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Abstract

Introduction: In the last two decades, the evidence related to using vaccine patches with multiple 

short projections (≤ 1 mm) to deliver vaccines through the skin increased significantly and 

demonstrated their potential as an innovative delivery platform.

Areas covered: We review the vaccine patch literature published in English as of March 1, 

2019, as well as available information from key stakeholders related to vaccine patches as a 

platform. We identify key research topics related to basic and translational science on skin 

physical properties and immunobiology, patch development, and vaccine manufacturing.

Expert opinion: Currently, vaccine patch developers continue to address some basic science and 

other platform issues in the context of developing a potential vaccine patch presentation for an 

existing or new vaccine. Additional clinical data and manufacturing experience could shift the 

balance toward incentivizing existing vaccine manufactures to further explore the use vaccine 

patches to deliver their products. Incentives for innovation of vaccine patches differ for developed 

and developing countries, which will necessitate different strategies (e.g., public-private 

partnerships, push or pull mechanisms) to support the basic and applied research needed to ensure 

a strong evidence base and to overcome translational barriers for vaccine patches as a delivery 

platform.
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1. Introduction

The history of vaccine development includes exploration of vaccine delivery to humans 

through all possible routes of entry into the body using a wide range of strategies [1]. The 
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earliest vaccination technique involved applying virus particles directly to disrupted skin 

(i.e., variolation with smallpox). Currently, although a limited number of licensed oral 

vaccines (e.g., oral poliovirus vaccine, oral rotavirus vaccine) and aerosol vaccines (e.g., 

FluMist™) exist [2], the use of syringe and needle that carries the vaccine through the skin 

barrier represents the dominant current vaccine delivery strategy. Delivery of vaccines by 

syringe and needle is generally well-accepted by vaccine recipients, even though they may 

experience some fear (i.e., needle phobia), pain associated with receiving injections, and/or 

in rare instances of injuries, such as shoulder injuries related to syringe and needle vaccine 

administration [3] or adverse events from lyophilized vaccine reconstitution errors. Health 

systems also broadly accept syringe and needle delivery of vaccines and benefit from the 

interchangeability and stability of a supply chain supported by multiple suppliers. However, 

syringe and needle vaccine delivery require the use of trained, skilled healthcare workers to 

administer the vaccines, and even with sufficient training these workers face risks of needle-

related occupational injuries. In addition, the disposal of used syringes and needles leads to 

system costs and risks.

The evaluation of delivering vaccines into different skin strata and underlying tissues dates 

back at least to the 1930s [4]. Vaccine administration can occur via injection into a muscle 

(i.e., intramuscular [IM]), the dermis (i.e., intradermal [ID]), the hypodermis (i.e., 

subcutaneous [SC]), or onto the epidermis (i.e., topical or transcutaneous) [1]. Given the size 

of the molecules in vaccines and the need to deliver them past immunological skin defenses 

in the epidermis, most vaccine injection occurs either into the IM or SC layer, with the 

recommended needle size varying by vaccine recipient age and body mass, injection site, 

and target. Some ID vaccine delivery into the relatively shallow dermis use needles and 

require training for proper vaccine administration (e.g., BCG, and historically, smallpox, 

which used a bifurcated needle that left a signature scar). A comprehensive review of the 

literature shows mixed success with the use of jet injector devices for ID delivery, with 

multiple studies suggesting effective use, but some reporting issues with cross-

contamination [1]. More recent disposable-syringe jet injectors with sophisticated 

applicators avoid some of risks of cross-contamination and offer a needle-free immunization 

opportunity [5–8].

Transcutaneous immunization (TCI) involves the application of vaccine antigen (sometimes 

in the presence of an adjuvant) directly to the skin [9]. Some TCI methods involve direct 

application of liquid or dry vaccine to intact skin, and sometimes using a hydrated patch 

which disrupts the stratum corneum. Other TCI methods apply a vaccine antigen prior to or 

following disruption of the stratum corneum by scraping, electroporation, nonablative 

fractional laser (NAFL), or another mechanism that allows the antigens in a vaccine applied 

topically to the skin to pass into the epidermis. Some TCI methods include covering the skin 

coated with vaccine with a patch that occludes the area for some time. Despite extensive 

investment in the development of TCI dating back to 2000 [10], the technique showed 

inferiority in human clinical trials, including a phase 3 trial for an Enterotoxigenic 

Escherichia coli traveler’s diarrhea vaccine [11], a phase 1/2 trial for measles vaccine [12], 

and a graded phase 1 trial for influenza vaccine [13]. The history of successes and failures of 

alternative vaccine delivery systems generally offer some important lessons for the 

development of vaccine patches, which fall beyond the scope of this review.
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In the last two decades, new materials and technologies explored the use of micron-sized (≤1 

mm) projections arranged as an array or matrix that can deliver vaccine past the stratum 

corneum, but not typically beyond the dermis. As the evidence base for this new vaccine 

patch technology continues to expand, we appreciate the need to review the literature to 

understand the current status of and challenges to development of vaccine patches as a 

delivery platform. For this review, we define a vaccine patch as a product that applies a 

vaccine antigen (with or without adjuvants) using a single array or matrix of projections less 

than 1 mm in height applied directly to the skin. Thus, our definition of a vaccine patch 

requires skin penetration by a submillimeter projection array (i.e., it goes beyond a singled, 

bored ID hollow needle). The focus of our systematic review differs from other reviews of 

related topics that focused specifically on TCI [9], ID vaccine delivery [14], microneedles 

[15–17], dissolvable microneedles [18], clinical trials for non-invasive vaccine delivery [2], 

low- and middle-income country markets [19,20], or other topics. We note that parallel 

development of patches to deliver other therapeutic agents also impacts this technology (e.g., 

by potentially establishing design, fabrication, manufacturing, and/or regulatory precedents), 

but for purposes of this review we focus on the platform issues related to human vaccines. 

We evaluated the literature to date and identified unresolved platform research issues that 

would benefit from coordinated research funding and activities, including basic research 

related to immunology and skin characteristics, and applied research related to production, 

licensing, and acceptability.

2. Conceptual Framework

The pathway to develop a successful vaccine patch, like other therapeutic agents, involves 

multiple stakeholders and includes many stages to get from the concept to a licensed 

product. Figure 1 depicts key stages for vaccine patch development in the US regulatory 

context [21] for an existing licensed vaccine product, and it shows the anticipated intensity 

of efforts for three key workstreams by: (1) immunobiologists and other basic scientists, (2) 

patch developers, and (3) vaccine manufacturers required to converge to develop a single 

vaccine patch product. Figure 1 highlights the unique challenge in vaccine patch 

commercialization in that a technology handoff is currently required between patch 

developers and vaccine manufacturers mid-cycle of the commercialization path. This differs 

from the development of incremental improvements of existing vaccines (e.g., dose sparing 

using adjuvants, reformulation, etc.) or improvements in patch fabrication technologies in 

which the development cycle is largely driven by one or the other industry. Furthermore, 

recognizing vaccine patches as a generalizable pharmaceutical platform leads to appreciation 

that some of the early research and development in the process of developing one vaccine 

patch (i.e., for a specific antigen) will likely influence the entire platform. For vaccine patch 

development, the following sections provide a systematic review of the literature to date and 

then discusses key platform concepts across the three streams of work in Figure 1 that need 

to converge to see the realization of vaccine patches in the market.

