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Abstract

Purpose of Review—The goal of this review is to present a summary of the recent literature of 

a non-invasive brain stimulation (NIBS) to alleviate pain in people with chronic pain syndromes. 

This article reviews the current evidence for the use of transcranial direct current (tDCS) and 

repetitive transcranial magnetic stimulation (rTMS) to improve outcomes in chronic pain. Finally, 

we introduce the reader to novel stimulation methods that may improve therapeutic outcomes in 

chronic pain.

Recent Findings—While tDCS is approved for treatment of fibromyalgia in Canada and the 

European Union, no NIBS method is currently approved for chronic pain in the United States. 

Increasing sample sizes in randomized clinical trials (RCTs) seems the most efficient way to 

increase confidence in initial promising results. Trends at funding agencies reveal increased 

interest and support for NIBS such as recent Requests for Application from the National Institutes 

of Health. NIBS in conjunction with cognitive behavioral therapy and physical therapy may 

enhance outcomes in chronic pain. Novel stimulation methods, such as transcranial ultrasound 

stimulation, await rigorous study in chronic pain.

Summary

Excitatory NIBS targeting motor cortex or left dorsolateral prefrontal cortex has the greatest 

support for ameliorating pain in chronic pain patients, particularly in Chronic Overlapping Pain 

Conditions, such as fibromyalgia. Confidence in the efficacy of NIBS interventions is most 

negatively affected by RCTs with small sample sizes. Increased attention from funding agencies to 
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the promise of NIBS and to the problem of small sample sizes in applied neuroscience is 

anticipated to improve confidence in these relatively side-effect free interventions.
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non-invasive brain stimulation; repetitive transcranial magnetic stimulation; rTMS; chronic pain; 
transcranial direct current stimulation; tDCS

Introduction

Epidural motor cortex stimulation: prelude to non-invasive neuromodulation for pain 
alleviation

Non-invasive brain stimulation (NIBS) protocols as adapted for intervention in chronic pain, 

arguably have their intellectual origins in invasive epidural motor cortex stimulation (EMCS) 

[1, 2]. Invasive methods requiring neurosurgery are reserved for patients presenting with 

intractable chronic pain with clear neuropathic signs and symptoms. While EMCS appears 

to be effective for central post stroke pain (CPSP), it seems ineffective for spinal cord injury 

pain (SCIP) leaving a vast gap in analgesic potential for many patients who may benefit 

from NIBS [3]. NIBS using transcranial direct current stimulation (tDCS), repetitive 

transcranial magnetic stimulation (rTMS) or more recently reported methods such as 

transcranial alternating current stimulation (tACS) and low-intensity transcranial ultrasound 

stimulation (TUS) are promising avenues of research that may lead to future treatments for 

chronic pain of all etiologies [4-6]. However, the field of NIBS for chronic pain has been 

plagued by promising preliminary published reports of analgesic effects in a variety of 

chronic pain syndromes with little follow-up in appropriately powered, blinded, randomized 

and sham-controlled clinical trials [7]. Historically this was in part caused by the lack of 

funding and attention from major funding agencies such as the National Institutes of Health, 

which we note in recent years has improved substantially (Figure) [8].

In neuropathic pain caused by a lesion of the central nervous system, for example in patients 

with central post-stroke pain (CPSP) and spinal cord injury-related pain (SCIP), medications 

including morphine and pregabalin frequently have limited or no effect on the patient’s pain 

[9-11]. In the early 1990s, Tsubokawa and colleagues pioneered EMCS for treatment of 

CPSP, and 9 of 12 patients experienced strongly positive long term pain relief from this 

invasive therapy [12]. EMCS is an invasive form of motor cortex neuromodulation, which 

requires neurosurgical implantation and has been reported to provide 40% to 50% pain 

amelioration in 45% of treated patients at one-year follow-up [13]. While early reports of 

pain alleviation by EMCS generally lacked periods of double blind testing, where the 

intracranial stimulator would be turned off or on by random determination, several later 

studies included double-blind test periods [14-17]. Of the four studies reporting double-blind 

testing, three showed generally positive pain ameliorating effects.

