheat breeding 
programs (Neelam et al. 2013; Rasheed et al. 2016). This 
will enable stacking of the detected resistance loci to breed 
new varieties with an improved resistance to leaf rust.
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