3. Systematic Literature Review

We performed a systematic literature review by searching Web of Science and PubMed for 

papers published in English prior to March 1, 2019 that included a combination of the terms: 
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“vaccine” and “patch” or “microneedle.” The review process included screening the titles 

and abstracts of the search results to create a database of all studies that explored the 

development of vaccine patches for one or more specific vaccines. The review process 

included the extraction of information about the patch developer, the vaccine(s), and 

characteristics of the vaccine patch. We reviewed the full text for any papers that lacked 

enough information in the abstract. The search included the identification of prior reviews, 

and the review process included any relevant studies not captured in our search that we 

identified in the references of these reviews or in the references of the papers identified by 

our search. We included papers that reported the results of pre-clinical or clinical testing of 

vaccine patches for identified pathogens. We excluded studies that described experiments for 

non-specific genetic materials (DNA, RNA, plasmids), proteins (ovalbumin [OVA]), or other 

materials (non-specific laboratory bacterium or virus strains or components). Although these 

studies may provide generic information relevant to vaccine patches, we wanted to 

characterize the state of the literature specific to vaccines that target identified human 

pathogens. We excluded all studies not relevant to the review, and we report the numbers of 

excluded studies according to broad exclusion categories. We recognize that synergistic 

innovation in the use of patch technology for general pharmaceutical product delivery (non-

vaccine products) may help to stimulate vaccine patch development and adoption over time 

[15], but we do not include consideration of this in our review. For the included studies, we 

extracted the specific vaccine used and its status as licensed or experimental, the group that 

conducted the study, the nature of the vaccine patch (i.e., height, number, and arrangement 

of projections, and whether the projections were coated with the vaccine, dissolving (and 

containing the vaccine), or hollow (such that the vaccine flowed through them), the species 

used for the tests, and the method of patch application and time applied to the skin (i.e., wear 

times).

Figure 2 provides a summary of the systematic literature review search process that led to 

the extraction of information from 116 studies [22–137]. Our review overlapped some with 

prior reviews (e.g. compared to the 2016 review by Marshall et al. [17], our 116 studies 

included 46 of the same studies ([22–26,29–37,42–49,51,53,54,56,62–

65,83,85,86,99,100,103,108,109,113,115,116,121,123,126,127]) but we excluded TCI 

studies that it included (e.g., [138]).

Table 1 summarizes some key characteristics of included studies. Studies involving coated 

(N=69) and dissolving (N=39) projections dominate. The literature continues to increase 

with time, with half of the studies (N=64) published in the last 5 years. Multiple patch 

developers contributed to the literature, but 2 groups contributed the majority of the studies 

(i.e., Georgia Institute of Technology/Emory University/Micron (N=57) and Queensland 

University/Vaxxas/Nanopatch (N=14)). We identified 31 human vaccines with studies by at 

least one vaccine patch developer, more than 4 papers for some vaccines, and the same 

relatively small number of patch developer groups reporting on the use of essentially the 

same (albeit evolving) technology for more than one vaccine. With nearly half of the studies 

(N=68) focused on influenza, the use of a vaccine patch presentation for the delivery of 

influenza vaccine appears likely to lead the vaccine platform as the first product to progress 

through late-stage development and potential licensure as a product. Most studies reported 

pre-clinical results of tests using experimental animals. The potential opportunity to save on 
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antigen costs using vaccine patches to offset other costs of their development represents a 

key consideration for some studies. As shown in Table 1, 44 of the 116 studies (38%) 

demonstrated or suggested the potential for dose sparing with the use of vaccine patches 

compared to syringe and needle, while 6 studies looked for but did not find evidence of dose 

sparing.

Table 2 provides some of the details extracted from the 116 included studies organized by 

patch developer groups with the most-to-least studies. As reflected in the number of studies 

identified, the review shows 2 predominant strategies emerging: dissolving microneedles of 

approximately 0.5–0.7 mm in height, and coated microneedles of approximately 0.1–0.3 mm 

height. The review also shows a wide range of administration approaches, applicators (if 

used), and times of application. Some patch designs without an applicator include a built-in 

force feedback indicator to give audible or visible cues for the vaccine administrator. The 

design of applicators (if used) reflects different factors considered by patch developers to 

date related to the expected immunological performance of the projections and/or other 

factors (e.g., requirements for consistent delivery, requirements of the products to prevent 

choking for small objects). The use of different species in part reflects the appropriateness of 

different animal models for various vaccines; ideally the optimal animal model for each 

antigen is used that allows for a measurable immune response as a proxy indicator for the 

induction of immunity in humans using vaccine patches. As noted by others, the relatively 

small number of human studies for vaccine patches limits the opportunities to advance 

vaccine patch technology and get it into clinical practice [17,139].

Our review of the vaccine patch literature summarized the published information regarding 

the characteristics of human skin and strategies to induce immunity in the human skin 

needed to support the development of vaccine patches. The next section provides a brief 

review of the key concepts of the microscopic anatomy of normal human skin, which 

provides context relevant to the depth of vaccine patch projection penetration and the state of 

the evidence of skin immunobiology, and then discusses key platform concepts related to 

inducing immunity through the skin.

4. Key platform concepts and issues related to skin characteristics and 

inducing immunity

As the largest and most accessible of all body organs, extensive studies of skin date back 

centuries. Physical properties of skin vary as a function of body site, gender, race/ethnicity, 

environmental exposure (e.g., the sun) and age, and selective studies are required to address 

the pathobiology of skin in various systemic conditions that specifically affect the skin such 

as systemic sclerosis, sun damage, and inflammatory dermatoses. Changes in physical 

properties of skin as a function of other environmental parameters such as hydration and 

temperature, physical conditioning (e.g., shaving or alcohol sterilization), or injury remain 

less well-studied. Although discussion of the vast literature on the cellular, molecular, and 

tissue biology of the human skin falls beyond the scope of this review, we provide a high-

level discussion of microanatomy and antigen presentation in the human skin to introduce 

key cellular constituents of the skin immune system and their anatomy relevant to the 
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development of vaccine patches. We go into sufficient detail in this section to address key 

gaps in basic sciences that have emerged as a consequence of recent advances in vaccine 

patch development. A recent review highlights an urgent need for technical consistency 

across models and platforms used by vaccine patch developers [140]. Meaningful 

comparisons will help to promote successful development, testing, and commercialization of 

vaccine patches in human skin.

Skin Variability as a Function of Age and Body Site

The available evidence provides limited information about the nature of physiological and 

structural changes in skin as a function of age. Some studies show measurable differences in 

human skin morphology as a function of age [141,142], but an in vivo study reported no 

significant functional or physiological differences in the skin barrier function [143]. 

Uncertainty remains about the extent to which observed morphological changes result in 

equivalent changes in physical properties and/or physiological functions of the skin in 

various sites. On average, most body sites studies show an epidermal thickness of 

approximately 60 microns, except for the forehead with an epidermal thickness between 75 

and 80 microns.