Short-term pain reduction produced by excitatory, high frequency M1 rTMS correlates with 

the clinical success of EMCS, suggesting these interventions may have similar mechanisms 

[18, 19]. Recent evidence in a case series of 12 patients demonstrated rTMS’s improved 
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positive and negative predictive value for EMCS success when applied over a 4 session 

regime [20].

In an attempt to translate the pain alleviating effects of invasive EMCS to a wider patient 

population by using noninvasive techniques known to modulate cortical excitability, 

randomized controlled trials (RCTs) of both high frequency repetitive transcranial magnetic 

stimulation (rTMS) and anodal transcranial direct current stimulation (tDCS) were found to 

alleviate neuropathic pain [21-25]. An RCT comparing high frequency M1 rTMS to anodal 

M1 tDCS, and each to their own sham, found active rTMS superior to sham and active 

tDCS, but importantly found analgesic effects of M1 rTMS correlated positively to those of 

anodal M1 tDCS, suggesting individual patients respond similarly to tDCS and rTMS [26]. 

It is important to note that while typical courses of treatment with tDCS only reach levels of 

analgesia of clinical significance after at least three 20 minute once-daily sessions, 

temporary pain alleviation from EMCS and rTMS occurs after 10 to 20 minutes of 

stimulation, and these early effects predict clinical success [13, 22, 27, 28, 20]. We discuss 

recent studies using non-invasive neuromodulation methods for alleviation of pain 

perception in chronic pain syndromes.

Non-invasive Brain Stimulation: Analysis of the analgesic effect of M1-targeted rTMS in 
chronic pain patients

Since Lefaucheur and colleagues first reported analgesic effects of M1 rTMS in patients 

with neuropathic pain in hopes of using rTMS as a tool to predict efficacy of EMCS, several 

guidelines and meta-analyses investigating the potential analgesic effects of M1 rTMS have 

been published [29, 24, 7]. In general, the most frequently investigated M1 rTMS protocols 

generally aim to increase cortical excitability in the motor cortex. For example, the most 

recent Cochrane review update of NIBS for chronic pain listed that 32 published reports of 

42 rTMS studies used high frequency (≥ 5 Hz) M1 rTMS, which is known to increase 

cortical motor excitability. In addition, a variety of sham methodologies were taken 

advantage of in this population of studies. Optimal sham stimulation, where somatosensory, 

visual and auditory perception of the verum (or true) coil is mimicked, is reported in only 

eight of 42 analyzed studies. Generally, suboptimal sham coils are used where only two 

perceptual aspects of the verum stimulation are mimicked; 14 of 42 sham coils mimicked 

only auditory and visual aspects. It is probable that in a crossover study there is no perfect 

sham for active rTMS given that sensations from verum stimulation arise from the scalp and 

subcutaneous tissues, as well as from the meninges and periosteum [30]. A sham coil with 

the ability to stimulate these targets would likely not be considered ethical. Furthermore, 

sham coils which stimulate the scalp may deliver neurophysiologically relevant energy 

which may produce neuromodulation. Therefore, for rTMS studies, sham blinding may 

always remain questionable.

Recent evidence-based guidelines were published by a European commission which 

reviewed clinical rTMS studies for several chronic disorders including chronic pain 

disorders, movement disorders, stroke, epilepsy, tinnitus, depression and anxiety disorders 

[31]. Their general conclusions included an absence of efficacy of low frequency rTMS 

protocols in all chronic pain disorders evaluated, and significant efficacy of high frequency, 
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excitatory, rTMS protocols in neuropathic pain and perhaps in some other chronic pain 

disorders studied. Specifically, they found evidence that 1) there is a suggestion that low 

frequency M1 rTMS contralateral to the side of pain is frequently ineffective in neuropathic 

pain, 2) there is a definite analgesic effect of high frequency M1 rTMS contralateral to the 

side of pain in chronic neuropathic pain, and 3) there is a suggested analgesic effect of M1 

rTMS contralateral to the affected side in CRPS. This guideline did not find enough high-

quality evidence to make any further evidence-based recommendations. At the time, they 

found a lack of high-quality evidence in non-neuropathic pain syndromes. The recent 

Cochrane review update was less charitable, finding the current evidence for a heterogenous 

small effect size favoring active high frequency M1 rTMS to be below the minimal level of 

clinical significance based on low quality evidence [7]. Factors that lowered the quality of 

evidence for clinical efficacy of high frequency M1 rTMS included suboptimal sham, small 

sample sizes in many studies, as well as suboptimal randomization and blinding procedures.

