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Prognostic signature of lung 
adenocarcinoma based on stem 
cell‑related genes
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Jia ‑Hai Shi1,2*

Lung adenocarcinoma (LUAD) is characterized by high infiltration and rapid growth. The function 
of the stem cell population is to control and maintain cell regeneration. Therefore, it is necessary 
to study the prognostic value of stem cell-related genes in LUAD. Signature genes were screened 
out from 166 stem cell-related genes according to the least absolute shrinkage operator (LASSO) 
and subsequently multivariate Cox regression analysis, and then established risk model. Immune 
infiltration and nomogram model were used to evaluate the clinical efficacy of signature. A signature 
consisting of 10 genes was used to dichotomize the LUAD patients into two groups (cutoff, 1.314), 
and then validated in GSE20319 and GSE42127. There was a significant correlation between signature 
and clinical characteristics. Patients with high-risk had a shorter overall survival. Furthermore, 
significant differences were found in multiple immune cells between the high-risk group and low-risk 
group. A high correlation was also reflected between signature and immune infiltration. What’s more, 
the signature could effectively predict the efficacy of chemotherapy in patients with LUAD, and a 
nomogram based on signature might accurately predict the prognosis of patients with LUAD. The 
signature-based of stem cell-related genes might be contributed to predicting prognosis of patients 
with LUAD.
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GEO	� Gene expression omnibus
RECIST	� Response evaluation criteria in solid tumors
CR	� Complete response
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SD	� Stable disease
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Background
Lung adenocarcinoma refers to a malignant tumor originating from lung epithelial tissue, which is a type of non-
small cell lung cancer. In recent years, the incidence rate has gradually increased. In addition, due to the limita-
tions of diagnosis and treatment, the mortality rate of LUAD ranks first in malignant tumors1. Tumor stem cells 
refer to cells that have self-renewal ability and can produce heterogeneous tumor cells, which play a significant 
role in tumor survival, proliferation, metastasis, and recurrence2,3. The ability of tumor stem cells to move and 
migrate makes tumor cells migration possible, at the same time, cancer stem cells can stay dormant for a long 
time and have a variety of drug-resistant molecules, but are not sensitive to external physical and chemical fac-
tors that kill tumor cells, which leads to the result that tumors often relapse after conventional cancer treatment 
eliminates most common tumor cells4,5. So, genes related to stem cells should also have these characteristics.

The treatment plan and survival period of patients with LUAD are affected by many factors, but the TNM 
stage of tissue cells may be one of the vital factors in determining the treatment plan and estimating prognosis. 
TNM stage is based on anatomy and is a description of the cumulative range of tumors. However, it should be 
emphasized that the TNM stage also has shortcomings including the uneven source of case data and the relatively 
complicated stage of N. With the gradual development of diagnosis and treatment technology, we found that 
molecular markers have a greater prognosis for patients. Studying the genetic functions and pathways of LUAD 
could contribute to establishing prognostic markers and therapeutic targets, which could accurately and com-
prehensively predict the prognosis of LUAD6. Therefore, the idea, which constructed signature through cancer 
stem cell-related genes provides a new direction for the diagnosis and treatment of LUAD and the regulatory 
mechanism of stem cell-related genes still requires further digging.

In this research, we constructed a signature of 10 genes as a prognostic target for lung adenocarcinoma. 
Meanwhile, we analyzed the types of immune cells in LUAD, given that multiple pathways in the gene enrich-
ment analysis are related to immunity, to understand the connection between stem cell-related genes and the 
immune microenvironment.