Several studies that focused on the dermal thickness as a function of age, gender, body site 

and/or body mass index (BMI) showed some general differences across multiple categories, 

including subcutaneous fat as a function of gender and body site [144–147]. A study of the 

epidermal thickness in multiple sites in the body using Reflectance Confocal Microscopy 

showed variation between sites in the thickness of stratum corneum, granular layer, and 

papillary length, but they also noted the presence of a “striking variation at any one body site 

for a single individual” [148], representing 50–74% of total morphological variation 

measured at any given body site. Despite these studies, insufficient evidence exists for the 

pediatric and elderly (i.e., ≥65 years) age groups to characterize skin structure and 

physiology as a function of age across the full CDC-recommended vaccination schedule to 

make definitive conclusions about individual vaccines, and the existing studies do not 

provide sufficient cellular, functional, or physiological data.

Microscopic Anatomy of Normal Human Skin

The microscopic anatomy of normal human skin is commonly described in the form of 

several flat structural layers that in combination form an “integument” at the interface of the 

body and the outside environment. Starting from the outside, these include the keratin layer 

(also known as stratum corneum), epidermis, papillary dermis, reticular dermis, and subcutis 

(also known as hypodermis). At the physical scale and biological scope of vaccine patch 

development, the epidermis, papillary dermis, and reticular dermis represent the three most 

relevant subsystems of the human skin.

Figure 3 shows a histological preparation of excised human skin with micron-level 

resolution that reveal specific cells and compartments by general morphology and selective 

immunostaining. The staining technique in Panel A shows keratinocytes as the majority of 

cells visible, but intraepithelial lymphocytes and other cell types (e.g., Langerhans cells 

[LCs]) are not specifically identifiable. The dense collagen bundles seen as broad 
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eosinophilic clumps at the bottom of the image characterize the reticular dermis, and the 

more delicate region of connective tissue between the reticular dermis and the epidermis is 

the papillary dermis, which shows multiple vascular structures, including capillaries (arrows) 

and lymphatics (arrowheads). The image does not provide sufficient information or detail to 

identify specific other cell types or structures (e.g., small nerves). Panel B shows 

immunostaining of an adjacent section, in which brown pigment shows on the surface of 

cells that express CD1a. Stained cells include intraepithelial LCs (arrowheads). CD1a-

positive cells in the dermis (arrows) are also antigen presenting cells, but CD1a does not 

have sufficient specificity in the dermis to distinguish circulating LCs from other dermal 

antigen presenting cells (APCs). Morphological studies combined with selective 

immunohistochemistry and related techniques have the ability to characterize skin 

constituents with increasing sophistication. Although detailed catalogues of normal human 

skin as a function of age, gender and other variable are not generally available, various 

compositive pictures can be developed by combining data across multiple studies and 

techniques, some of which are described in more detail below.

Immunobiology of the Normal Human Skin

As suggested in Figure 3, normal human skin harbors a variety of APCs, the majority of 

which belong to the general category of conventional dendritic cells (DCs). Skin DCs show 

extensive immunophenotypic diversity relevant to both health and disease, but their 

subclassification into epidermal DCs, also known as LCs, and dermal DCs (DDC) serves as 

a useful high-level subdivision [149]. LCs, reviewed in detail by others [150,151], are 

resident epidermal APCs responsible for T-cell priming to antigens encountered in the 

epidermis. The ability of LCs to migrate to regional lymph nodes where classical T-cell 

priming takes place facilitates their significant immunological function. Although LCs and 

DDCs share many morphological and functional similarities, LCs also share many 

similarities with macrophages, and may behave as resident tissue macrophages with the 

ability for local self-renewal, as opposed to conventional DCs that derive from 

hematopoietic stem cells [150]. Immunophenotypically, human LCs express high levels of 

CD1a, which is an MHC-related membrane protein involved in the presentation of lipid 

antigens [151]. An endosomal protein called CD207/Langerin also expresses at high levels 

in humans and is a constituent of Birbeck granules, which may play a role in the 

internalization of viruses [152].

Kashem et al. [151] offer a catalogue of human LCs immunophenotypes, although detailed 

pathobiology remains an active area of investigation. Dermal APCs include a highly 

heterogenous population of cells [149–151,153] with at least 4 different subgroups 

recognized in humans [151]. First and the most prevalent of the DDCs in human skin, CD1c

+ conventional DCs are classically involved in Th2 cell differentiation and immunity against 

parasites and helminths. CD1c+ DDCs migrate to regional lymph nodes and generally co-

localize with resident lymph node DCs in proximity to the sinus endothelium of paracortex. 

Second, CD141+ DDCs are a minor population of conventional DCs thought to induce Th1 

and cytotoxic T lymphocytes in response to a variety of antigens, including fungi, 

intracellular pathogens, and tumor antigens. CD207/Langerin is expressed in mouse 

homologs of CD141+ DDCs, creating a complex picture involving CD1c+ DDCs that may 
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also express Langerin, and migrating LCs also express Langerin. CD141+ DDCs turn over at 

a high rate and migrate rapidly into the deep T cell zone of regional lymph nodes. Third, 

plasmacytoid DCs (pDCs) circulate throughout the body and can be found in human skin 

under inflammatory conditions. Morphologically, pDCs resemble plasma cells and lack 

dendritic extensions typical of LCs and other DDCs. Finally, monocyte-derived 

macrophages represent the last known category of dermal APCs in human skin. Dermal 

macrophages are well adapted for phagocytosis but are inferior to DDCs in antigen 

presentation to T cells. Despite the wealth of evidence, as summarized in Table 3, 

uncertainty (or possibility biological variability) remains about some of the markers of 

human immunophenotypes for some APCs in some parts of the skin relevant to vaccine 

patches. In addition, testing of vaccine patches in animals must consider the different sets of 

immunophenotypes relevant to those species and locations (e.g., comparison of mice to 

humans [9], and choose appropriate animal models for human vaccine-preventable diseases 

[81,113,154]).

In addition to normal APCs in the human skin, the role of the disruption of the physical 

barrier in triggering of an immune response represents a key consideration in vaccine patch 

immunobiology. As immune sentinels, keratinocytes can sense physical injury (e.g., 

abrasion, puncture wounds) induced by micron-sized projections and produce pro-

inflammatory cytokines that in turn activate DDCs [153,155]. Similarly, dermal fibroblasts 

and other dermal components can activate various components of the immune system in 

response to puncture or other forms of physical trauma. Review of the existing literature 

demonstrates that the application of vaccine patches can induce an inflammatory response, 

as evidenced by skin erythema and other macroscopic inflammatory changes [68,156]. 

However, the extent and pattern of local immune system activation secondary to vaccine 

patch application and its role in inducing immunity remains a topic in need of further study. 

Of note, one of the 2 leading vaccine patch development groups (i.e., Queensland/Vaxxas/

Nanopatch) uses very dense arrays of coated and relatively short projections intended to kill 

epidermal cells while depositing the vaccine, because the immunogenic signals that are 

released from impacted cells may help with dose sparing [96,157].

