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Abstract
Key message  Historical data from breeding programs can be efficiently used to improve genomic selection accuracy, 
especially when the training set is optimized to subset individuals most informative of the target testing set.
Abstract  The current strategy for large-scale implementation of genomic selection (GS) at the International Maize and 
Wheat Improvement Center (CIMMYT) global maize breeding program has been to train models using information from 
full-sibs in a “test-half-predict-half approach.” Although effective, this approach has limitations, as it requires large full-sib 
populations and limits the ability to shorten variety testing and breeding cycle times. The primary objective of this study 
was to identify optimal experimental and training set designs to maximize prediction accuracy of GS in CIMMYT’s maize 
breeding programs. Training set (TS) design strategies were evaluated to determine the most efficient use of phenotypic data 
collected on relatives for genomic prediction (GP) using datasets containing 849 (DS1) and 1389 (DS2) DH-lines evaluated 
as testcrosses in 2017 and 2018, respectively. Our results show there is merit in the use of multiple bi-parental populations as 
TS when selected using algorithms to maximize relatedness between the training and prediction sets. In a breeding program 
where relevant past breeding information is not readily available, the phenotyping expenditure can be spread across con-
nected bi-parental populations by phenotyping only a small number of lines from each population. This significantly improves 
prediction accuracy compared to within-population prediction, especially when the TS for within full-sib prediction is small. 
Finally, we demonstrate that prediction accuracy in either sparse testing or “test-half-predict-half” can further be improved by 
optimizing which lines are planted for phenotyping and which lines are to be only genotyped for advancement based on GP.

Introduction

The Food and Agriculture Organization (FAO) estimates 
that by 2050 the world’s population will surpass 9 billion 
people (Nations and United Nations 2019). Much of this 
population growth will occur in regions of the world where 
food insecurity is prevalent, with large increases in food 
demand projected in Sub-Saharan Africa (SSA) and South 
Asia (SA). While improving food security in SSA and SA 
requires a multi-faceted approach, accelerating genetic gains 
and enhancing performance of crop varieties in smallholder 
farmers’ fields is vital. National and international research 
organizations continue to play an important role in crop 
improvement in SSA and SA, although investment in the 
public-sector breeding programs is significantly lower rela-
tive to countries in other regions of the world (Kremer and 
Zwane 2005; Langyintuo et al. 2010; Kremer and Zwane 
2005). Since scaling up the size of the public-sector breeding 
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programs is not feasible, new approaches are required to 
significantly increase the rate of genetic gain.

A core goal of CIMMYT’s maize and wheat breeding 
programs is to respond to the present and emerging chal-
lenges by developing and deploying improved varieties par-
ticularly for the benefit of resource-constrained smallholder 
farmers who operate in challenging environments. Advances 
in the use of genomic information in crop breeding programs 
have the potential to significantly increase genetic gains. 
Genomic selection (GS) is a breeding method where the 
performance of new breeding materials is predicted based 
on genomic information (Meuwissen et al. 2001). Multi-
ple studies have shown the potential of this methodology to 
increase the rates of genetic gain in breeding programs by 
reducing the cost and time associated with extensive pheno-
typing of new offspring to identify the best performers for 
use as parents in the next generation (de los Campos et al. 
2010; Crossa et al. 2010, 2011, 2017; Lin et al. 2014; Hickey 
et al. 2017; Beyene et al. 2019). GS can improve breeding 
program efficiency if properly designed and implemented to 
fully harness and maximize its advantages.

As genotyping costs have significantly declined relative to 
phenotyping costs in recent time, GS has become an attrac-
tive option as a selection decision tool in breeding programs. 
The CIMMYT Global Maize Program has been evaluating 
various strategies to implement GS in the first year testcross 
trial stage with an objective of selecting promising lines 
for advancement into more resource intensive multi-tester, 
multi-location yield trials (Beyene et al. 2015, 2019; Vivek 
et al. 2017). Efficient identification of superior lines at this 
early stage also enables recycling of lines back as breeding 
parents, thereby decreasing the breeding cycle time.

Phenotyping is required to calibrate models for predict-
ing genomic estimated breeding values (GEBV) of untested 
genotypes, meaning that in a breeding program utilizing GS, 
data collected from field testing are no longer used solely for 
the purpose of informing immediate selection decisions. To 
achieve adequate genomic prediction accuracy, the popula-
tion of individuals phenotyped must be related to the breed-
ing population and the testing environments must be corre-
lated with the target population of environments (Burgueño 
et al. 2012; Jarquín et al. 2014; Santantonio et al. 2020).

The CIMMYT maize breeding strategy is evolving from 
a phenotype only-based system to a GS-based system in 
a phased manner (Santantonio et al. 2020). In the current 
phase, a test-half-predict-half (THPH) strategy is being 
implemented which involves testing half of the full-sib 
lines within each bi-parental population and including data 
from the phenotyped full-sib testcrosses together with other 
testcross information from within the same heterotic group. 
The approach has been adopted for each specific product 
profile-based tropical breeding program to form training 
sets to predict the testcross performance of untested lines 

(Beyene et al. 2015, 2019; Zhang et al. 2015). Although this 
strategy has proven effective in improving the cost efficiency 
of the breeding programs, the goal is to adapt approaches for 
the use of across-year and across-breeding programs data 
to further improve the selection accuracy of GS, to opti-
mize resource use efficiency within the tropical breeding 
programs of CIMMYT, and to eventually reduce the length 
of variety testing and breeding cycle by eliminating the need 
for the first year yield testing (Fig. 1).