Materials and methods
Data acquisition and selection.  The RNA-sequencing and clinical traits information of LUAD were 
obtained from The Cancer Genome Atlas (TCGA) database (https​://porta​l.gdc.cance​r.gov) and Gene Expression 
Omnibus (GEO) database (https​://www.ncbi.nlm.gov/geo/) that were served as training cohort and validation 
cohort, respectively. Both data sets were whole-genome sequencing, and the sequenced data included tumor 
cells and non-tumor cells. This study mainly focused on cancer stem cells rather than normal stem cells. Can-
cer stem cells are cells in tumors that have the ability to self-renew and produce heterogeneous tumors and are 
part of tumor cells. Therefore, the sequencing data of both data sets contained the data of cancer stem cells. The 
FPKM (Fragment Per Kilobase per Million) data with level 3 from the TCGA database was used in this study. 
After classification and regularization, there were 497 tumor samples in the TCGA database. At the same time, 
when merging clinical information, missing and incomplete samples were deleted. Besides, 166 tumor stem 
cell-related genes were downloaded from the cancerSEA database7 to prepare for further signature construc-
tion. GSE30219 was conducted by GPL570 (Affymetrix Human Genome U133 Plus 2.0 Array)8. GSE42127 was 
conducted by GPL6884 (Illumina HumanWG-6 v3.0 expression bead chip)9.

Signature construction and verification.  It was worth emphasizing that the RStudio was an indispensa-
ble key tool for us to construct and verify a signature next. The signature was established by a two-step method, 
the first step was least absolute shrinkage operator (LASSO) Cox regression, using the “glmnet” package (ver-
sions 3.0.1), and the second step was multivariate Cox regression, using the “survival” package (versions 3.1.8). 
Patients were divided into low-risk and high-risk groups based on the cutoff of risk score, which was calculated 
by formula as follows: HR 1 × gene 1 expression + HR 2 × gene 2 expression … + HR n × gene n expression10. In 
the TCGA and GEO cohorts, the risk curve was drawn to describe further the relationship between the patients’ 
risk value and survival states and protein expression, the Kaplan–Meier curve and ROC curve were used to 
verify the reliability of the signature11.

Gene set enrichment analysis (GSEA).  GSEA is a method used to evaluate the distribution trend of 
genes in the gene list sorted by phenotype correlation and to understand gene positioning, function, and bio-
logical significance. The GSEA (https​://www.gsea-msigd​b.org/gsea/downl​oads.jsp) analysis method used a pre-
defined gene set, usually from functional annotations or the results of previous experiments, to rank the genes 
according to the degree of differential expression in the two types of samples, and then checked whether the 
preset gene set was at the top of the ranking list or bottom enrichment. We presented the GO term and the 
KEGG pathway of the signature which was constructed by stem cell-related genes to further analyze its possible 
biological functions12. The number of permutations was set to 1000, and our selection criteria are closely related 
to a nominal P-value (p < 0.05).

Immune infiltration analysis.  TIMER database, providing six types of immune cell infiltration and using 
RNA-Seq expression profiling data to detect immune cell infiltration in tumor tissue, was used to appraise poten-
tial links between risk grouping and tumor-infiltrating immune cells (TIICs). Deconvolution is a newly released 
statistical method that allows TIMER to infer the incidence of TICC from gene expression profiles. CIBERSORT 
(http://cistr​ome.shiny​appes​), a deconvolution algorithm, can estimate the cell composition of complex tissues 
based on standardized gene expression data, and the method can be used to analyze specific cell types. With 
CIBERSORT, we can visualize the composition of immune cells in tumor samples of LUAD, and standard anno-

https://portal.gdc.cancer.gov
https://www.ncbi.nlm.gov/geo/
https://www.gsea-msigdb.org/gsea/downloads.jsp
http://cistrome.shinyappes
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tation files established gene expression datasets. P-value (p < 0.05) was a significant criterion to determine the 
type of immune cells affected by grouping13.