Recently published studies and clinical trials are more rigorous in design and have benefited 

from the past nearly 20 years of research. For example, a multi-center parallel RCT in 144 

patients with intractable chronic neuropathic pain compared a 4 week, 20 once-daily 

stimulation session intervention using high frequency rTMS of M1 to an optimal sham [32]. 

Despite finding no significant difference between sham and verum rTMS in their primary 

outcome (mean visual analogue scale decreases), patients enrolled in the verum continuous 

weekly follow-up maintained lower pain intensity ratings compared to those experiencing 

sham stimulation. It is notable that this trial used a relatively low dose (500 pulses) of M1 

rTMS, whereas more successful studies have used both higher frequency stimulation (20 Hz 

vs. 5 Hz) and a higher dose (2000 to 3000 pulses) [32]. Recently, a study has found verum 

neuronavigated M1 rTMS to be superior to sham or non-neuronavigated M1 rTMS 

consistent with clinical opinion in EMCS that accurate targeting of the painful somatotopic 

area of motor cortex is critical for clinically meaningful outcomes [33, 3]. Further 

supporting this contention is evidence reported by Shimizu and colleagues that conventional 

high frequency rTMS had no analgesic effect in patients with neuropathy of the lower limb, 

while 5 Hz M1 rTMS using a double cone coil capable of reaching the paracentral lobule 

was superior to both conventional and sham stimulation [34].

Non-invasive Brain Stimulation: Analysis of the analgesic effect of DLPFC-targeted rTMS 
in chronic pain patients and acute post-operative pain

High frequency rTMS of the left DLPFC is approved by the US Food and Drug 

Administration for the treatment of depression. and a recent study in patients with 

depression found that those depressives with widespread pain found rTMS of left DLPFC 

analgesic [35, 36]. More recently, studies of DLFPC rTMS have been conducted in chronic 

pain patients as well. These studies used high frequency rTMS targeting left DLPFC or low 

frequency rTMS targeted right DLPFC as an intervention [7]. Three studies from the same 

lab group have investigated high frequency left DLPFC rTMS to reduce post-surgical 

patient-controlled analgesia (PCA). While the first two studies found that treatment reduced 

use of PCA, the most recent study, with the largest number of subjects, found no effect of 

DLFPC rTMS on PCA use [37-39]. Additional studies have found analgesic and therapeutic 

effects of high frequency rTMS of left DLPFC in patients with central poststroke pain, 
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chronic widespread pain (CWP), burning mouth syndrome and fibromyalgia [40-46]. While 

five published studies in fibromyalgia and CWP show positive effects on pain, fatigue and 

physical functioning, no study show improvement in all three domains and all studies have 

been conducted in sample sizes of 7 to 12 per group, which significantly increases the risk of 

false positive results [47]. Overall there is limited, but promising evidence of the analgesic 

effects of high frequency rTMS of the left DLPFC in both neuropathic and non-neuropathic 

chronic pain syndromes. Given variability of effects of neuromodulation depending on 

accuracy of targeting and small effect sizes relative to investigation of all-or-none 

phenomena, larger sample sizes and better targeting should be goals for future studies.

Non-invasive Brain Stimulation: Analysis of the analgesic effect of rTMS of other cortical 
targets in chronic pain patients

In chronic pain patients the effects of cortical stimulation of targets alternate to M1 and 

DLPFC have been reported. Four of these studies reported high quality evidence supporting 

the analgesic effects of cortical neurostimulation, including the second somatosensory 

cortex, vertex, and dorsal anterior cingulate cortex (ACC) [48-50]. Another study, in a 

smaller group of migraine patients showed supporting evidence of 1 Hz rTMS to the vertex 

for the treatment of chronic migraine [49]. An important caveat of NIBS studies that aim to 

target locations deep to the cortical surface is that all neural structures between the scalp and 

the target receive at least as much stimulation as the target. Additionally, the scalp sensations 

and muscular contractions produced by deep rTMS are much more intense than those 

produced when aiming to stimulate the cortical surface. Tzabazis and colleagues applied H-

coil 10 Hz rTMS targeting the dorsal ACC and found superior analgesic effects in 

fibromyalgia patients when compared to sham stimulation, which were present on follow-up 