As part of the phased GS implementation strategy, the 
THPH approach has been implemented across all tropical 
and Latin America breeding programs for the last two to 
three years while a robust historical training dataset is devel-
oped for each specific breeding program to enable prediction 
directly into stage 2 yield trials. To more effectively imple-
ment the longer term strategy, methods are being investi-
gated to inform model training decisions on a population by 
population basis using accumulated historical data across 
multiple tropical programs of CIMMYT. To efficiently 
implement this approach, algorithms are being evaluated to 
optimally extract the most informative training set for pre-
dicting a given population (Fig. 1).

Ideally, the algorithms used would first inform deci-
sions on whether a new untested population has sufficient 
close relatives in the historical data set or if it would require 
some full-sib testcross phenotype data from a stage 1 trial 
to provide adequate confidence to advance lines from the 
population to stage 2. Following decisions on whether to 
predict and select directly into stage 2 or to employ some 
form of GS assisted stage 1 testing (either THPH, sparse 
testing (ST), or a combination of the two). Algorithms to 
extract the most informative training set on a population by 
population basis would enable maximization of prediction 
accuracy across a diverse set of breeding programs that share 
some common founder lines. To enable the next phase of 
GS implementation in CIMMYT’s tropical maize breeding 
programs, several methods to optimally extract customized 
training sets (CTS) on a population by population basis have 
been evaluated and compared using cross-validation con-
ducted using data collected in 2017 and 2018.

Two optimization criteria: (a) generalized coefficient of 
determination (CD) as proposed by Laloë (1993) and Rin-
cent et al. (2012), and (b) average genomic relationship 
(Avg_GRM) between each individual of training population 
(TP) and target breeding population (BP) were evaluated for 
selecting subsets of individuals with good predictive abil-
ity for each target population. The objectives of the study 
were to (1) determine the best method for selecting custom-
ized training sets; (2) ascertain if the customized training 
sets improved the prediction accuracy when compared to 
using all of the diverse populations for model calibration; 
(3) recommend optimal resource allocation where phenotyp-
ing of full-sib families with half-sib pedigree relationship is 
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required; and (iv) determine the impact of using algorithms 
such as CDmean to determine which lines to phenotype in 
which environments in both ST and THPH genomic selec-
tion strategies without increasing breeding expenditure. 
Overall, this study will further contribute to the existing 
body of literature on the importance of training population 
design and genomic relationship between TP and BP on pre-
diction accuracy.

Materials and methods

Phenotypic data

The phenotypic data consist of doubled haploid (DH) maize 
lines from CIMMYT’s eastern Africa maize breeding pro-
gram at preliminary/stage 1 yield trials evaluated in Kiboko 
(Lat. 2° 15′ S, Long. 37° 75′ E, approximately 975 above 
sea level) and Kakamega (Lat. 0° 16′ N, Long. 34° 49′ E, 
approximately 1585 above sea level) in Kenya during the 
2017 and 2018 growing seasons, respectively. Herein, we 
refer to these 2017 and 2018 datasets as DS1 and DS2, 
respectively. The DH lines, which do not overlap across 

years, were testcrossed to three single cross testers in DS1 
and two single cross testers in DS2, respectively. Informa-
tion regarding the 849 DH lines and 1389 DH lines is pro-
vided (Online Resources 1 and 2).

The testcrosses were evaluated in 13 trials in DS1 and 
34 trials in DS2. The trials in each dataset were connected 
by common checks. The checks and the testcrosses in each 
trial were planted in an alpha-lattice incomplete block design 
with two replications in each location. The entries were 
planted two-rows per plot, each row was 5 m long, with 
spacing of 0.75 m between rows and 0.25 m between hills. 
At planting, two seeds per hill were planted and thinned to 
one plant per hill three weeks after emergence to obtain a 
final plant population density of 53,333 plants per hectare. 
Fertilizers were applied at the rate of 60 kg N and 60 kg P2O5 
per ha, as recommended for the area. Nitrogen was applied 
in a split dose at planting and 6 weeks after emergence.

Grain yield and other agronomic traits were recorded 
per trial at each location but only grain yield (GY) was 
reported in this study. To mimic historical data, DS1 and 
DS2 were combined and optimization algorithms (CDmean 
and Avg_GRM) were used for the selection of individuals 
in the combined data that were most informative of a given 

Fig. 1   Schematic illustration of the stepwise approach for improving 
prediction accuracy and maximizing advantages of genomic selection 
in CIMMYT’s tropical maize breeding program. The strategy pro-
poses the use of algorithms to select individuals from historical data 

to achieve high predictive performance for new populations and ena-
ble advancement into stage 2 yield trials. When historical data are not 
sufficient to predict the performance of new lines, test-half-predict-
half and sparse testing approaches are used
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BP. The prediction accuracy of customized training sets was 
compared with the prediction accuracy obtained using the 
entire data set. The genetic optimization criteria are dis-
cussed further in “Optimization criteria” section.

Genotypic data

All DH lines were genotyped using repeat Amplification 
Sequencing (rAmpSeq) at Cornell Life Science Core Labo-
ratory Center, Ithaca, NY, USA. The rAmpSeq genotyp-
ing platform makes use of knowledge of whole-genome 
sequences and repetitive sequences to identify DNA 
sequence polymorphisms using novel bioinformatics tools 
(Buckler et al. 2016). The rAmpSeq platform provides domi-
nant markers, with the 9155 sequence tags coded as 0 and 
2 based on presence or absence of the marker, respectively. 
The 6785 markers with minor allele frequency greater than 
0.05 were used for analysis.

