Skip to main content
. 2020 Dec 31;24(1):102012. doi: 10.1016/j.isci.2020.102012

Table 1.

Most common additive manufacturing methods, used material, spatial resolution, advantages, and drawbacks of each

Method Typical materials Resolution Advantages Drawbacks
Stereolithography (SLA) Resins with photo-active monomers acrylates – epoxides (Ligon et al., 2017) - DC 100 (high accuracy) - DC 500 - DL 350/360 (high flexibility) - AB 001 - GM 08 (high flexibility) - DM 210 - DM 220 10 μm (Ngo et al., 2018) Fine spatial resolution - high quality (Ngo et al., 2018) - good surface quality - good precision (Ligon et al., 2017) Supports limited materials - slow printing - expensive (Ngo et al., 2018) - poor biocompatibility - limited mechanical properties (Ligon et al., 2017)
Digital light processing (DLP) (Ligon et al., 2017) Acrylates - epoxides - plas range (High resolution and chemically resistant) - superCAST - superWAX 25–100 μm High printing accuracy - low cost - shorter build time than SLA - less affected by oxygen inhibition compared to SLA - better surface quality - low initial vat volume is needed Limited mechanical properties
Continuous liquid interphase printing (CLIP) (Ligon et al., 2017) Acrylates - rigid polyurethane (RPU) - flexible polyurethane (EPU) (impact resistant) - elastomeric polyurethane - cyanate ester (CE) - prototyping (PR) - 75 μm Higher build speed than DLP Low viscosity resin is needed
Two/multi-photon polymerization (TPP/MPP) (Ligon et al., 2017) Acrylates 100 nm - 5 μm High spatial resolution Low build speed - limited material
Powder-bed based methods (selective laser sintering (SLS) -selective laser melting (SLM)) Compact fine powder metals - alloys and limited polymers (Ngo et al., 2018) - PA12 – PEEK (Ligon et al., 2017) titanium (biocompatible) - stainless steel - aluminum - cobalt/chrome – nickel-based alloys 50–250 μm (Ligon et al., 2017) Fine resolution - high quality - durable - large surface area, good for scaffolds of tissue engineering - good mechanical properties (SLM) - less anisotropy (Ligon et al., 2017) Slow printing - expensive - porosity - lower mechanical properties due to the porous structure (SLS) - high power supply - high printing temp - rough surface - poor reusability of unsintered powder (Ligon et al., 2017)
Fused deposition modeling (FDM) Continuous filament of thermoplastic polymers - continuous fiber-reinforced polymers (Ngo et al., 2018) – PLA (Ligon et al., 2017) - ABS - ASA - Nylon 12 - PC - PPSF/PPSU - PEI or ULTEM (Biocompatible) - PLA – TPU 50–200 μm (Ngo et al., 2018) Low cost - high speed – simplicity (Ngo et al., 2018) Weak mechanical properties - limited material (thermoplastics) – layer-by-layer finish (Ngo et al., 2018) - rough surface - high temperature during the extrusion process (incompatible for cells) (Ligon et al., 2017)
3D dispensing (Ligon et al., 2017) Thermoplastics - photoresins - composites - hydrogels - biomaterials 100 μm - 1cm Wide range of materials Rough surface - narrow viscosity process window
3D printing (Binder jetting) (Ligon et al., 2017) Stretch - PLA - ceramics 100 μm Fast - allow multi-material AM Rough surface - limited strength of parts
Inkjet printing (Ngo et al., 2018) A concentrated dispersion of particles in a liquid (Ink or paste) 5–200 μm Quick printing Weak adhesion between layers
PolyJet (Ligon et al., 2017) Acrylates - VeroWhitePlus - digital ABS - FullCure RGD 720 - Rigur RGD 450 - biocompatible material 25 μm Fast - allow multimaterial AM Low viscosity ink is needed
Direct energy deposition (DED) (Ngo et al., 2018) Metals and alloys in the form of powder or wire ceramics and polymers 250 μm Reduced manufacturing time and cost - good mechanical properties - accurate composition control - good for repair and retrofitting Low accuracy - low surface quality - dense support structure is needed - limitation in printing complex shapes