Analysis of therapeutic efficacy and mRNA expression‑based stemness index (mRNAsi).  Some 
patients from TCGA recorded the results of the evaluation of the efficacy after the first treatment of radiotherapy 
and chemotherapy, which also provided a direction for us to verify the reliability of the signature in terms of effi-
cacy. According to Response Evaluation Criteria in Solid Tumors (RECIST) and risk score, this part of patients 
was classified to compare whether there were differences between different therapeutic effects14. In recent years, 
literature has proposed the concept of mRNA expression-based stemness index (mRNAsi), which was calculated 
by a predictive model with an OCLR algorithm based on pluripotent stem cell samples from the Progenitor Cell 
Biology Consortium dataset (https​://bioin​forma​ticfm​rp.githu​b.io/PanCa​nStem​_Web/). Specifically, the Spear-
man correlation algorithm (RNA expression data) contributed to the stem index model to score LUAD samples 
in the TCGA dataset. The stem indices were then mapped to the [0, 1] range by using a linear transformation that 
subtracted the minimum and divide by the maximum. The index is closer to 1, which indicated that the cell dif-
ferentiation was worse, and the characteristic of stem-cell related genes was stronger. We merged mRNAsi into 
our signature to compare whether there was a difference between low- and high- risk groups15.

Clinical correlation analysis.  Univariate and multivariate Cox regression analyses were used to determine 
independent predictors of OS in LUAD. The predictive value of signature and other clinical factors were evalu-
ated by the area under the ROC curve. Besides, we have developed a nomogram containing risk scores and clini-
cal information to transform the prognostic value of the signature into clinical use. The nomogram was inter-
nally validated using bootstraps with 1000 resamples. The nomogram was composed of independent prognostic 
factors that were previously screened out, using the “rms” package (version 5.1.4). Each factor was assigned a 
weight according to its influence on the prognosis. According to the weight of each factor, the corresponding 
score was obtained to predict the patient’s 1, 3, 5-year survival rate. The higher the score, the worse the prognosis.

Result
Construction of Signature in TCGA​.  All cancer stem cell-related genes were downloaded from Can-
cerSEA (http://biocc​.hrbmu​.edu.cn/Cance​rSEA/home.jsp). Nineteen stem cell-related genes associated with OS 
(p < 0.05) were measured as predictive stem cell-related genes for LASSO analysis (Supplementary Information 
1–2). Through multivariate COX regression, we select ten stem cell-related genes to construct a robust signature 
for LUAD (Tables 1, 2). The calculation formula of the risk score is as follows: risk score = 0.578 × expression 
C6orf62 + 1.24 × expression DNER + 0.737 × expression NELL2 + 1.404 × expression LATS2 + 1.202 × expression 
LGR5 + 0.676 × expression PTPRO + 0.718 × expression LRIG1 + 1.306 × expression PABPC1 + 1.126 × expres-
sion NT5E + 1.458 × expression SET. In the calculation, the mRNA expression value (FPKM) was used to calcu-
late the risk score. According to the cutoff (1.314) of risk scores, patients in TCGA were divided into low-risk 
group and high-risk group16. The risk curve can clearly show the relationship between survival status, survival 
time, and expression of stem cell-related genes and risk score17 (Fig. 1A). The area under the ROC curve for 1, 
3, 5-year were 0.771, 0.734, 0.687 (Fig. 1B). In ROC analysis, the survival status of the same patients at 1, 3, and 
5 years is inconsistent, which also leads to their inconsistency in AUC at one, three, and five years. In fact, AUC 
may not necessarily decline with increasing time, but may also increase. Herein, our study shows that AUC 
decreases gradually with increasing time. The survival analysis suggested that the overall survival rate of the low-
risk group was higher than that of the high-risk group (P < 0.001). The 5-year survival rate of the low-risk group 
was close to 50%, while the 5-year survival rate of the high-risk group was only 20% (Fig. 1C).  

Validation of the signature in GEO.  To further verify the feasibility of the gene signature, we verified 
through the GEO database. In GSE20319 and GSE42127, the relationship between survival status, survival time, 
and the expression of the stem cell-related genes and risk score was consistent with the conclusion in TCGA. 
In GSE30219, the cut-offs value of the risk score between the high and low-risk group was − 0.085, the area 

Table 1.   ENSEMBL/Entrez gene ID.