Statistical analysis

Phenotypic analysis

A linear mixed model was fit using ASREML-R (Butler 
et al. 2017; R Core Team 2019) for combined trial analysis 
and across locations in DS1 and analysis of the combined 
DS1 and DS2 to estimate best linear unbiased estimate 
(BLUE) for each line:

and

While the BLUE of the lines in each location was calcu-
lated using the model below:

where y (n × 1) is the vector of phenotypes for each DH 
lines, μ is the overall mean, 1n(n × 1) is a of vector ones, �1 
is the fixed effect of the line, �2 is the fixed effect of the loca-
tion, �2.1 is the fixed effect of replication, �1 is the random 
effect of the trial, �2 is the random effect of the tester, �3 is 
the random effect of genotype by location interaction, �3.1 
is the random effect of block within replication, �4 is the 
random effect of incomplete block nested within replica-
tion, trial and location, �4.1 is the random effect of incom-
plete block by replication by trial by location by year. �n and 
�m are the incidence matrices for fixed and random effects, 
respectively. The n and m represent the number of fixed and 
random effects.

(1)
� = 1n� + �1�1 + �2�2 + �1�1 + �2�2 + �3�3 + �4�4 + �

(2)
� = 1n� + �1�1 + �2�2 + �1�1 + �2�2 + �3�3 + �4.1�4.1 + �

(3)
� = 1n� + �1�1 + �2.1�2.1 + �1�1 + �2�2 + �3.1�3.1 + �

The variance of the random effects ( u1 , u2 , u3 , u3.1 , u4 , u4.1 ) 
were assumed to be distributed as:

where I is the identity matrix.
The adjusted mean for each DH line was estimated as the 

sum of the population mean with the fixed genetic effect 
of the i-th line that is ŷ = 𝜇̂ + b̂i . Broad sense heritability 
was calculated from the variance components obtained by 
refitting the models with all terms as random effects using 
restricted maximum likelihood (REML) as:

where �2
g
 is the genetic variance, �2

gl
 is the genotype by loca-

tion interaction variance and �2
�
 is the residual variance, nl, 

nr and nk are the number of locations, replicates and years.

Estimation of genomic relationship

Using the (VanRaden 2008) equation, the genomic relation-
ship on DH lines was estimated as below:

Elements of matrix W are wij where wij is the genotype 
represented as the number of copies of the dominant allele of 
DH line i at marker j, denoted as 0 or 2 for the recessive and 
dominant homozygous, respectively, and pj is the allele fre-
quency at marker j. Given the lines were DH, it was assumed 
all lines with the carrying the dominant marker were 
homozygous dominant. The denominator is calculated such 
that the expectation of the genomic relationship matrix is 
the numerator relationship matrix (VanRaden 2008). Given 
the inbreds were tested as parents of hybrids, the genomic 
relationship used to calculated GCAs was as follows:

Genomic selection model

The ST genomic selection strategy is an unbalanced design 
in which half of the population was planted in one loca-
tion and the other half in another location (Burgueño et al. 
2012; Jarquín et al. 2014; Santantonio et al. 2020). This 
takes advantage of allele replication across the locations 
even though the lines were not replicated across locations. 
The GEBV of the testing set in both ST and THPH genomic 
selection strategies was estimated using an unstructured 

um ∼ N
(
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um

)
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covariance model which is an extension of the genomic 
best linear unbiased prediction (GBLUP) mixed model that 
allows borrowing of information from genetically correlated 
locations. This model was fit using the average information 
algorithm of ASReml (Gilmour et al. 1995). Generally, the 
GBLUP model can be expressed as:

where y is a vector of plot observation in each location 
and for other cross-validation schemes it is the BLUE of 
each DH lines, β is a vector of fixed effect, u is a vector 
of genomic breeding values (GEBV), X and Z are design 
matrices, and ε is the vector of residuals. The variance of u 
is assumed to be distributed as

where �⊗ cov
(
�ij

)
 is the kronecker product between the 

genomic relationship of the lines (G) and the genetic (co)
variance of GEBVs within and across locations ( cov

(
�ij

)
 ). 

The variance of the residuals were assumed to be

where diag
(
�2
�(i)

)
 is a diagonal matrix with different residual 

variance for each location. Prediction accuracy of unob-
served genotypes was determined as the Pearson correlation 
of the observed BLUEs to the predicted GEBV.

The predicted GEBV (u) of untested genotypes within 
location was correlated with the estimated BLUE for each 
location (Eq. 3) and the mean was calculated as prediction 
accuracy across locations.

Optimization criteria

The most informative TP for model calibration to predict 
the genetic merit of BP are the individuals that are closely 
related to BP. When pairs of individuals are closely related 
they tend to inherit quantitative trait loci (QTLs) blocks in 
the same linkage phase (Habier et al. 2010). This is par-
ticularly important when the density of markers being used 
for prediction is low and linkage disequilibrium between 
markers decays rapidly in less related individuals. Andreescu 
et al. (2007) reported that LD consistency between SNPs and 
QTLs across populations is related to the degree of relation-
ship between populations and marker density. Multiple crite-
ria such as effective chromosome segments (Me), determin-
istic prediction accuracy (DPA), CDmean and Avg_GRM 
were used to select subsets of TP that are most informa-
tive for a given BP. Initial analyses, reported in (Online 
Resources 3A and B), showed that CDmean and Avg_GRM 
consistently yielded the best results and thus were selected 
for further investigation.

(5)� = �� + �� + �

� ∼ N(0,�⊗ cov(�ij))

� ∼ N(0, diag(�2
�(i)

))

Coefficient of determination

The coefficient of determination (CD) is the expected reli-
ability of the predicted genetic values of the BP (Laloë 1993; 
Rincent et al. 2012). The expected reliability of the predic-
tion of the different contrasts was expressed as:

where D = I − X(X′X)−1 X′,(X′X)−1 is the generalized 
inverse of X′X, λ = σε

2/σg
2, σε

2 is the residual error and σg
2 is the 

genetic variance. The variance component estimates were 
obtained from either Eq. 1 where the goal was to select CTS 
within DS2 or Eq. 2 when the goal was to select CTS from 
harmonized DS1 and DS2. In scenarios investigating the 
optimization of ST and THPH designs (i.e., partitioning of 
lines across locations and training/test sets) λ was set to 0.5. 
Our initial analysis (results not shown) showed that the effi-
ciency of CDmean is not highly dependent on trait heritabil-
ity but rather on genomic relationship. When an intermediate 
value was chosen for λ the prediction accuracy was close 
to the actual λ. This was in agreement with Rincent et al. 
(2012). While results in this study were robust to values of 
λ, strategies for optimizing λ should be further explored. 
G, X and Z is the same as defined above and 1 K′ is a con-
trast vector and the sum of its elements equal to zero. The 
dominators �′�� prevent the selection of closely related 
individuals in the potential CTS thus selecting individuals 
that spread through the genetic space of the BP.