4 weeks after the intervention [50]. A recently published study used deep rTMS to target the 

posterior insula and anterior cingulate cortex (ACC) in an attempt to alleviate chronic central 

neuropathic pain after stroke or spinal cord injury [51]. This study compared the effects of 

deep rTMS of the ACC or insula to sham deep rTMS of either target in 98 patients suffering 

from central neuropathic pain in a protocol of 5 once-daily sessions followed by 11 once-

weekly stimulation sessions. Neuromodulation of neither target was superior to sham 

stimulation on measures of pain interference, pain dimensions, neuropathic pain symptoms, 

medication use or quality of life. However, ACC deep rTMS reduced anxiety symptoms 

during the 12-week treatment period whereas posterior insula rTMS reduced sensitivity to 

heat pain and warmth as indicated by elevated thresholds. Finally, since S2 plays a 

prominent role in pain processing, Lindholm and colleagues found that active high 

frequency S2 rTMS was superior to both M1/S1 stimulation and sham stimulation in 

alleviating neuropathic orofacial pain [48]. Future exploratory studies should seek to develop 

these novel cortical targets in order to optimize neurostimulation for long-term analgesia and 

larger studies are needed to replicate these results in order to support the analgesic action of 

non-invasive cortical neurostimulation.

Non-invasive Brain Stimulation: Analysis of the analgesic effect of M1-targeted tDCS in 
chronic pain patients

The exposure of neural tissue to electric fields set up by direct currents (DC) has been 

known for more than 50 years to produce long-term changes in the activity of neurons [52, 
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53]. The rediscovery of the potential clinical applications of this technique had to await the 

development of an objective way of measuring the effects of neuroplasticity in humans, 

namely development of the TMS coil to evoke motor-evoked potentials [54]. When neurons 

are exposed to a DC field, the area under the anodal electrode experiences a depolarization 

of the resting membrane potential and endogenous neural activity is increased in rate, 

ultimately augmenting the baseline excitability of that population of neurons [55, 56]. Under 

the cathodal electrode, the neural population experiences a hyperpolarization of the resting 

membrane potential and endogenous neural activity is decreased in rate, ultimately 

suppressing the baseline excitability of that population of neurons. This dichotomy of 

neuromodulatory responses is oversimplified for many reasons, including the variability of 

the geometry of in vivo neuronal elements such as axons, dendrites and cell bodies as well as 

the effects of past plasticity-inducing events [55, 57]. However, for our purposes the 

dichotomy of anodal tDCS enhancing cortical excitability and cathodal tDCS suppressing 

cortical excitability remains useful [54, 56].

From 2006 until 2017, 34 studies investigated the effects of M1 tDCS in chronic pain 

patients with various etiologies of chronic pain [7]. In a recently published set of guidelines 

commissioned by the European Chapter of the International Federation of Clinical 

Neurophysiology, an expert panel found enough supporting evidence to make a guideline 

recommendation for M1 anodal tDCS for neuropathic pain secondary to spinal cord injury 

and for fibromyalgia [6]. M1 anodal tDCS for neuropathic pain secondary to spinal cord 

injury, the expert commission found, is possibly effective. Further, the panel found sufficient 

evidence to support that M1 anodal tDCS is probably effective for treating pain in 

fibromyalgia as assessed by pain intensity reports and the fibromyalgia impact 

questionnaire. Six studies of pain alleviation from anodal M1 tDCS in fibromyalgia reported 

an analgesic effect when using at least five once-daily sessions of 1 or 2 mA delivered for 20 

minutes compared to sham. However, one study found no pain alleviating effect after 10 

consecutive once-daily 20 minutes sessions of 2 mA stimulation compared to sham [58-63]. 