ID EntrezID

C6orf62 81,688

DNER 92,737

NELL2 4753

LATS2 26,524

LGR5 8549

PTPRO 5800

LRIG1 26,018

PABPC1 26,986

NT5E 4907

SET 6418

https://bioinformaticfmrp.github.io/PanCanStem_Web/
http://biocc.hrbmu.edu.cn/CancerSEA/home.jsp
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under the ROC curve was 0.826, 0.638, and 0.599 in 1, 3, and 5-year survival rates, respectively. One of the more 
worthwhile was that in GSE42127, the cut-offs value of the risk score between the high and low-risk group was 
-0.316, the area under the ROC curve was 0.788, 0.657, and 0.582. Besides, The survival analysis in GSE30219 
and GSE42127 revealed that the overall survival rate of the low-risk group was significantly better than that of 
the high-risk group (p < 0.05). This series of external verification fully demonstrated the feasibility and accuracy 
of our signature18 (Fig. 2).

Subgroup analysis.  We conducted a subgroup analysis to clarify the link between subgroups and risk 
grouping. The clinicopathologic features of LUAD patients in TCGA datasets were shown in Table 3. A further 
conclusion was drawn that all subgroups except N3 could identify high-risk and low-risk groups. In N3, there 

Table 2.   Independent factors in the signature.

ID coef HR HR.95L HR.95H P value

C6orf62 − 0.73221 0.480847 0.312891 0.738959 0.000838

DNER 0.195561 1.215993 1.073065 1.377959 0.002174

NELL2 − 0.34583 0.707635 0.533484 0.938635 0.016425

LATS2 0.38125 1.464113 1.100657 1.947588 0.008826

LGR5 0.251941 1.28652 1.076618 1.537345 0.005566

PTPRO − 0.44697 0.639564 0.430824 0.94944 0.026599

LRIG1 − 0.26479 0.767366 0.633265 0.929864 0.006893

PABPC1 0.246554 1.279608 0.983828 1.664311 0.066004

NT5E 0.132706 1.141914 1.006795 1.295166 0.038888

SET 0.414622 1.513798 1.03377 2.216727 0.033119

 A                               B                            

C                              

Figure 1.   Construction of signature. (A) The risk curve in the TCGA cohort displayed the patients’ risk score, 
survival time, and status, and expression of stem cell-related genes. The scales represented the expression level 
of each gene in each sample, which was established based on z-score transformed expression data. (B) ROC 
curve illustrated the risk prediction of the signature for 1, 3, and 5-year in the TCGA cohort. (C) Kaplan–Meier 
survival revealed the overall survival among different risk stratification groups.
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were only two patients, both of which belonged to the high-risk group. And in most subgroups, high- and low-
risk groups had significant differences, such as age <  = 65, age > 65, female, male, stage III, T2, T3, N0, N2, and 
M0 (p < 0.05) (Fig. 3). P-value less than 0.05 was our criterion to judge whether it was meaningful19 (Fig. 4).  

Gene set enrichment analysis.  The biological characteristics of the signature were confirmed by the 
analysis of the GO term and KEGG pathway. In GO term annotation, five categories were positively associated 
with the low-risk group, which were hexose catabolic process, NADH metabolic process, monosaccharide cata-
bolic process, ATP generation from ADP, and NAD metabolic process. At the same time, five categories were 
negatively related to the low-risk group, which were negative regulation of adaptive immune response, regula-
tion of tumor necrosis factor biosynthetic process, bile acid metabolic process, positive regulation of tyrosine 
phosphorylation of STAT5 protein, and regulation of type 2 immune response. In the KEGG pathways, five 
pathways were positively associated with the low-risk group, such as ECM receptor interaction, focal adhesion, 
glycosphingogolipid biosynthesis latco, and neolatco series, pentose phosphate pathway, and p53 signaling path-
way. While five pathways were negatively related to the low-risk group, like JAK start signaling pathway, primary 
immunodeficiency, VEGF signaling pathway, and intestinal immune network for IGA production20 (Fig. 5A).