In this study, CDmean was used for two optimization 
objectives: (1) to quantify connectedness and select individ-
uals from multiple bi-parental populations that are closely 
related to a given BP, and (2) to optimize experimental 
designs for ST and THPH. Objective 1 was achieved by 
maximizing the mean of the CD of the contrast between the 
genetic values of individuals in the BP and the mean of the 
population (BP + different subset of TP). This is calculated 
as CDmean = mean [diag(CD(K))], where K is a matrix 
of contrasts with dimension (n) number of individuals in 
the population. The CDmean decreases as the relationship 
between BP and the subset of TP declines and when the rela-
tionship of individuals in the subset of TP is larger than their 
relationship to a target BP. Thus, the greater the mean of the 
contrast, the more closely related the subset of TP to the BP 
and the less related are the individuals within the optimized 
TP. To achieve this the hill-climbing exchange algorithm 
proposed by (Rincent et al. 2012) was implemented and the 
number of exchange moves was set to 8000. The algorithm 
starts with a random size (n) of potential CTS which is used 
to calculate the initial CDmean. At each move, one random 
individual was removed from the initial set, replaced with 

(6)CDmean = diag

⎡
⎢⎢⎣
��(� − �

�
���� + ��−1

�−1
)�

����

⎤
⎥⎥⎦
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another random individual from the remaining TP, the move 
is accepted if the CDmean increases and rejected if other-
wise. For objective 2, groups of DH lines were selected to 
maximally represent the genetic space of each bi-parental 
family. Following Santantonio et al. (2020), CDmean was 
used for training set design in both THPH and STGS strat-
egies by optimizing selection of individuals phenotyped 
(THPH) and planted in each environment (ST).

Average genomic relationship

Average genomic relationship (Avg_GRM) between a 
specific line in the TP and all lines in the target BP was 
calculated for all individuals in the TP. We assumed that 
Avg_GRM is a raw estimate of the proportion of the genome 
shared between potential CTS and all individuals in the BP. 
Thus, the probability of selecting an individual as part of 
the CTS depends on its high Avg_GRM value with the BP.

where �ij is the realized kinship coefficient between the ith 
individual in a target BP and the jth line in the TP and N is 
the size of target BP.

Cross‑validation scheme

The prediction accuracy of a target population obtained 
from models calibrated with different (n) subsets of indi-
viduals selected from DS2 using CDmean and Avg_GRM 
was compared to prediction accuracy from an average of 50 
random selections of different subset sizes as above, using 
half-sib related populations and all the DS2 as TP. Predic-
tion accuracies were calculated as the Pearson correlation of 
the predicted GEBV and the BLUE estimates of DH lines 
in DS2 obtained from Eq. 1. Six families with population 
size ≥ 49 were exclusively considered for use as target popu-
lation (Online Resources 2). DS1 and DS2 were combined 
to further evaluate the efficiency of the algorithms and the 
impact on prediction accuracy when the training population 
has individuals with varying degree of pedigree relation-
ship. The prediction accuracies obtained using optimized TP 
were calculated as the Pearson correlation of the predicted 
GEBV and BLUE estimates of DH lines obtained from the 
combined analysis (Eq. 2). Finally, the prediction accuracy 
of TP design in ST and THPH using CDmean was compared 
to the average accuracy from 50 random splits using DS1. 
The predicted GEBV of untested DH lines within location 
was correlated with the estimated BLUE for each location 
(Eq. 3) and averaged across locations.

In addition, we explored the most efficient strategy 
for the use of half-sib related populations for training set 

(7)Avg_GRMj =
1

N

N∑
i

�ij

development in GS using DS1. For this, only 8 families with 
population size ≥ 63 were considered (Online Resources 1). 
In the first scenario, each population was randomly parti-
tioned into 50, 70, 80, or 90% of the testing set and the 
remaining 50, 30, 20, or 10% from all the populations, 
excluding the testing population, was collectively used as a 
training set so that no individuals from the target BP were 
included in the training set. For the second scenario, popu-
lations were randomly split as above but the training set 
included part of the target testing population. As a baseline 
for comparison, within full-sib (WFS) prediction was con-
ducted for each population by randomly splitting the popu-
lations in the opposite direction of the first two strategies 
that is 50, 30, 20, or 10% as testing set and 50,70, 80, or 
90% as training set. A total of 50 random splits were used 
to estimate an average cross-validation accuracy. Here, the 
prediction accuracy was calculated as the Pearson correla-
tion of the estimated GEBV from the model calibrated using 
the different training set designs and the BLUE estimates 
from analysis of DS1 using Eq. 3.

Results

Population structure

DS1 comprises 13 full-sib families (FSF). Populations 1–12 
have one parent in common (La Posta Seq C7-F64-2-6-2-2-
B–B) and populations 4 and 13 share CML312 as a common 
parent (Online Resources 1). The population structure was 
assessed using principle components calculated from the 
spectral decomposition of the genomic relationship matrix. 
The pedigree classification of the dataset was corroborated 
by the plot of the first two principal components (PCs) with 
significant overlaps between populations, with the excep-
tion of population 13 (Fig. 2a). The 1389 DH lines in DS2 
were classified into 45 FSF based on pedigree information 
(Online Resources 2) and the diversity within the dataset 
is illustrated by the plot of the PCs (Fig. 2b). The pedigree 
relationship of some populations across datasets (2017 and 
2018) was also explained by the overlap between the two 
datasets as shown by the plot of the first two principal com-
ponents (Fig. 2c) of the realized genomic relationship matrix 
of the 2238 DH lines.