Three studies have studied the effects of M1 anodal tDCS on PCA during postoperative 

recovery, either from total knee arthroplasty or lumbar spine surgery, and found pain to be 

less with active stimulation compared to sham and the total amount of drug during PCA to 

be lower in the post-surgery period [64-66]. The positive findings of analgesia mediated by 

anodal M1 tDCS in fibromyalgia and in post-operative pain provide strong preliminary 

evidence to support an analgesic effect superior to sham stimulation in both acute and 

chronic pain conditions. However, the evidence is not without limitations, and the size of the 

superiority effect of anodal tDCS over sham stimulation is often less than a ten or twenty 

percent reduction in patients’ self-reported pain intensity , which calls into question its 

clinical relevance [6].

Regarding neuropathic pain secondary to spinal cord injury (SCIP), three studies reported an 

analgesic effect, superior to sham, of at least one 20 minute session of 2 mA anodal M1 

tDCS, while three additional studies found no significant effect compared to sham 

stimulation [22, 67-70]. An additional three studies of neuropathic phantom limb pain found 

anodal M1 tDCS to be superior to sham in its analgesic effects [71-73]. One study of 

neuropathic radiculopathy found only a trend of an analgesic effect with M1 anodal tDCS. 

But notably, this tDCS effect correlated positively with the analgesic effects of high 
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frequency M1 rTMS [26]. The evidence for superior analgesic effects of anodal M1 tDCS 

compared to sham stimulation in neuropathic pain, particularly of peripheral origin is more 

consistent compared to other chronic pain disorders. However, the strongest evidence relies 

on relatively few trials with small sample sizes (n < 25 per group) and therefore more work 

is needed to substantiate the analgesic effects of anodal M1 tDCS in neuropathic pain 

syndromes [47, 74, 75, 6].

Non-invasive Brain Stimulation: Analysis of the analgesic effect of DLPFC-targeted tDCS in 
chronic pain patients

The use of tDCS of the DLPFC has only been reported using left sided stimulation [6]. 

Three of these studies assessed the effects of left DLPFC tDCS in fibromyalgia, one of 

which found that verum stimulation reduced experimental pain sensitivity and increased heat 

pain tolerance, while only one of the other two studies found significant analgesic effects of 

stimulation on clinical pain [59, 62, 76]. While one study of post-operative pain and PCA 

usage found reduced PCA usage after left DLPFC tDCS compared to sham stimulation, 

another study in patients recovering from lumbar spine surgery found no significant 

difference between verum DLPFC and sham stimulation [77, 78]. More recently, post-

surgical opioid use was found to be reduced more by left DLPFC than left M1 tDCS when 

applied at 2 mA in four 20-minute sessions after total knee arthroplasty [79].

Potential mechanisms of primary motor cortex neuromodulation for pain amelioration

M1 neuromodulation may affect multiple levels of the neuraxis to ameliorate pain. Motor 

cortex excitability is altered by acute and tonic noxious stimuli, and in chronic pain 

conditions including painful diabetic neuropathy, fibromyalgia and complex regional pain 

syndrome [80-87]. This modulation of cortical excitability by tonic or chronic nociceptive 

stimulation is remedied by pain alleviating neuromodulation [27, 88]. Among M1 

neuromodulation’s neurophysiological effects is the modulation of thalamic activity [89-91]. 

Studies in animal pain models demonstrated that EMCS decreased nociceptive driven neural 

activity and BOLD response in S1 [92, 93]. Additionally, high frequency M1 rTMS causes 

reorganization of the S1 somatotopic map and reduction in the amplitude of painful laser 

evoked potentials, while anodal tDCS reduces BOLD responses to painful stimuli [94-96, 

73, 97]. Together these findings suggest that S1 excitability is potentially mediated through 

M1 corticocortical pathways.