Non-Invasive Skin Imaging

As shown above, ex vivo microscopy in the form of conventional histology, or in various 

other forms such as immunofluorescence or electron microscopy, represents the gold 

standard for cellular and subcellular study of the human skin. However, ex vivo microscopy 

is an invasive procedure requiring tissue removal, often in the form of a skin punch or 

excisional biopsy. Although skin biopsy represents a minor medical procedure, healthy 

human volunteers, especially in the pediatric age group, do not commonly undergo biopsy 

for purely investigational purposes. Post-mortem studies at the time of an autopsy offer a 

more practical option for baseline human studies, but post-mortem changes add 

complications, which depend on the typically not-controlled post-mortem time interval and 

co-morbid conditions that often served as the primary reason for medical autopsies. Forensic 

autopsies for accidental death can potentially overcome some of these limitations, but 

baseline studies in forensic autopsies are rarely performed. Because of these limitations, 

many recent dermal vaccine and vaccine patch studies rely on non-invasive imaging by high 
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resolution ultrasound or in vivo optical technologies. Many studies used high-frequency 

ultrasound scanners of 10–50 MHz to image skin because they offer a reasonable tradeoff 

between axial resolution and penetration depth [144,145,158]. However, ultrasound devices 

generally prove inferior to optical methods in measuring submillimeter structures that may 

be necessary for detailed characterization of cellular and/or microvascular morphology in the 

submillimeter penetration depth, which is the relevant scale for vaccine patch applications. 

Ultrahigh frequency ultrasounds (70–100 MHz) can counter this limitation, but they are 

rarely used in skin measurements. In addition, ultrahigh frequency ultrasound methods 

typically lose some of the benefits of general ultrasound techniques, such as deeper 

penetration depth. In one comparative study involving ultrahigh frequency ultrasound and 

optical coherence tomography (OCT), the optical method showed better axial resolution than 

100 MHz ultrasound (5.5 μm and 16 μm, respectively), while both had limited penetration 

depth in the range of approximately 1 mm [158]. More generally, OCT gave better lateral 

resolution, while ultrasound provided better contrast of the lesion to surrounding tissue 

[158].

The inability to include multiplex investigations such as immunophenotyping for cellular or 

subcellular studies represents a limitation of in vivo imaging technologies. However, in vivo 
imaging methods provide a significant opportunity for live cell and/or dynamic studies, 

which is difficult in animal models and virtually impossible in humans with invasive skin 

biopsies. Bachy et al. present a highly informative animal study of the dynamics of immune 

system activation by live adenovirus microneedle arrays that sheds light on the 

immunobiology of the system and provides a nice animal model for in vivo imaging of 

microneedle dissolution dynamics and skin repair [159]. In a separate study, Liu et al. used 

OCT to successfully characterize dynamics of the controlled release of dissolving silk 

microneedles in mice [160]. Unfortunately, the various methodologies developed in animal 

studies do not immediately apply in human subjects without limitation or further 

development. Bal et al. used an in vivo confocal microscopy technique to study the 

dynamics of a fluorescent dye tracer through conduits produced by microneedles of similar 

length but with various shapes in a small group of adult volunteers [161]. They observed that 

microneedle geometry, but not the manner of application affected the shape and depth of the 

conduits and the penetration of the fluorescent dye. Using a comparable imaging strategy of 

multiphoton microscopy, Wei et al. characterized the diffusion of rhodamine-conjugated 

dextrans applied to excised human skin through microneedle arrays [162]. As such, they 

successfully characterized the rate of dissipation of dextran macromolecules as a function of 

molecular weight at the imaged skin layers. Although more limited in nature than the animal 

imaging studies, human subject studies that combine in vivo imaging with dynamic 

biochemical or cellular studies are increasingly needed to better characterize the interaction 

between various vaccine patches and the human subjects.

Multiple research groups used other imaging modalities such as scanning electron 

microscopy (SEM) and fluorescence microscopy in a variety of circumstances 

[31,92,159,161–166]. These invasive techniques offer super-high resolution, generally for 

static and morphologically well-defined objects such as the projections of the vaccine patch, 

but they appear to provide limited value in dynamic, large scale or in vivo studies.

Badizadegan et al. Page 9

Expert Rev Vaccines. Author manuscript; available in PMC 2021 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4 provides a high-level view of some of the physical issues and imaging constraints 

described here. Panels A-D show shows the representative performance of four imaging 

technologies in the context of typical vaccine patch projections, which are depicted in Panel 

E. Panel A shows a hematoxylin and eosin stained section of paraffin-embedded human skin 

showing the relative proportions of keratin, epidermis, papillary dermis, reticular dermis and 

subcutaneous adipose tissue (hypodermis), respectively. (For ease of reference, these layers 

are highlighted in the right-hand side of Panel A using pseudocolors of red, pink, blue, no 

color, and yellow, respectively.) The scale bar represents the 1 mm scale across all panels, 

corresponding to the cut off used for needle size in this review. Panel B (adapted from [145] 

and redrawn to scale) represents the high frequency ultrasound (40 MHz) methodology 

commonly used to assess skin thickness in various body sites. Although the epidermis, 

dermis, and subcutaneous layers are generally discernable, the image shows insufficient 

resolution to assess structural details within each layer, particularly at the scale relevant to 

vaccine patches. Panel C (adapted from supplementary data in [167] and redrawn to scale) 

shows increased morphological detail in the dermis and superficial subcutaneous tissue by 

ultrasound imaging at ultrahigh frequencies (70 MHz shown). The increased resolution at 

higher frequencies generally comes at the expense of shallower penetration depth for 

comparable probes, as seen by the relative loss of signal below the dermis compared to Panel 

B. At frequencies approaching 100 MHz (not shown), ultrasound and optical imaging 

technologies reach comparable resolution at the superficial layers of the skin [158]. Panel D 

(adapted from [168] and redrawn to scale) shows simultaneous dual-band line-field confocal 

OCT. Unlike typical ultrasound images, this high-resolution OCT image provides significant 

cellular detail at the level of epidermis and superficial papillary dermis (inset), but the 

penetration depth is not sufficient for full thickness imaging of the entire dermis. Panel E 

facilitates comparison of the images in Panels A-D by redrawing to scale a single dissolving 

microneedle (adapted from [64] on the left) and a single projection of a coated nanopatch 

(adapted from [92] on the right). The black rectangle drawn at the base of the needle 

corresponds to the position of the corresponding patch inner surface.

5. Key platform concepts and issues for patch developers

Over the course of the last 15 years, vaccine patch developers explored and addressed 

numerous concepts related to the fabrication and design of the vaccine patches, which 

supported the 116 published studies identified in section 3 of our review (with multiple 

published reviews of different fabrication and design approaches, including [15,169,170]). 

Based on our review of the literature and discussions with key stakeholders, this section 

discusses key platform issues that we identified for patch developers.

To become viable commercial products, innovative vaccine patches will need to prove safe 

and effective, and meet non-inferiority criteria when compared to any existing vaccines. 