Efficiency of optimization criteria and predictive 
ability of multiple Bi‑parental populations

Estimates of broad-sense heritability for grain yield in 2017, 
2018, and combined 2017 and 2018 datasets were 0.65, 0.69, 
and 0.60, respectively. The prediction accuracy for training 
sets optimized using Me, DAPH and DPAR were better than 
the mean prediction accuracy of randomly selected training 
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Fig. 2   a Spectral decomposi-
tion of the genomic relation-
ship matrix of DS1 (849 DH 
lines). The plot of the first two 
principal components shows 
the population structure in 
DS1, each dot represents a DH 
line and the colors are each bi-
parental population. b Spectral 
decomposition of the genomic 
relationship matrix of DS2 
(1389 DH lines). The plot of the 
first two principal components 
shows the population structure 
in DS2, each dot represents 
a DH line and the colors are 
each bi-parental population. c 
Spectral decomposition of the 
genomic relationship matrix 
of the combined D1 and DS2 
(2238 DH lines). The plot of the 
first two principal components 
shows the interconnectedness 
across the datasets. Each dot 
represents a DH line, and the 
blue and red colors represent 
DH lines in DS1 and DS2, 
respectively
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sets, except for populations 5 and 19. However, unlike 
CDmean and Avg_GRM, when training set sizes were less 
than 600, the prediction accuracy for training sets optimized 
using Me, DAPH and DPAR did not improve beyond predic-
tion accuracy obtained using all the populations as a train-
ing set (Online Resources 3A and 3). Figure 3 illustrates 
the consistent high prediction accuracy of the predicted 
populations using CDmean and Avg_GRM to select subset 

sizes of individuals from the DS2 that are most informa-
tive of a target BP for model calibration compared to the 
random selection of the CTS. The percentage of individuals 
that have half-sib relationships with target BP selected by 
the two selection criteria in the different subset sizes (50 
to 1000) range from 0.92 to 0.13 depending on the size of 
the subset and the sum of individuals with half-sib relation-
ship to a target BP present in the DS2 dataset. The number 

Fig. 3   a Prediction accuracy of different training set sizes optimized 
using Avg_GRM and CDmean compared to the random sampling of 
the training set or the use of all populations (DS2) as a training set 
for populations 3, 5 and 10. For the random sampling (red color), the 
error bar represents the degree of variation in prediction accuracy of 
the 50 repetitions of random selection of individuals as the training 
set. b Prediction accuracy of different training set sizes optimized 

using Avg_GRM and CDmean compared to the random sampling of 
the training set or the use of all populations (DS2) as a training set for 
populations 19, 37 and 41. For the random sampling (red color), the 
error bar represents the degree of variation in prediction accuracy of 
the 50 repetitions of random selection of individuals as the training 
set
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of individuals that have half-sib relationships with each of 
the target BP ranged from 78 to 504 individuals (Online 
Resource 1). Thus, for subset sizes of 50 to 500, the per-
centage of populations with half-sib pedigree relationship 
in the subsets was ≥ 50 percent, illustrating the efficiency of 
the selection criteria in selecting individuals related to the 
BP from the DS2. Selecting individuals from the multiple 
bi-parental populations that are closely related to a target 
BP for model training resulted in higher prediction accuracy 
compared to using all the DS2 as a training set (Table 1).  

To further understand if increasing the size of the train-
ing set with individuals that have varying degrees of pedi-
gree relationship was detrimental to prediction accuracy, 
the DS1 and DS2 dataset was combined to a single dataset. 
Since most populations in the DS1 dataset have half-sib 
pedigree relationship, each population was used in turn as 
BP. For all the subsets of the training set, the proportion of 
selected individuals that have a half-sib relationship with 
a target BP was greater than 60 percent for all the subset 
sizes and 75–90% for subsets of size 50 to 500 (Table 2). 
The prediction accuracy using the selection criteria was 
consistently higher than using all individuals as a training 
set or selection of the training set using random sampling. 
For instance, across all populations used as BP, a small 
optimized training set (100 individuals) formed using the 
selection criteria has higher prediction accuracy than using 

all individuals as the training population (2156, mean of 
TP across populations) (Fig. 4).

Comparison of predictive ability using CDmean 
and random sampling for training set design 
in sparse testing and test‑half‑predict‑half genomic 
selection strategies

The use of CDmean to identify individuals for field testing 
in a THPH scheme showed consistently higher prediction 
accuracy than the mean of the 50 repetitions random splits 
(50–50) in both GS strategies (Fig. 5). Figure 5a illustrates 
the consistency of improved prediction across populations 
in 2017 and 2018 using CDmean to choose the most rep-
resentative individuals to be phenotyped. The prediction 
accuracy ranges from 0.31 to 0.61 using CDmean and 0.28 
to 0.59 as mean of the 50 repetitions of random sample 
across the populations used in 2017, and 0.30 to 0.79 and 
0.27 to 0.72 using CDmean and random sampling, respec-
tively, for the populations considered in 2018. Further, in 
the sparse testing scheme, the prediction accuracy across 
all populations using CDmean ranges from 0.51 to 0.68, 
with the mean of the 50 repetitions of random sampling 
ranging from 0.23 to 0.48 (Fig. 5b).