Immune infiltration analysis.  TIMER database, which provides six types of immune cell infiltration, uses 
RNA-Seq expression profiling data to detect immune cell infiltration in tumor tissue. The signature showed 
a negative correlation with the levels of B cells, CD4 T cells, CD8 T cells, Dendritic cells, Macrophages, and 
neutrophil cells (p < 0.05) (Fig. 5B). Tumor mutation burden (TMB) is defined as the total number of somatic 
gene coding errors, gene insertion, or deletion errors detected per million bases. TMB was obtained according 
to the above calculation method based on the varscan.maf file provided in the TCGA database. According to 
the calculated mutation burden value, we found that it had significant differences in the low-risk and high-risk 
groups (Fig.  5C). These situations revealed that our signature was indeed related to immune cells. In addi-
tion, we characterize the cellular composition of the tumor-infiltrating immune cells through the CIBERSORT 
method. Compared with the high-risk group, CD8 T cells, monocytes, resting dendritic cells, and resting mast 
cells had higher expressions (p< 0.05), while M0 macrophage had lower expression (p< 0.001) (Fig. 5D). CD4 
memory activated T cells and CD8 T cells had the highest positive correlation (R = 0.53), which implied that 
there was a mutual effect between them. While plasma and M2 Macrophages had the highest negative correla-
tion (R = − 0.37) that suggested they were antagonistic to each other21 (Fig. 5E).

Therapeutic efficacy analysis.  Some patients in the TCGA database recorded the results of the first 
assessment of the efficacy of radiotherapy and chemotherapy. This part of the result was obtained from the 

Figure 2.   Validation of the signature in GEO. (A) Kaplan–Meier survival, ROC curve, and risk plot were used 
to verify the signature in the GSE30219. (B) Kaplan–Meier survival, ROC curve, and risk plot were used to 
validate the signature in the GSE42127.
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cbioportal database. Among them, 126 patients recorded the results of the first treatment after radiotherapy and 
chemotherapy. At the same time, we tracked the evaluation of efficacy, 111 cases were complete response (CR), 
only one case was the partial response (PR), eight cases were stable disease (SD), and seven cases were progres-
sive disease (PD). The three genes of the signature had significant differences in the efficacy of the different drug 
(p < 0.05). We integrated this aspect into our research to evaluate our signature from multiple perspectives. By 
calculating the relationship between the signature and the efficacy of radiotherapy and chemotherapy, the pre-
dictive power of the signature could be calculated22,23 (Fig. 6A).

Relationship between signature and mRNAsi.  There were already clear articles that calculated the 
mRNAsi of 1174 genes. We matched the known mRNAsi with the samples and divided our patients into two 
groups by the median value of mRNAsi (high-mRNAsi group and low-mRNAsi group)24. It was found that 
mRNAsi could not effectively distinguish high- and low-mRNAsi in LUAD and the area under the ROC curve 
still had a certain gap compared with our signature. However, the mRNAsi of the high-risk group in our signa-
ture was also significantly higher than that of the low-risk group (P < 0.01). This also verified that our signature 
was stem cell characteristic25,26 (Fig. 6B).

Clinical correlation analysis.  The univariate Cox regression showed factors related to prognosis like a 
stage, T, M, N, and risk score (p < 0.05), while multivariate Cox regression showed that only stage and risk score 
were significant independent risk factors of LUAD. Compared with other clinical factors, the area under the 
ROC curve of the signature in each period was the largest, which implied that compared with other clinical 
factors, the predictive ability of the gene signature we constructed was optimal (Fig. 7A,B). The areas under the 
ROC curve for 1-year, 3-year, and 5-year OS were 0.771, 0.734, and 0.687, which implied that our signature had 
excellent predictive power27,28 (Fig. 7C–E). We constructed a nomogram that could predict 1, 3 and 5-year OS 
by signature and other clinical factors. The 1, 3 and 5-year OS probability calibration curves showed that the OS 
predicted by nomogram was in good agreement with the actual OS of LUAD patients. The ROC curve in the 
nomogram showed that the 1, 3 and 5-year forecast values were 0.805, 0.773, and 0.76529 (Fig. 8). The workflow 
of our study was shown in Fig. 9, which was used to display our thought and process of our study.  

Table 3.   Clinical information.