Several recent reviews and studies [18,20,139,171] identified key issues that influence 

design choices made by patch developers. These reviews highlight opportunities to identify 

desirable product attributes and to develop target product profiles as a means for potential 

users to provide guidance about their preferences for different product attributes. The ideal 

site placement and duration of wear for vaccine patches will influence their initial design 

and guide their subsequent redesign ahead of clinical deployment. Research that identifies 
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the optimal delivery sites for each product with respect to the induction of immunity and 

acceptability by vaccine recipients could reduce the need for testing each product by guiding 

development and potentially offering some standardization across the platform. In the 

absence of platform-related guidance, vaccine patch developers and other researchers 

continue to demonstrate safety and acceptability of their designs [68,94,156,172–175], with 

published literature reviews of acceptability studies now available [20,176]. In addition to 

recommendations related to ideal vaccine patch site placement, guidance related to vaccine 

patch delivery that would help across the platform includes recommendations related to wear 

time duration, characterization of recipient tolerance of vaccine patch application force by 

age and body site, skin site preparation needs (e.g., hair removal, cleaning, etc., which must 

not neutralize live vaccines or react with any components and should be consistent with the 

design of any clinical trials performed), post-application site care (if needed), and 

requirements related to the ability to confirm successful delivery (i.e., at the time of injection 

and/or long-term). The innovation of potential long-term recording of vaccine delivery [177] 

could add costs and affect acceptability (e.g., positively by helping health systems and 

individuals track their immunity status and/or negatively by leaving permanent markers that 

individuals may not want). Additional guidance, including development of international 

consensus guidelines and standards as appropriate, necessary, and/or useful [20,140], would 

also help individual vaccine patch developers prioritize their designs to achieve required or 

desirable attributes, and allow for trade-offs on product attributes that matter less. For 

example, vaccine patches could be designed to offer increased efficacy, increased 

thermostability, eliminate the need for reconstitution, make vaccine delivery easier, require 

less training, reduce or eliminate sharps, decrease medical waste, offer single-use and single-

dose administration, reduce vaccine wastage, reduce or eliminate the pain and risks of 

injections, save costs, etc., if any such requirements were known a priori and included in the 

initial design and fabrication. The ideal target product profile may vary for developed and 

developing countries and/or for different vaccines [20,139], and any such differences could 

also be recognized and incorporated early in the development stage. The World Health 

Organization (WHO) recently published an example of a target product profile for measles-

rubella (MR) combination vaccine [178]. Current research on patch delivery for other 

pharmaceutical products (i.e., non-vaccine) may provide information relevant to the vaccine 

patch platform, particularly for products that target healthy children and adults.

Vaccine patches will require high-quality, cost-effective, and reliable processing under good 

manufacturing practice (GMP) conditions. Vaccines are highly-regulated given their use in 

healthy children, which will imply significant investments of regulatory compliance costs. In 

addition, significant uncertainty remains about the need for sterile vs. low bioburden 

production, and the processes regulatory authorities will find acceptable [20,139,140,179]. 

Low bioburden production means not requiring sterility for vaccine patches (due to their 

administration of vaccine to non-sterile skin) but would limit any organisms in the final 

product to very low levels. Low bioburden production would save significantly on 

production costs, because sterile production processes require isolators and other costly 

equipment. Production and design choices will determine the cost of vaccine patches, and 

thus the cost premium relative to existing syringe and needle or other presentations for 

existing vaccines.

Badizadegan et al. Page 11

Expert Rev Vaccines. Author manuscript; available in PMC 2021 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Developing low-cost, scalable, and reliable designs for manufacturing of vaccine patches 

currently represents a translational hurdle [20]. Developing mass production processes 

typically occurs in the context of proprietary activities by companies who will need to make 

significant financial investments that they will need to be convinced that they can recover 

[139]. Lessons learned and technology transfer from the commercial development and large-

scale production of non-vaccine patch products may help to support some vaccine patch 

development. For effective and timely clinical translation, vaccine patch developers will 

need to partner with vaccine manufacturers or decide to become vaccine manufacturers 

themselves, for example by purchasing a vaccine manufacturer to ultimately deliver a 

licensed product. We emphasize that the process for patch developers to become a vaccine 

manufacturer de novo would take many years under current regulatory pathways.

6. Key platform concepts and issues for vaccine manufacturers

The research laboratory processes used by vaccine patch developers to create the patches 

they use for clinical trials will influence the starting point for vaccine manufacturers as they 

evaluate the potential for mass production. Mass production of vaccine patches will also 

require overcoming significant design challenges related to operating at scale, including the 

need to perform inline inspection and quality control (QC) testing, establish and maintain 

environmental controls (temperature and humidity), and manage the logistics of chemistry, 

manufacturing, and control (CMC) processes. A recent review highlighted the absence of 

standardized techniques and equipment used by patch developers to demonstrate mechanical 

properties of vaccine patches, and suggested an “urgent need” for standards that would 

support consistent comparisons to promote innovation and successful commercialization of 

vaccine patches [140].

For all vaccine manufacturers, commercializing a new product will likely require the 

payment of significant costs for any late-stage (e.g., phase 2 or 3) clinical trials to 

demonstrate efficacy, non-inferiority, and durability of immunity required to support 

licensing the new vaccine patch product, and they will need to perceive a reasonable 

expectation of recovering these costs. In contrast to new vaccines, the development of 

vaccine patches for existing vaccines may only require bridging studies, but it could also 

lead to changes in required formulation or concentrations (e.g., excipients, stabilizers), 

which may ultimately require extensive and expensive regulatory changes for the vaccine 

itself [20]. Few financial incentives for innovation seem apparent for current low-cost, well-

established vaccines, in some cases licensed many years ago, suggesting potential high costs 

and risks to reopening safety profiles or changing production processes to meet current 

regulatory requirements [20]. In addition, for vaccines already produced at large scale, 

vaccine manufacturers will not see the need for dose sparing, which would only serve to 

make some of their existing vaccine production capacity redundant. However, if one 

manufacturer dominates a particular market, then incentives may exist for alternative new 

products offered by other manufacturers that allow them to compete for market share.

The stability of the supply chain will represent a critical consideration for vaccine 

manufactures. Manufacturers will most likely prefer to co-locate the patch and vaccine 

production, but they will need to evaluate the cost-effectiveness of performing some 
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production elsewhere. As with all vaccine manufacturing processes, evaluation of the supply 

chain will include consideration of raw material sourcing (e.g., particularly those derived 

from animals like bovine and porcine components), which may raise issues related to the 

acceptability of the ultimate vaccine patch product. For example, the use of a porcine-based 

component in a rubella-containing vaccine led to acceptability issues in Indonesia that 

significantly affected coverage [180], whereas vaccines containing bovine components may 

not be acceptable in other countries (e.g., India).

In addition to any specific issues related to the vaccine patch presentation, vaccine 

manufacturers will need to address the issues that typically come with the production and 

licensing of vaccine products. These include managing the nature of the batch processing, 

QC, packaging, labeling, and storage of vaccines, and the time delays related to regulatory 

processing, licensing, compliance, and WHO pre-qualification (for those seeking to sell to 

markets that require it), all of which will require resource investments. All the details related 

to labeling and packaging requirements (e.g., required language or codes, temperature 

deviation monitors similar in purpose to vaccine vial monitors, desiccants, etc.) represent 

areas that will need development. Vaccine manufacturers will also face decisions related to 

pursuing single or multiple antigens in the vaccine patch formulation and on making trade-

offs associated with product attributes based on their perceptions and expectations about the 

future market. For large multi-national companies that work with multiple national 

regulatory authorities, seeking and obtaining approval for process changes can represent a 

time-consuming and expensive undertaking, which may also impact the willingness of 

vaccine manufacturers to adopt unfamiliar technologies. In addition, the innovative nature of 

vaccine patches implies the need for a new regulatory pathway, and currently no consensus 

exists across functioning national regulatory authorities (NRAs) on such a pathway, which 

will mean extensive discussions with multiple NRAs and imply associated costs and time 

delays.

The nature of the vaccine market, which includes relatively few manufacturers and a 

relatively small number of large buyers, influences incentives and leads to segmentation. 