Table 1   The percentage of 
individuals with half-sib 
pedigree relationship to a target 
population selected by the 
selection criteria from multiple 
bi-parental families (DS2) for 
different subset sizes

Selection criteria Subset size Pop3 Pop5 Pop10 Pop19 Pop37 Pop41

CDmean 50 0.92 0.85 0.84 0.68 0.85 0.83
Avg_GRM 0.86 0.90 0.92 0.75 0.89 0.84
CDmean 100 0.88 0.72 0.88 0.67 0.83 0.73
Avg_GRM 0.89 0.85 0.87 0.70 0.87 0.78
CDmean 200 0.86 0.34 0.85 0.66 0.82 0.65
Avg_GRM 0.88 0.31 0.88 0.64 0.85 0.69
CDmean 300 0.83 0.23 0.80 0.65 0.55 0.52
Avg_GRM 0.89 0.24 0.88 0.61 0.64 0.62
CDmean 400 0.76 0.17 0.76 0.64 0.45 0.41
Avg_GRM 0.86 0.18 0.88 0.65 0.51 0.43
CDmean 500 0.68 0.12 0.71 0.62 0.38 0.26
Avg_GRM 0.74 0.14 0.79 0.64 0.43 0.30
CDmean 600 0.61 0.11 0.64 0.59 0.34 0.21
Avg_GRM 0.62 0.12 0.67 0.62 0.36 0.21
CDmean 700 0.53 0.10 0.57 0.57 0.29 0.15
Avg_GRM 0.53 0.10 0.57 0.57 0.31 0.16
CDmean 800 0.47 0.08 0.51 0.54 0.27 0.14
Avg_GRM 0.47 0.09 0.51 0.52 0.27 0.15
CDmean 900 0.43 0.08 0.46 0.49 0.24 0.14
Avg_GRM 0.43 0.09 0.46 0.48 0.24 0.14
CDmean 1000 0.39 0.07 0.42 0.46 0.22 0.14
Avg_GRM 0.39 0.07 0.42 0.46 0.22 0.14
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Accuracy when training set consists of full‑sibs, 
half‑sibs and half‑sibs plus full‑sibs

THPH (50–50) using only FS data (Fig. 6 blue line) did 
not result in better prediction accuracy compared to using 
populations with half-sib pedigree relationship (HSF) (green 
lines) as training set except for population 2 and 3. Predic-
tion accuracy using HSF plus full-sibs (FS) (red lines) as 
a training set was consistently high. Increasing the train-
ing set size for within FS (70:30, 80:20 and 90:10) (black 
lines) improves prediction accuracy and while decreasing 
the size of the HSF or HSF plus FS TPs (30:70, 20:80 and 
10:90) lead to decline in the prediction accuracy. Overall, 
the use of all the HSF plus part of the FS as training results 
in higher prediction while use of only HSF is comparatively 
better than within FS prediction when the size of the family 
is small.

Discussion

The main objective of this study was to develop and test 
prediction strategies for maximizing the advantages of GS in 
the CIMMYT global maize breeding program, particularly 
at the preliminary yield trial stage where it is expensive to 
phenotype large numbers of testcross hybrids in multiple 
locations. The focus was on identifying scalable methods 

that can be potentially deployed across diverse but geneti-
cally interlinked tropical maize breeding programs of CIM-
MYT which can help determine (1) if adequate prediction 
accuracy can be achieved for a given untested population 
using only information from historical data based on the 
representation of alleles in the historical data set; (2) how 
resources can be optimally assigned within the phenotyping 
network to improve prediction accuracy for any population 
where phenotyping some full sib progenies is needed; and 
(3) how to efficiently extract the most useful information 
from the historical data to maximize prediction accuracy 
across populations. The results of this study are relevant for 
the latter two of the above mentioned three objectives. We 
report the results of analyses of different methods to opti-
mize prediction of previously untested bi-parental breeding 
populations with or without inclusion of FS data together 
with different strategies for designing TP using dynamic 
customized training sets.

For situations in which some or all FS progenies of a 
given bi-parental population must be phenotyped in a stage 
1 trial (e.g., for populations with limited genetic connectiv-
ity to a robust historical data set), methods to improve either 
THPH or ST strategies were evaluated. Rincent et al. (2012) 
proposed optimal selection of lines to phenotype for model 
calibration to predict the GEBV of un-phenotyped lines 
using prediction error variance (PEVmean) and CDmean as 
optimization criteria. We demonstrate the utility of CDmean 

Table 2   The percentage of 
individuals with half-sib 
pedigree relationship to a 
target population selected by 
the selection criteria from 
combined DS1 and DS2 dataset 
for different subset sizes

Selection criteria Subset size Pop2 Pop3 Pop4 Pop5 Pop6 Pop13

CDmean 50 0.86 0.90 0.88 0.83 0.89 0.92
Avg_GRM 0.98 0.98 0.94 0.84 0.98 0.98
CDmean 100 0.88 0.88 0.86 0.79 0.86 0.85
Avg_GRM 0.96 0.92 0.88 0.83 0.95 0.85
CDmean 200 0.88 0.86 0.79 0.76 0.89 0.43
Avg_GRM 0.95 0.89 0.85 0.83 0.94 0.45
CDmean 300 0.88 0.86 0.76 0.74 0.87 0.30
Avg_GRM 0.95 0.87 0.78 0.83 0.94 0.30
CDmean 400 0.87 0.86 0.70 0.74 0.85 0.21
Avg_GRM 0.93 0.86 0.76 0.80 0.94 0.22
CDmean 500 0.842 0.84 0.70 0.68 0.84 0.18
Avg_GRM 0.93 0.86 0.76 0.79 0.95 0.18
CDmean 600 0.81 0.84 0.68 0.65 0.82 0.14
Avg_GRM 0.90 0.86 0.73 0.79 0.94 0.15
CDmean 700 0.79 0.82 0.68 0.62 0.76 0.13
Avg_GRM 0.87 0.82 0.72 0.75 0.92 0.13
CDmean 800 0.76 0.74 0.66 0.62 0.74 0.11
Avg_GRM 0.75 0.83 0.69 0.72 0.84 0.11
CDmean 900 0.69 0.71 0.66 0.61 0.71 0.10
Avg_GRM 0.71 0.75 0.66 0.69 0.76 0.10
CDmean 1000 0.65 0.67 0.63 0.60 0.67 0.09
Avg_GRM 0.65 0.68 0.64 0.65 0.69 0.09
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for improving prediction accuracy through optimal selection 
of which FS progenies to phenotype in a THPH scheme, 
and through optimal assignment of FS progenies to differ-
ent environments in an ST scheme. The results indicate that, 
when implementing a THPH or ST approach, careful con-
sideration should be given to which lines are phenotyped in 
which locations as it will impact the accuracy of predictions. 