Clinical features Category Number(n = 427) No. (%)

Age

 <  = 65 207 48.48%

 > 65 220 51.52%

Gender

Female 232 54.33%

Male 195 45.67%

Stage

Stage I 232 54.33%

Stage II 102 23.88%

Stage III 73 17.10%

Stage IV 20 4.69%

T Stage

T1 148 34.66%

T2 226 52.93%

T3 36 8.43%

T4 17 3.98%

N Stage

N0 281 65.81%

N1 81 18.97%

N2 63 14.75%

N3 2 0.47%

M Stage

M0 407 95.31%

M1 20 4.69%

Survival status

Dead 147 34.43%

Alive 280 65.57%
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Discussion
Despite the dramatic progress in diagnosis and treatment, the prognosis of advanced lung adenocarcinoma is 
still unsatisfactory. With the development of clinical management of lung cancer, some prognostic factors are 
well characterized, such as age, grade, and TNM grade. Cancer stem cells refer to cells that have self-renewal 
capacity and can produce heterogeneous tumor cells, which play a significant role in tumor survival, prolifera-
tion, metastasis, and recurrence. Cancer stem cells or tumor-initiating cells are considered to be the main drivers 
of disease progression and treatment resistance across various cancer types. Therefore, stem cell-related genes 
that were used to construct our signature also had these characteristics. This was why we considered using these 
genes to build a signature to facilitate the prediction and precise treatment of lung cancer. The research on the 
mechanism of stem cell-related genes has been pervasive, but there is no experiment to build these stem cell-
related genes into a signature. DNER is a neuron-specific transmembrane protein with extracellular EGF-like 
repeat sequences, which promotes the metastasis and proliferation of cancer cells by activating Girdin/PI3K/
ATK signal transduction30–32. NELL2s is a rich glycoprotein that contains EGF-like domains in nerve tissues, 
which interact with protein kinase C and has multiple physiological functions. Hypermethylation of promoter 
silences NELL2 and affects the progression of renal cell carcinoma33–35. LATS2, as a potential tumor suppres-
sor, is a significant mediator of the apoptosis response pathway. LATS2-Wnt/β-catenin/DRP1/mitochondrial 
division is identified as a signaling pathway that promotes cancer cell death36,37. LGR5 is a promising marker of 
intestinal stem cells and cancer stem cells. Intestinal stem cell marker LGR5 is a receptor for R-spongin, and its 

Figure 3.   Subgroup analysis. Kaplan–Meier survival illustrated the overall survival of subgroups, which was 
stratified by age ≤ 65, age > 65, gender, and TNM stage.
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Figure 4.   Subgroup analysis. The box plot showed the relationship among stem cell-related genes in the 
signature and each clinical subgroup.
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role is to enhance Wnt signaling in hyperplastic crypts. Wnt pathway plays a significant key in ISC self-renewal 
by inducing RSPO receptor LGR5 expression. An abnormal increase in LGR5 expression may represent one of 
the most common molecular changes in some human cancers, resulting in long-term enhancement of canoni-
cal Wnt/β-catenin signaling38–40. PTPRO is a tumor suppressor and is abnormally expressed in various malig-
nant tumors. PTPRO causes ulcerative colitis through TLR4/NF-KB signaling pathway and plays a role in liver 
fibrosis by affecting PDGF signaling in HSC activation. It is noteworthy that PTPRO is a new candidate gene 
for emphysema with severe obstruction41,42. LRIG1, a transmembrane protein, has a tumor-suppressive effect, 
and its expression is down-regulated in a variety of cancers. It can antagonize epidermal growth factor receptor 
signaling in epithelial tissues and inhibit cell invasion, migration, VM (angiogenesis simulation) by regulating 
EGFR / ERK-mediated EMT (epithelial-mesenchymal transition)43,44. PABPC1 can combine with adenylate-
rich sequences in mRNA under the action of high affinity, which plays an important role in post-transcriptional 