Research during the last two decades has begun to unravel the bidirectional influences 

between the function of the motor system and somatosensory system [80, 98]. Lasting 

plasticity in M1 and S1 can be evoked by repetitive patterned stimulation originating from 

corticocortical fibers arising in the opposite primary cortex (S1 to M1 as well as M1 to S1) 

both in humans and animal models [99-102]. Acute phasic cutaneous pain as well as tonic 

cutaneous and muscular pain suppresses motor cortex excitability in healthy subjects [80, 

82, 86, 103]. Motor cortex oscillatory activity shows enhanced coherence during acute 

phasic pain, while voluntary movement preparation suppresses subjective pain intensity and 

evoked potentials elicited by painful laser stimuli [104-106]. Acute prolonged tonic pain 

impairs retention of motor training without impairing performance improvements during 

acquisition [107]. Interestingly, TMS studies have shown decreased inhibition in the form of 
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reductions in cortical silent period (CSP) and short interval intracortical inhibition (SICI), 

GABAergic mediated measures in chronic pain syndromes such as complex regional pain 

syndrome and painful diabetic neuropathy, but also in fibromyalgia [27, 84, 85, 98, 108, 87, 

109]. Previous healthy subject studies have shown that moderate prolonged tonic pain 

mediated by capsaicin suppresses MEPs, while enhancing SICI and CSP for the 60 to 80 

minute duration of capsaicin mediated pain [82, 88, 110]. In fact, aberrant motor cortex 

excitability induced either by a prolonged tonic pain model in healthy subjects or by a 

chronic pain disorder in patients may be normalized by analgesic M1 neuromodulation [27, 

111, 88, 112].

Descending pain modulatory network involvement in motor cortex neuromodulation

A series of studies by the Lyon group found patients with implanted EMCS had increased 

brain activity as measured by PET in areas including pgACC, dACC, medial thalamus, and 

periaqueductal grey (PAG), which correlated with magnitude of pain alleviation as well as 

enhanced functional connectivity between pgACC and PAG after 30 to 45 minutes of EMCS 

[90, 113, 114]. Further studies by this group found evidence of enhanced endogenous opioid 

release in anterior midcingulate cortex (aMCC) and PAG in response to EMCS, and that 

prestimulation opioid receptor availability positively predicted magnitude of pain alleviation 

[115, 116]. This pattern of responses in the ACC, medial thalamus and PAG has been found 

by other groups using pain alleviative EMCS in humans, and replicated in animal models of 

neuropathic pain and in tonic pain ameliorated by M1 tDCS [89, 117-121, 97]. Studies in 

healthy subjects and chronic pain patients have found evidence that high frequency rTMS 

targeting M1 is in part mediated by opioid- and NMDA-dependent mechanisms as well as 

evidence of β-endorphin release [122-124, 63]. Studies in patients and healthy controls have 

found variable neural responses and pain amelioration effects after excitatory, anodal 

transcranial direct current stimulation (M1-anodal tDCS) and excitatory M1 rTMS. 

Additionally, while neurophysiological responses show no clear direction of modification 

across studies, there is evidence of response modulation in pain-associated regions including 

PAG, ACC, somatomotor cortex, anterior and posterior insula, S2 cortex, dorsal medulla, 

and basal ganglia structures [125-130, 97]. Related evidence from rTMS studies targeting 

DLPFC, which has been shown to reverse the effects of prolonged tonic pain on motor 

cortex excitability, demonstrate a naloxone-sensitive effect that reduces activity in pgACC 

and PAG [88, 123, 131]. Furthermore, recent evidence in healthy subjects undergoing 

[11C]carfentanil PET after high frequency rTMS of the somatomotor cortex found evidence 

of release of endogenous opiates in the ACC and medial prefrontal cortex ipsilateral to 

rTMS and in operculoinsular structures contralateral to rTMS [132].

Animal studies of EMCS have demonstrated naloxone-sensitive anti-nociceptive effects in 

acute and chronic pain models [92, 118, 119, 133, 134]. Studies in animal pain models have 

demonstrated that reduced nociceptive-related defensive responses associated with EMCS is 

accompanied by decreases in spontaneous or evoked neural activity related to nociception in 

the spinal dorsal horn (SDH), pontine reticular formation, PAG and parafascicular nucleus, 

the centromedian, ventroposterolateral and posterior nuclei of the thalamus, as well as the 

somatosensory and prefrontal cortex [92, 93, 118-120, 134, 1, 135]. Further, anti-nociceptive 

effects were associated with increased nociceptive and basal neural activity in the ACC, 
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basolateral and central nuclei of the amygdala, and PAG coupled with increased release of 

the inhibitory amino acids glycine and GABA in the PAG [118-120, 136]. The profile of 

neuronal activation by motor cortex stimulation in rodent studies supports the involvement 

of descending pain modulatory network, especially the ACC and PAG as well as modulation 

of SDH processing of noxious stimuli [119, 135].