Specifically, segmentation translates into lower-priced multi-dose vaccines for developing 

countries, and relatively higher-priced vaccines targeted at developed countries (e.g., single 

dose, combination vaccines), often produced by only one or two manufacturers. In 

developed countries, the existing market incentives are relatively favorable, with some 

incentives for innovation coming from the opportunity of gaining significant market share 

for superior products (i.e., more effective, safer, easier-to-deliver, and/or more cost-effective 

options than any currently available). As discussed above, influenza appears likely to be the 

first potential vaccine patch product to complete phase 3 clinical trials. In addition, with 

potential demand for the entire population for annual administration of seasonal influenza 

vaccine that changes in formulation annually, a flu vaccine patch could prove to be a 

potentially viable vaccine patch product with significant consumer appeal. The development 

and licensure of FluMist™ as a nasal delivery method suggests a willingness by vaccine 

manufacturers in developed countries to pursue alternatives to the traditional needle 

injections despite the estimated $1 billion cost (i.e., $340 million to license FluMist™ and 

an estimated total costs of 2–3 times higher by the time patients started receiving it [181]). 

However, innovation in vaccine delivery for some products targeted for developed countries 
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may require some support from push incentives, which subsidize development costs, and/or 

pull incentives, which reward manufactures for offering the desired product, or a public-

private partnership (e.g., for pandemic vaccines), particularly in the context of highly 

uncertain demand and expected relatively low margins for vaccine products compared to 

other therapeutic agents.

Based on the current status of vaccine patch development and discussions with key 

stakeholders, the business case for vaccine patches does not currently support the required 

investments by vaccine manufacturers that supply the developing country markets to expect 

licensed vaccine patches to come to the market soon [20]. For developing countries, prior 

experience with new vaccine products will influence manufacturer willingness to engage in 

development activities. For example, the rotavirus vaccine market currently includes 

multiple products now pre-qualified by WHO with different attributes, and it does not show 

a willingness of vaccine purchases to pay a price premium for a thermostable vaccine (i.e., 

to prefer thermostable ROTASIIL®[182] to less thermostable but cheaper alternatives [183]) 

to date. Public-private partnerships can bring investments that share the costs and risks of the 

vaccine development process, particularly for products with thin profit margins or relatively 

smaller markets. For example, public-private partnerships were required to support the 

development of vaccine products needed in developing countries, including a meningitis 

vaccine for central Africa (i.e., for MenAfriVac™ [184])), oral cholera vaccine [185], and 

other vaccines [186,187] However, such partnerships do not always lead to commercial 

success. For example, the partnership that sought to develop an aerosol formulation for MR 

vaccine invested significant resources in the conduct of several clinical trials, including a 

trial that ultimately showed the aerosol formulation did not meet the non-inferiority criteria 

compared to syringe and needle presentation [188].

The licensure and successful marketing of the first vaccine patch product will establish the 

platform and set precedents that create opportunities and/or challenges for future vaccine 

patch products. Consumer demand for multiple vaccine patches could follow the 

establishment of a licensed vaccine patch product that receives wide public acceptance and 

establishes the platform. In this regard, health system and consumer experience with the first 

vaccine patch product will likely influence acceptance and demand for other vaccine patch 

products, as may any experience with other (i.e., non-vaccine) patch-delivered 

pharmaceutical products. Notably, if the first vaccine patch product leads to greater 

acceptance of and demand for vaccination and thus higher coverage, then this could increase 

population immunity and demonstrate the potential for significant benefits. In addition, the 

first product to market will establish the first regulatory path for the platform, packaging 

requirements (e.g., protection of projection integrity and the vaccine antigen, the need for 

desiccants, waste disposal), acceptability of the product within the health system (e.g., costs, 

ease of use, administration times and skills needed, storage, potential sharps, residual active 

ingredients after delivery, confirmation of delivery signals), acceptability by individual 

vaccine recipients, and other firsts. In addition, widespread use of the first vaccine patch will 

present the first opportunity to observe potential new adverse events (e.g., skin reactions, 

unintended use or ingestion of a vaccine patch, packaging, etc.), as well as any potential 

injury due to application/misapplication. With seasonal influenza as the apparent front 

runner for vaccine patch development, we note the potential for issues unrelated to the 
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vaccine patch itself to impact the product. For example, following the recommendation and 

adoption of FluMist™ by the US, choices related to the strains used in the formulation led to 

the temporary suspension of its recommended use in the US market [189–191], which had 

nothing to do with the delivery mechanism.

7. Conclusion

Over the past two decades, significant advances in engineering supported the development of 

vaccine patch technologies with the potential to deliver vaccines through the skin while 

taking advantage of other favorable properties (e.g., increased thermostability, no 

reconstitution or field preparation, etc.) [15,18,192,193]. At the same time, we now have a 

detailed understanding of antigen presentation in the human skin [149–151], and 

development of non-invasive imaging modalities have enabled in vivo studies of the human 

skin with submicron resolution [145,158,160,168]. A coordinated convergence of the three 

disciplines discussed here could help to develop the baseline basic science necessary to 

characterize and model the immunobiology of various vaccine patch technologies and 

accelerate progress in vaccine patch platform development. For instance, further research 

could help develop broad reference standards for physical characteristics of skin across 

multiple categories of age, gender, site, BMI, as well as other potential variables such as 

nutritional status and ethnicity, or physical conditions such as humidity and temperature. 

Specific vaccine patch delivery methodologies could be refined to specific human skin 

characteristics relevant to the given technique. For instance, BMI and gender may be 

relevant to longer projections that potentially penetrate through the dermis at a given site, 

while age and body site may be more relevant to shorter projections that either stay within 

the epidermis or superficially penetrate the papillary dermis. Several studies also 

demonstrate that the design of the projections can impact pain [194–196].

This review highlights tremendous progress to date in the development of vaccine patches, 

and provides a glimpse into the many future opportunities to deploy vaccine patches in 

broad use. Innovative vaccine delivery technologies offer many promises for increasing 

immunization coverage. Given the apparent lack of incentives that exist for vaccine 

manufacturers to pursue the development of vaccine patches for developing country markets, 

public-private partnerships will likely be needed if any key stakeholder wants to realize (or 

accelerate) the licensure of vaccine patches for widespread use, particularly for existing, 

low-margin vaccines. Although developed countries continue to explore the use of vaccine 

patches to support disease eradication efforts that require reaching difficult-to-access 

populations in developing countries, the willingness-to-pay a premium for vaccine patches 

remains uncertain, even in an eradication context. The opportunity for new vaccines, and for 

expensive antigens that would benefit from dose-sparing, might improve the value 

proposition for vaccine patches and make investments in their development attractive to 

vaccine manufacturers in some cases. Overall, the incentives that vaccine manufacturers 

perceive and realize will depend on the value that consumers and health systems ultimately 

place on the set of attributes that each product brings to the system.
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8. Expert Opinion

Despite substantial advances in microneedle technology and basic science, progress towards 

clinical deployment of microneedle skin patches for vaccination remains relatively slow, 

which reflects current financial incentives. The lack of a perceived sufficient return on 

investment for vaccine manufacturers to make incremental improvements in vaccine delivery 

technology broadly, and for low-cost, legacy vaccines specifically, represents a critical 

barrier or translational valley of death [197,198]. The lack of competitive forces that would 

create financial incentives for patch developers to become first movers and disrupt the 

market by also taking on the vaccine manufacturing aspects of the products (i.e., becoming 

vaccine manufacturers themselves) similarly means vaccine patch development will likely 

depend on external financing or financial incentives.