A

B C

D E

Figure 5.   Gene Set Enrichment Analysis and Immune infiltration analysis. (A) GO term and KEGG pathway 
showed five positive correlation groups and five negative correlation groups, respectively. (B) TIMER indicated 
the correlations among the six immune cells and signature. (C) Difference analysis of TMB in high-risk and low-
risk groups. (D) Composition of 21 kinds of immune cells in high-risk and low-risk groups. (E) Correlation heat 
map of 21 immune cells in LUAD.
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regulation of genes and is also involved in many metabolic pathways of mRNA, including adenylate polymeri-
zation/adenylation, mRNA transport, mRNA translation, microRNA degradation related regulation45. NT5E 
is a ubiquitously expressed glycosylphatidylinositol-fixed glycoprotein, which can convert extracellular adeno-
sine 5′-monophosphate to adenosine, and promote tumor development by inhibiting the anti-tumor immune 
response and promoting angiogenesis46,47. A schematic gram was used to display that the genes in the signature 

A

B

Figure 6.   Analysis of therapeutic efficacy and correlation analysis of stem cell index. (A) Box plot suggests the 
links between the p-value of the difference between any two groups. (B) Kaplan–Meier survival, ROC curve, and 
box plot were used to demonstrate the risk prediction of signature-based on the stem cell index.

Figure 7.   Clinical relevance. (A,B) Univariate and Multivariate Cox regression analysis of clinical factors 
related to overall survival in the TCGA cohort. (C–E) ROC curve demonstrated the risk prediction compared 
with other clinical factors in the TCGA cohort.
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how to guide the progression of LUAD (Fig. 10). As far as AUC is concerned, the signature-based on ten stem 
cell-related genes is indeed a strong complement to TNM staging, but this conclusion needs further verification 
with multi-center and larger samples.

GSEA proved that the constructed signature did involve related cancer pathways. P53 is a tumor suppressor 
protein that regulates the expression of various genes, including apoptosis, growth inhibition, differentiation, 
inhibition of cell cycle progression, and accelerated DNA repair, genotoxicity, and senescence after cellular stress. 
Like all other tumor suppressors, the P53 gene normally slows or monitors cell division. The JAK/STAT signaling 
pathway is involved in numerous significant biological processes such as cell differentiation, proliferation, migra-
tion, apoptosis, survival, and immune regulation. Besides, the JAK/STAT signaling pathway also participates in 
the drug treatment of anemia, thrombocytopenia, neutropenia, and antiviral. With immune infiltration analysis, 
we found that the signature regulates the immunity of lung adenocarcinoma through CD4 T cell, which can 
interfere with the immune response of the immune system to the tumor, participate in the immune escape of the 
tumor, induce the immune tolerance of the tumor, and promote the occurrence and development of the tumor.

Figure 8.   Construction of nomogram. The nomogram contained age, stage, signature containing ten stem cell-
related genes. The x-axis of the calibration chart was the predicted recurrence probability result, and the y-axis 
was the actual recurrence probability. ROC analysis detected the accuracy of prediction and inspection.

signature validated 
in the GSE30219 

signature validated 
in the GSE42127

Stem 
characteristic: 

mRNAsi

Immune 
infiltration 

analysis

Therapeutic
efficacy 

analysisc

Clinical 
correlation 

analysis
GSEASubgroup 

analysis

LASSO analysis and 
multivariate COX regression

166 stem related genes from 
cancerSEA database

signature constructed in the 
TCGA database 

Figure 9.   Flow chart. The flow chart was drawn to show the thought and process of our research.



12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:1687  | https://doi.org/10.1038/s41598-020-80453-4

www.nature.com/scientificreports/

Conclusion
In conclusion, the signature could effectively predict the efficacy of chemotherapy in patients with LUAD, and 
a nomogram based on signature might accurately predict the prognosis of patients with LUAD. The signature-
based on stem cell-related genes might be contributed to predicting the prognosis of patients with LUAD. Further 
research should be devoted to the functional analysis of our research results and verification in clinical trials.

Data availability
All data were from TCGA and GEO, which are publicly available. Data and code available.
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