Future promising directions in NIBS for chronic pain

In addition to the need for clinical trials with greater numbers of patients and better trial 

design, larger analgesic effects may be expected from alternative protocols using 

neuromodulatory methods as adjuncts to cognitive behavioral therapy or rehabilitation or 

from neuromodulation targeted to known neurophysiological abnormalities which 

accompany chronic pain. Recent studies have revealed important potential examples of 

alternative protocols and a novel method of neuromodulation. Increased attention from 

funding agencies such as the NIH, should spur future progress, particularly in response to 

RFAs from the BRAIN Initiative such as “Non-Invasive Neuromodulation - New Tools and 

Techniques for Spatiotemporal Precision (R01)" and “Non-Invasive Neuromodulation - 

Mechanisms and Dose/Response Relationships for Targeted CNS Effects (R01)."

Chronic pain conditions are accompanied by alterations in cortical excitability, but these 

alterations are thought to be caused by loss of inhibitory drive from the thalamus. The result 

is a phenomenon known as thalamocortical dysrhythmia (TCD) [137, 138]. The result of 

TCD is the well-known cortical reorganization that accompanies chronic pain as well as the 

lesser known reduction in alpha EEG power, oscillations in the 8 to 12 Hz range and 

enhancement of theta power [139-142]. Recent studies have shown this shift in peak alpha to 

occur not only in chronic pain patients, but to occur in response to tonic pain models and 

peak alpha to be predictive of individual sensitivity to such tonic pain models [142, 143]. 

Transcranial alternating current stimulation (tACS) at alpha frequencies, such as 10 Hz, at 

intensities like tDCS allows entrainment of cortical oscillations [144]. Recent studies have 

shown alpha tACS induced an increase in alpha EEG in chronic low back pain patients 

which was correlated and accompanied by a reduction in pain intensity [145]. In healthy 

subjects, evoked pain was reduced by alpha tACS only when the stimulus was of an 

uncertain intensity, perhaps reflecting enhanced threat or anxiety [4].

Several studies have evaluated the effects of NIBS combined with other therapies such 

mirror therapy for phantom limb pain, aerobic exercise for fibromyalgia and peripheral 

electrical stimulation for chronic low back pain [146, 147, 73]. Finding the optimal 

combinations of NIBS and complementary or traditional pain therapies will take several 

elaborate and sophisticated RCTs.

While electrical stimulation of the brain is a logical extension of the electrical properties of 

nervous tissue, recently it has been reported that transcranial ultrasound at sub-lesional 

intensities can lead to the modulation of neurons in both animal models as well as humans 

[5]. Low intensity transcranial ultrasound (TUS) has shown promising analgesic effects and 

improvement of mood in chronic pain patients [148]. No additional studies have reported 

effects of low intensity TUS in chronic pain populations.
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Conclusion

The last 5 years of research activity on noninvasive brain stimulation (NIBS) has yielded 

promising results in the treatment of chronic pain. Studies investigating the potential 

mechanisms underlying the analgesic effects of NIBS has shown that both endogenous 

opioid releasing regions of the brain and modifications of somatomotor plasticity that 

accompany chronic pain syndromes are involved in the initial and lasting analgesic actions 

of NIBS. An exciting decade lays ahead where novel stimulation methods and modalities 

such as tACS and TUS should be expected to contribute more flexibility to the NIBS 

armamentarium. Future improvements in clinical trial protocols for devices, conduct and 

reporting will be necessary to further refine the precision of trial results and interpretation. 

Increased support and attention from funding agencies such as the NIH would encourage 

larger and more mechanism driven clinical trials. Much work remains, but recent 

developments inspire more interest in the field of NIBS for chronic pain.
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Figure. 
In dark grey, R-type grants mentioning rTMS in the public abstract. In light grey, R grants 

mentioning tDCS in the public abstract.
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