Similar to other situations discussed above, the development and adoption of vaccine patch 

products for developing country markets will likely require the support from public-private 

partnerships and/or other incentives, such as targeted national or international investments, 

to overcome the early economic barriers. In this context, financial partners may influence the 

overall timing of availability of vaccine patches to the market. This could accelerate progress 

(e.g., by supporting the establishment of large-scale GMP manufacturing processes and 

facilities in parallel with phase 2 clinical testing [20]) and/or slow it down (e.g., by requiring 

multiple patch developers to all reach each specific stage before proceeding such that the 

trials generate comparable results by using the same settings and criteria for advancement to 

the next stage). Thus, while some patch developers may complete initial development with 

respect to clinical formulation, processing, and assessing prototype stability, they may 

experience delays in the clinical testing timeline at multiple points if they need to wait for 

others to finish the prior phase. In addition, all patch developers will need to wait for as any 

financial partners evaluate results and makes stage-gate decisions about continuing to the 

next step. The establishment of a public-private partnership to develop the general platform 

would further allow the public health and donor partners to negotiate some controls on the 

prices of the final products, particularly if the financial support that they provide shares the 

costs and risks of product development.

For developed country markets, sufficient private financing (e.g., venture capital) may 

already exist and the competitive nature of the market may alleviate the need for a public-

private partnership. Specifically, vaccine patches may provide an opportunity to differentiate 

a product from other competitors, which could offer a significant market advantage. 

Nevertheless, national research funding mechanisms (e.g., a National Institutes of Health 

study section, and/or a targeted funding program, and/or support from Biomedical Advanced 

Research and Development Authority in the US) could significantly stimulate basic science 

and translational research for vaccine patches and accelerate their use. The creation of broad 

funding mechanisms for the patch platform (including non-vaccine applications) could help 

to resolve some shared questions, while specific funding to support vaccine patches would 

likely better support the basic science immunobiological questions relevant to specific 

vaccines.
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Although we discuss a number of current issues, these represent surmountable hurdles that 

can be overcome with sufficient resources, and they should not be viewed as barriers to 

innovation or clinical deployment. Vaccine patches could support efforts to significantly 

increase immunization coverage [20]. Future reviews will likely show a continued 

acceleration of vaccine patch research and development activity and insights related to many 

of the topics discussed in this review. Innovation in the use of patch technology for general 

pharmaceutical product delivery (non-vaccine products) may further patches as a delivery 

platform broadly for pharmaceutical products, which may help to accelerate vaccine patch 

development [15]. Health systems and consumers could easily adapt to the platform and 

could prefer immunization delivered by vaccine patches, although perceptions about efficacy 

and actual efficacy will impact uptake [175]. We anticipate that within the next 10 years, the 

commercial viability of a vaccine patch for influenza vaccine will become clear, and that 

efforts to develop vaccine patches as a delivery platform will mature. Progress will depend 

on the investments made to support multiple streams of work by numerous stakeholders.
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Appendix

Histological preparations shown in Figures 3 and 4 represent normal portions of skin in 

pediatric patients who underwent surgical excision for a pigmented skin lesion located at 

least 2 mm away from the normal skin represented in the images. All tissues were fixed in 

neutral-buffered formalin for at least 24 hours before being processed routinely for paraffin 

embedding and sectioning at 4–5 microns followed by hematoxylin and eosin staining. For 

immunohistochemistry, paraffin sections were deparaffinized with xylene and hydrated 

through a graded series of alcohol. After antigen retrieval in 0.1M citrate buffer (pH 6.0) in a 

microwave oven for 10 min, inhibition of endogenous peroxidase activity was performed by 

immersion in 3% hydrogen peroxidase in methanol. The sections were then incubated with 

the primary antibodies, followed by thorough washing in phosphate-buffered solution (PBS), 

incubation with the biotinylated secondary antibody, followed by the avidin-biotinylated 

horseradish peroxidase complex, and finally developed using 3,3’-Diaminobenzidine as 

chromogen. The nuclear counterstaining was accomplished using Mayer’s hematoxylin. All 

reagents, antibodies and instruments used to process and stain the tissue were from Leica 

Microsystems Inc. (Buffalo Grove, IL). Photographs were taken on a BX43 microscope 

(Olympus America, Center Valley, PA) coupled to an Infinity2–5 camera (Lumenera, 

Ottawa, Ontario). Images were captured in Photoshop (Adobe Systems, San Jose, 
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California), optimized for brightness and color to generally maximize the width of the image 

histogram. Final images were cropped to assemble the composite images shown here.
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9.

Article highlights

• Systematic review of the literature reveals substantial progress in the 

development of vaccine patches

• Efforts to translate research and development into commercial products will 

depend on success convergence of multiple streams of work

• Different incentives exist for commercialization of vaccine patches in 

developed and developing countries

• Financial incentives for the platform will impact vaccine patch design

• Standardizing models and techniques would help to promote successful 

commercialization of vaccine patches in human skin
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Figure 1: 
Vaccine patch development pathway and intensity of efforts (indicated by triangles) required 

from stakeholders that need to resolve key issues and converge to commercialize a clinical 

vaccine patch, including successful handoff from patch developers to vaccine manufacturers.
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Figure 2: 
Process used to identify 116 relevant peer-reviewed vaccine patch papers published in 

English that met the inclusion criteria.
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Figure 3: 
Histological preparation of the excised human skin for which the solid horizontal bar 

represents 100 microns in both panels. Panel A shows a hematoxylin and eosin stained 

section of paraffin-embedded human skin (original magnification 200x), with capillaries 

noted by arrows and lymphatics by arrowheads. Panel B shows immunostaining of an 

adjacent section using antibodies to CD1a with intraepithelial Langerhans Cells noted by 

arrowheads and CD1a-positive cells in the dermis noted by arrows.
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Figure 4. 
Scale drawing (bar represents 1 mm) with Panel A showing a hematoxylin and eosin stained 

section of paraffin-embedded human skin showing the relative proportions of keratin, 

epidermis, papillary dermis, reticular dermis, and subcutaneous adipose tissue, respectively, 

highlighted in the right-hand side by pseudocolors of red, pink, blue, no color, and yellow, 

respectively. Panel B shows an image from high frequency ultrasound (40 MHz) (adapted 

with permission from [145]), Panel C shows detail in the dermis and superficial 

subcutaneous tissue by ultrasound imaging at ultrahigh frequencies (70 MHz shown) 

(adapted with permission under Creative Common license http://creativecommons.org/

licenses/by/4.0/ from supplementary data in [167]). Panel D shows simultaneous dual-band 

line-field confocal optical coherence tomography (OCT) (adapted with permission from 

[168] © The Optical Society) that provides very high resolution (note the significant cellular 

detail in the inset below at the level of the epidermis and superficial papillary dermis not 

visible in Panels B and C), which comes at the expense of relatively short penetration depth. 