Unlike traditional experimental designs, approaches that use 
genomic information need to balance the representation of 
parental chromosomal segments across environments. As 
these two schemes are not exclusive, optimized ST would 
be beneficial to the breeding program whether or not it is 
coupled with optimized THPH strategy, although this has 
not been assessed.

Fig. 4   a Prediction accuracy of different training set sizes optimized 
using Avg_GRM and CDmean compared to random sampling of the 
training set or the combined DS1 and DS2 as a training set for pop-
ulations 2, 3 and 4. For the random sampling (red color), the error 
bar represents the degree of variation in prediction accuracy of the 
50 repetitions of random selection of individuals as the training set. 

b Prediction accuracy of different training set sizes optimized using 
Avg_GRM and CDmean compared to random sampling of the train-
ing set or the combined DS1 and DS2 as a training set for populations 
5, 6, and 13. For the random sampling (red color), the error bar rep-
resents the degree of variation in prediction accuracy of the 50 repeti-
tions of random selection of individuals as the training set



290	 Theoretical and Applied Genetics (2021) 134:279–294

1 3

The incorporation of information from close relatives 
beyond the FS population should improve prediction accu-
racy since the degree of genomic relationship between indi-
viduals in BP and TP has been widely reported to be a major 
driver of genomic prediction accuracy (Habier et al. 2007; 

Clark et al. 2012; Taylor 2014; Lee et al. 2017). The utility 
of highly diverse historical data for genomic prediction is 
dependent on several factors including LD decay, marker 
density and genotype by environmental interactions (God-
dard et al. 2011; Burgueño et al. 2012; Khansefid et al. 2014; 

Fig. 5   a The prediction accuracy of training set design by CDmean 
and mean of 50 repetitions of random sampling of training set in test-
half-predict-half genomic selection strategy. The error bar is the vari-
ation in prediction accuracy of the 50 repetitions of random sampling 
of individuals in the training set. b The prediction accuracy of train-

ing set design by CDmean and mean of 50 repetitions of random sam-
pling of training set in sparse testing genomic selection strategy. The 
error bar is the variation in prediction accuracy of the 50 repetitions 
of random sampling of individuals in the training set
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Jarquín et al. 2014; Santantonio et al. 2020). In many situa-
tions, efficient extraction of the most informative individu-
als from existing genotypic and phenotypic data to calibrate 
models that predict the genetic merit of a target BP can be 
important for optimal use of historical breeding information 
in GS. This is demonstrated by the improved predictive abil-
ity of the CTS of size 200 to 600 selected by the optimiza-
tion criteria when compared with random sampling or when 
using all available records as the TP, even though the dataset 
used in this study contained many highly related lines tested 
in similar environments. Further validation is required for 
historical data with genetically diverse lines tested across 
multiple environments. The selection criteria were efficient 
in accounting for relatedness, as they tended to select indi-
viduals that have half-sib pedigree relationship to the target 
BP present in the DS2 and in the combined data (DS1 and 
DS2) as part of the CTS.

Results from the combined analysis indicate that it is pos-
sible to achieve moderate prediction accuracy using data 
with varying degrees of genetic relationship and tested in 
different environments to train prediction models by using 
efficient optimization criteria to extract individuals from 
the combined dataset with the most predictive ability of the 
BP. When using markers sets of moderate density, as was 
the case in this study, the increased prediction accuracy in 
CTS is likely due to improved marker-QTL linkage phase 

between CTS and BP. Unfiltered historical data may have 
large independent segregating effective chromosome seg-
ments which contribute to lower prediction accuracy as 
was the case when using the combined datasets to predict 
populations in DS1. This suggests that unique QTL alleles 
and differences in marker-QTL linkage phase in unrelated 
populations could reduce the signal to noise ratio when pre-
dicting trait values for individuals from a given BP. Results 
of the current study corroborate earlier studies indicating 
that the genetic relationship between TP and BP strongly 
affects prediction accuracy (Andreescu et al. 2007; Crossa 
et al. 2010; Pszczola et al. 2012; Rincent et al. 2012; Taylor 
2014; Hickey et al. 2014; Schopp et al. 2017). Validation of 
algorithms which can be used to routinely extract optimal 
CTS on a population by population basis is an important step 
toward developing a scalable pipeline to enable diverse, but 
interconnected breeding programs to efficiently use the most 
relevant available data from large shared data sets to increase 
prediction accuracy.

The relatively low prediction accuracy within each bi-
parental population when using only FS progenies was likely 
the result of the small TP size on prediction accuracy. Mul-
tiple studies (Crossa et al. 2010; Rincent et al. 2012; de los 
Campos et al. 2013; Hickey et al. 2014; Schopp et al. 2017) 
indicate that given moderate marker density, prediction 
accuracy within a bi-parental population is driven by the size 

Fig. 6   Prediction accuracy of eight full-sib populations with three different training sets: (i) full-sibs (black), (ii) half-sibs (green) and (iii) half-
sibs plus full-sibs (red). Blue line is the prediction accuracy using 50 percent phenotyped and 50 percent predicted
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of the TP and the trait heritability. The small TP when using 
only FS progenies resulted in larger variation in prediction 
accuracy resulting from less consistent estimation of QTL 
effects, and this is reflected in the inflated standard error of 
the prediction accuracy. Hickey et al. (2014) and Schopp 
et al. (2017) also reported low prediction accuracy and high 
variation in prediction accuracy when they randomly sam-
pled lines within bi-parental populations for cross-validation 
using TP size of less than 100.