Panel E shows a single dissolving projection (adapted with permission from [64]) on the left, 

and a single coated nanopatch projection (adapted with permission under Creative Common 

license http://creativecommons.org/licenses/by/4.0/ from [92]). Finally, the black rectangle 

drawn at the base of the needle corresponds to the position of the corresponding vaccine 

patch inner surface.
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Table 1:

Summary characteristics of 116 included vaccine patch studies

Patch projection type*

 Coated (N=69) [22–61,81,83–94,103–107,109–112,119,121,125,128,132,133] [62,108]*

 Hollow (N=10) [108]*[95–102,134]

 Dissolving (N=39) [63–80,82,113–118,120,122–124,126,127,129–131,135–137] [62]*

Publication Year

 2005–2009 (N=8) [22–26,95,108,125]

 2010–2014(N=44) [27–53,63,81–88,96–98,113,114,116,119,121]

 2015–2019 (N=64) [54–62,64–80,89–94,99–107,109–112,115,117,118,120,122–124,126–137]

Patch Developer

 Georgia Institute of Technology/Emory University/Micron (N=57) (2009–2019) [22–80]

 Queensland University/Vaxxas/Nanopatch (N=14) (2010–2018) [81–94]

 NanoPass MicronJet (N=8) (2009–2016) [95–102]

 Korea Advanced Institute of Science and Technology (N=5) (2015–2017) [103–107]

 Leiden University (N=4) (2009–2019) [108–111]

 Osaka University/MicroHyala (N=4) (2012–2017) [112–115]

 Queen’s University (N=3) (2012–2018) [116–118]

 Cork/ImmuPatch (N=2) (2012–2016) [119,120]

 Novartis (N=2) (2013–2015) [121,122]

 Wellman Laboratory (N=2) (2015–2017) [123,124]

 Anhui Medical University (N=1) (2015) [126]

 Chinese Academy of Sciences (N=1) (2016) [127]

 China State Institute of Pharmaceutical Industry (N=1) (2016) [129]

 GSK Fujifilm (N=1) (2017) [130]

 Hamamatsu University School of Medicine, ASTI (N=1) (2018) [134]

 Hokkaido University/Fujifilm (N=1) (2017) [131]

 Mercer (N=1) (2018) [135]

 Tufts University/Massachusetts Institute of Technology/Vaxxes (N=1) (2017) [132]

 USAMRID Easy Vax™ (N=1) (2007) [125]

 University of Pittsburgh (N=1) (2016) [128]

 University of Navarra/Cardiff University (N=1) (2017) [133]

 Yonsei (N=1) (2018) [136]

 Zhejiang University of Technology (N=1) (2018) [137]

Vaccine**

 Influenza (N=68)

  H1N1 (N=29) [24–26,28–33,39,41,43–46,49–52,55,57,63,66,69,70,91,94,105,106]

  H1N1,H3N2,B (N=18) [62,68,73,81,82,87,92,95,96,98,101,104,112,113,115,120–122]

  H1N1,H3N2,B,B (N=2) [112,132]

  H1N1 Pandemic (N=5) [40,97,103,111,123]

  H3N2 (N=4) [23,38,78,108]
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  H5N1 (N=3) [34,35,42]

  H1N1,H5N1 (N=2) [27,131]

  H1N1,H3N2 (N=1) [53]

  H1N1 Pandemic,H3N2,A other (N=1) [54]

  H1N1,H3N2,H5N1,H7N9 (N=1) [79]

  H1N1,H3N2,H1N1 Pandemic (N=1) [72]

  H1N1,H3N2,H1N1 Pandemic,A other (N=1) [61]

  H1N1-like (A other) (N=1) [77]

 Hepatitis B surface antigen (HepBsAg) (N=6) [22,75,80,126,127,130]

 Polio (N=6) [65,90,93,99,100,109]

 Diphtheria toxoid (N=4) [108,110,113,114]

 Tetanus toxoid (N=4) [67,110,113,114]

 Human Papilloma virus (HPV) (N=4) [56,85,117,118]

 Ebola (N=3) [58,59,71]

 Malaria (N=3) [88,113,119]

 Rota (N=3) [48,76,102]

 Bacillus Calmette–Guerin (BCG) (N=2) [37,124]

 Herpes simplex virus (N=2) [83,84]

 Measles (N=2) [47,64]

 C. difficile (N=1) [132]

 Chikungunya (N=1) [86]

 Gonorrhoeae (N=1) [135]

 Hand-foot-and-mouth disease (Enterovirus 71, EV 71) (N=1) [129]

 Hepatitis C (N=1) [36]

 Human immunodeficiency virus (HIV) (N=1) [116]

 Leishmania spp (N=1) [133]

 Measles rubella (MR) (N=1) [74]

 Mumps (N=1) [134]

 Pneumococcal conjugate vaccine (PCV) (N=1) [89]

 Respiratory syncytial virus (RSV) (N=1) [60]

 Scrub typhus (N=1) [136]

 Severe fever with thrombocytopenia syndrome virus (SFTSV) (N=1) [107]

 Shigella (N=1) [132]

 Smallpox (N=1) [125]

 Tuberculosis (non-BCG) (N=1) [137]

 Varicella (N=1) [134]

 West Nile Virus (N=1) [86]

 Zika (N=1) [128]

Species

 Mice (N=87) [23–36,38–46,48–63,66,67,69–73,76–89,91,92,103–108,110,111,116–120,124–129,131–133,135–137]

 Human (N=10) [68,94–101,115]

 Rats (N=7) [47,90,93,109,112,114,134]

 Rhesus macaques (N=3) [64,65,74]
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 Pigs (N=3) [22,102,130]

 Guinea pigs (N=3) [37,121,122]

 Mice, rats*** (N=1) [113]

 Mice, pigs*** (N=1) [123]

 Mice, rhesus macaques*** (N=1) [75]

Dose sparing (N=50)

 Demonstrated (N=22) [23,32–35,37,43,44,69,76,81,83,90,91,93,96,98,101,103,108,129,134]

 Suggestive (N=22) [25,27,36,38,49,53–55,62,70,75,77,84,85,95,97,111,115,120–122,132]

 Looked for but not found (N=6) [48,64,65,99,100,133]

*
More than one patch projection type (coated and dissolving [62], coated and hollow [108])

**
Studies with multiple vaccines (diphtheria and tetanus toxoids, influenza, and malaria [113], C. difficile, influenza, and Shigella [132], diphtheria 

and tetanus toxoids [110,114], diphtheria toxoid and influenza [108], mumps and varicella [134], Chikungunya and West Nile Virus [86], and 2 
types of influenza [112])

***
Studies with more than one species
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Table 3:

Summary of evidence about the location, Antigen Presenting Cell type, and typical immunophenotype 

characteristics

Langerhans Cell CD1c+ Conventional 
Dermal Dendritic Cell

CD141+ Conventional 
Dermal Dendritic Cell

Plasmacytoid 
Dendritic Cell

Macrophage

Primary Skin 
Location

Epidermis Dermis Dermis Dermis Dermis

Mouse Homolog LC cDC2 cDC1 pDC Macrophage

CD1a ++ + −/+ −/+ −

CD1c + + − −/+ +

CD11b +/− + − − +/−

CD11c +/− + +/− − +

CD14 − − − + −

CD141 − −/+ ++ −/+ −

CD207/Langerin ++ +/− −/+ − −

Other Unique 
Characteristic

Birbeck Granule CD163+
CD68+

*
Grayed out boxes indicate markers that positively identify each category. Variability in expression and/or lack of consensus about human 

immunophenotype is indicated using +/− (likely positive) and −/+ (likely negative).
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