While the number of FS progeny in the TP has a signifi-
cant impact on prediction accuracy, the inclusion of HSF 
was always as good as or better than using FS progeny alone. 
The improved prediction accuracy obtained when HSF were 
included with FS progenies to develop training sets indicates 
that THPH approaches should incorporate full-sib informa-
tion when possible, especially when the bi-parental popula-
tions are small. Inclusion of a small number of FS progenies 
from the target BP to complement the HSF in the TP results 
in higher prediction accuracy since extensive chromosome 
segments segregate within bi-parental population and the 
effects are better estimated. This indicates that phenotyp-
ing even a small number of full-sibs can be beneficial when 
historical data are sparse.

One of the critical factors in GS is the interpretation of 
prediction accuracy at every breeding stage, considering 
the distinctiveness or objective at each stage. For instance, 
traditionally at the preliminary/stage 1 yield trial, pheno-
typic selection (PS) is done using the estimated best linear 
unbiased predictor (BLUP) or Best Linear Unbiased Esti-
mator (BLUE) to eliminate lines with poor genetic merit 
from advancing to multi-location yield trials. Several stud-
ies (Jacobson et al. 2014; Bassi et al. 2016; Bernal-Vasquez 
et al. 2017) point toward reduction in the selection cycle time 
as the primary advantage of GS compared with PS since 
PS accuracy is expected to be higher than GS accuracy. On 
the contrary, Beyene et al. (2019) reported similar selection 
accuracy for GS and PS when advancing lines from stage 1 
to stage 2 yield trials. In early stage testing, plot-based herit-
ability is typically low and calculated estimates of genetic 
merit are less accurate, because the performance of the lines 
are evaluated in few locations (Endelman et al. 2014; Cobb 
et al. 2019). Improvement of PS accuracy in stage 1 yield 
trials can be achieved by increasing the number of locations; 
however, this is constrained by limited resources. Addition-
ally, the number of testing locations is not linearly related to 
heritability, and therefore genetic gain does not scale linearly 
with heritability (Endelman et al. 2014; Cobb et al. 2019).

As shown in Beyene et al. (2019), when the objective 
is to discard lines with poor genetic merit from advancing 
to resource demanding multi-location yield trials, moderate 
genomic prediction accuracy should suffice without losing 
selection accuracy. Prediction accuracy does not decline 
drastically when enough individuals close to the BP are in 

the TP as demonstrated in this study. This implies phenotyp-
ing at stage 1 yield trial can be eliminated using optimized 
TP without losing selection accuracy in advancing good 
performing lines to the resource demanding multi-location 
yield trials saving phenotyping costs and reducing selection 
cycle time, ultimately increasing genetic gain. The use of GS 
for stage 1 trial prediction coupled with ST could result in 
significant increases in breeding program efficiency without 
significant increasing breeding program costs, with savings 
from reduced replications of lines for phenotyping offsetting 
increases in genotyping cost.

Additionally, for breeding programs where past training 
information is not accessible, breeders may reduce the cost 
of phenotyping by evaluating connected bi-parental popula-
tions sharing one parent in common by phenotyping only a 
small number of lines from each population. This study sug-
gests that prediction accuracy can be significantly improved 
compared to within-family prediction alone, especially when 
TP for within-population is small. Finally, it is shown that 
further improvement in prediction accuracy in either ST 
or THPH GS strategy can be achieved by optimizing the 
assignment of individuals planted in each environment and/
or the individuals phenotyped and those that are evaluated 
based on genomic predictions.

Conclusion

Routine implementation of GS in a plant breeding program 
must account for multiple factors including cost, logistics, 
accuracy and breeding schemes. In early stages of imple-
mentation, the lack of large historical training datasets pre-
sents additional challenges. When utilizing cost effective, 
low to mid-density genotyping platforms, leveraging family 
structure in breeding programs becomes increasingly impor-
tant for achieving high accuracy. In such cases, the impor-
tance of training set design cannot be overemphasized. Here, 
we have demonstrated that the CIMMYT tropical maize 
breeding program can effectively utilize limited historical 
data when the TP is carefully selected to leverage popula-
tion structure and family relationships. For populations with 
close relatives in historical datasets, phenotyping of lines at 
preliminary/stage 1 yield trials can be eliminated, using only 
GEBV to advance new lines into multi-tester multi-location 
yield trials. When working with populations having limited 
family relationships to historical data, approaches such as 
selective testing of subsets of the population in preliminary 
trials can be used to reduce the cost of early stage testing. 
As historical data are accumulated these two strategies will 
converge with the ultimate goal of eliminating all prelimi-
nary yield trials, reducing the time required to develop new 
varieties and reducing generation intervals by enabling ear-
lier recycling of new inbred lines. Given it is unlikely to 



293Theoretical and Applied Genetics (2021) 134:279–294	

1 3

have a single large TP with high predictive ability across BP, 
algorithms such as CDmean or Avg_GRM will be required 
to select BP specific CTS from historical datasets. For popu-
lations that require targeted phenotyping of FS, algorithms 
such as CDmean should be employed to select individuals 
for phenotyping, and phenotypic records from closely related 
populations can be leveraged to significantly improve predic-
tion accuracy. Though our emphasis is on CIMMYT tropical 
maize breeding program, the conclusions drawn from our 
study should apply to other public maize breeding programs 
implementing GS.
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